1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dpu_kms.h"
26 #include "dpu_hw_lm.h"
27 #include "dpu_hw_ctl.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_crtc.h"
30 #include "dpu_plane.h"
31 #include "dpu_encoder.h"
32 #include "dpu_vbif.h"
33 #include "dpu_core_perf.h"
34 #include "dpu_trace.h"
35 
36 /* layer mixer index on dpu_crtc */
37 #define LEFT_MIXER 0
38 #define RIGHT_MIXER 1
39 
40 /* timeout in ms waiting for frame done */
41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
42 
43 #define	CONVERT_S3_15(val) \
44 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
45 
46 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
47 {
48 	struct msm_drm_private *priv = crtc->dev->dev_private;
49 
50 	return to_dpu_kms(priv->kms);
51 }
52 
53 static void dpu_crtc_destroy(struct drm_crtc *crtc)
54 {
55 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
56 
57 	if (!crtc)
58 		return;
59 
60 	drm_crtc_cleanup(crtc);
61 	kfree(dpu_crtc);
62 }
63 
64 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
65 {
66 	struct drm_device *dev = crtc->dev;
67 	struct drm_encoder *encoder;
68 
69 	drm_for_each_encoder(encoder, dev)
70 		if (encoder->crtc == crtc)
71 			return encoder;
72 
73 	return NULL;
74 }
75 
76 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
77 {
78 	if (!src_name ||
79 	    !strcmp(src_name, "none"))
80 		return DPU_CRTC_CRC_SOURCE_NONE;
81 	if (!strcmp(src_name, "auto") ||
82 	    !strcmp(src_name, "lm"))
83 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
84 	if (!strcmp(src_name, "encoder"))
85 		return DPU_CRTC_CRC_SOURCE_ENCODER;
86 
87 	return DPU_CRTC_CRC_SOURCE_INVALID;
88 }
89 
90 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
91 		const char *src_name, size_t *values_cnt)
92 {
93 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
94 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
95 
96 	if (source < 0) {
97 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
98 		return -EINVAL;
99 	}
100 
101 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
102 		*values_cnt = crtc_state->num_mixers;
103 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
104 		struct drm_encoder *drm_enc;
105 
106 		*values_cnt = 0;
107 
108 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
109 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
110 	}
111 
112 	return 0;
113 }
114 
115 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
116 {
117 	struct dpu_crtc_mixer *m;
118 	int i;
119 
120 	for (i = 0; i < crtc_state->num_mixers; ++i) {
121 		m = &crtc_state->mixers[i];
122 
123 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
124 			continue;
125 
126 		/* Calculate MISR over 1 frame */
127 		m->hw_lm->ops.setup_misr(m->hw_lm, true, 1);
128 	}
129 }
130 
131 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
132 {
133 	struct drm_encoder *drm_enc;
134 
135 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
136 		dpu_encoder_setup_misr(drm_enc);
137 }
138 
139 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
140 {
141 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
142 	enum dpu_crtc_crc_source current_source;
143 	struct dpu_crtc_state *crtc_state;
144 	struct drm_device *drm_dev = crtc->dev;
145 
146 	bool was_enabled;
147 	bool enable = false;
148 	int ret = 0;
149 
150 	if (source < 0) {
151 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
152 		return -EINVAL;
153 	}
154 
155 	ret = drm_modeset_lock(&crtc->mutex, NULL);
156 
157 	if (ret)
158 		return ret;
159 
160 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
161 	crtc_state = to_dpu_crtc_state(crtc->state);
162 
163 	spin_lock_irq(&drm_dev->event_lock);
164 	current_source = crtc_state->crc_source;
165 	spin_unlock_irq(&drm_dev->event_lock);
166 
167 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
168 
169 	if (!was_enabled && enable) {
170 		ret = drm_crtc_vblank_get(crtc);
171 
172 		if (ret)
173 			goto cleanup;
174 
175 	} else if (was_enabled && !enable) {
176 		drm_crtc_vblank_put(crtc);
177 	}
178 
179 	spin_lock_irq(&drm_dev->event_lock);
180 	crtc_state->crc_source = source;
181 	spin_unlock_irq(&drm_dev->event_lock);
182 
183 	crtc_state->crc_frame_skip_count = 0;
184 
185 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
186 		dpu_crtc_setup_lm_misr(crtc_state);
187 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
188 		dpu_crtc_setup_encoder_misr(crtc);
189 	else
190 		ret = -EINVAL;
191 
192 cleanup:
193 	drm_modeset_unlock(&crtc->mutex);
194 
195 	return ret;
196 }
197 
198 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
199 {
200 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
201 	if (!encoder) {
202 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
203 		return 0;
204 	}
205 
206 	return dpu_encoder_get_vsync_count(encoder);
207 }
208 
209 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
210 		struct dpu_crtc_state *crtc_state)
211 {
212 	struct dpu_crtc_mixer *m;
213 	u32 crcs[CRTC_DUAL_MIXERS];
214 
215 	int rc = 0;
216 	int i;
217 
218 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
219 
220 	for (i = 0; i < crtc_state->num_mixers; ++i) {
221 
222 		m = &crtc_state->mixers[i];
223 
224 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
225 			continue;
226 
227 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
228 
229 		if (rc) {
230 			if (rc != -ENODATA)
231 				DRM_DEBUG_DRIVER("MISR read failed\n");
232 			return rc;
233 		}
234 	}
235 
236 	return drm_crtc_add_crc_entry(crtc, true,
237 			drm_crtc_accurate_vblank_count(crtc), crcs);
238 }
239 
240 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
241 {
242 	struct drm_encoder *drm_enc;
243 	int rc, pos = 0;
244 	u32 crcs[INTF_MAX];
245 
246 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
247 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
248 		if (rc < 0) {
249 			if (rc != -ENODATA)
250 				DRM_DEBUG_DRIVER("MISR read failed\n");
251 
252 			return rc;
253 		}
254 
255 		pos += rc;
256 	}
257 
258 	return drm_crtc_add_crc_entry(crtc, true,
259 			drm_crtc_accurate_vblank_count(crtc), crcs);
260 }
261 
262 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
263 {
264 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
265 
266 	/* Skip first 2 frames in case of "uncooked" CRCs */
267 	if (crtc_state->crc_frame_skip_count < 2) {
268 		crtc_state->crc_frame_skip_count++;
269 		return 0;
270 	}
271 
272 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
273 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
274 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
275 		return dpu_crtc_get_encoder_crc(crtc);
276 
277 	return -EINVAL;
278 }
279 
280 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
281 					   bool in_vblank_irq,
282 					   int *vpos, int *hpos,
283 					   ktime_t *stime, ktime_t *etime,
284 					   const struct drm_display_mode *mode)
285 {
286 	unsigned int pipe = crtc->index;
287 	struct drm_encoder *encoder;
288 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
289 
290 	encoder = get_encoder_from_crtc(crtc);
291 	if (!encoder) {
292 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
293 		return false;
294 	}
295 
296 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
297 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
298 
299 	/*
300 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
301 	 * the end of VFP. Translate the porch values relative to the line
302 	 * counter positions.
303 	 */
304 
305 	vactive_start = vsw + vbp + 1;
306 	vactive_end = vactive_start + mode->crtc_vdisplay;
307 
308 	/* last scan line before VSYNC */
309 	vfp_end = mode->crtc_vtotal;
310 
311 	if (stime)
312 		*stime = ktime_get();
313 
314 	line = dpu_encoder_get_linecount(encoder);
315 
316 	if (line < vactive_start)
317 		line -= vactive_start;
318 	else if (line > vactive_end)
319 		line = line - vfp_end - vactive_start;
320 	else
321 		line -= vactive_start;
322 
323 	*vpos = line;
324 	*hpos = 0;
325 
326 	if (etime)
327 		*etime = ktime_get();
328 
329 	return true;
330 }
331 
332 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
333 		struct dpu_plane_state *pstate, struct dpu_format *format)
334 {
335 	struct dpu_hw_mixer *lm = mixer->hw_lm;
336 	uint32_t blend_op;
337 	uint32_t fg_alpha, bg_alpha;
338 
339 	fg_alpha = pstate->base.alpha >> 8;
340 	bg_alpha = 0xff - fg_alpha;
341 
342 	/* default to opaque blending */
343 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
344 	    !format->alpha_enable) {
345 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
346 			DPU_BLEND_BG_ALPHA_BG_CONST;
347 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
348 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
349 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
350 		if (fg_alpha != 0xff) {
351 			bg_alpha = fg_alpha;
352 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
353 				    DPU_BLEND_BG_INV_MOD_ALPHA;
354 		} else {
355 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
356 		}
357 	} else {
358 		/* coverage blending */
359 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
360 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
361 		if (fg_alpha != 0xff) {
362 			bg_alpha = fg_alpha;
363 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
364 				    DPU_BLEND_FG_INV_MOD_ALPHA |
365 				    DPU_BLEND_BG_MOD_ALPHA |
366 				    DPU_BLEND_BG_INV_MOD_ALPHA;
367 		} else {
368 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
369 		}
370 	}
371 
372 	lm->ops.setup_blend_config(lm, pstate->stage,
373 				fg_alpha, bg_alpha, blend_op);
374 
375 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
376 		  &format->base.pixel_format, format->alpha_enable, blend_op);
377 }
378 
379 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
380 {
381 	struct dpu_crtc_state *crtc_state;
382 	int lm_idx, lm_horiz_position;
383 
384 	crtc_state = to_dpu_crtc_state(crtc->state);
385 
386 	lm_horiz_position = 0;
387 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
388 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
389 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
390 		struct dpu_hw_mixer_cfg cfg;
391 
392 		if (!lm_roi || !drm_rect_visible(lm_roi))
393 			continue;
394 
395 		cfg.out_width = drm_rect_width(lm_roi);
396 		cfg.out_height = drm_rect_height(lm_roi);
397 		cfg.right_mixer = lm_horiz_position++;
398 		cfg.flags = 0;
399 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
400 	}
401 }
402 
403 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
404 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
405 	struct dpu_hw_stage_cfg *stage_cfg)
406 {
407 	struct drm_plane *plane;
408 	struct drm_framebuffer *fb;
409 	struct drm_plane_state *state;
410 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
411 	struct dpu_plane_state *pstate = NULL;
412 	struct dpu_format *format;
413 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
414 
415 	u32 flush_mask;
416 	uint32_t stage_idx, lm_idx;
417 	int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
418 	bool bg_alpha_enable = false;
419 	DECLARE_BITMAP(fetch_active, SSPP_MAX);
420 
421 	memset(fetch_active, 0, sizeof(fetch_active));
422 	drm_atomic_crtc_for_each_plane(plane, crtc) {
423 		state = plane->state;
424 		if (!state)
425 			continue;
426 
427 		if (!state->visible)
428 			continue;
429 
430 		pstate = to_dpu_plane_state(state);
431 		fb = state->fb;
432 
433 		dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
434 		set_bit(dpu_plane_pipe(plane), fetch_active);
435 
436 		DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
437 				crtc->base.id,
438 				pstate->stage,
439 				plane->base.id,
440 				dpu_plane_pipe(plane) - SSPP_VIG0,
441 				state->fb ? state->fb->base.id : -1);
442 
443 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
444 
445 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
446 			bg_alpha_enable = true;
447 
448 		stage_idx = zpos_cnt[pstate->stage]++;
449 		stage_cfg->stage[pstate->stage][stage_idx] =
450 					dpu_plane_pipe(plane);
451 		stage_cfg->multirect_index[pstate->stage][stage_idx] =
452 					pstate->multirect_index;
453 
454 		trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
455 					   state, pstate, stage_idx,
456 					   dpu_plane_pipe(plane) - SSPP_VIG0,
457 					   format->base.pixel_format,
458 					   fb ? fb->modifier : 0);
459 
460 		/* blend config update */
461 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
462 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
463 						pstate, format);
464 
465 			mixer[lm_idx].flush_mask |= flush_mask;
466 
467 			if (bg_alpha_enable && !format->alpha_enable)
468 				mixer[lm_idx].mixer_op_mode = 0;
469 			else
470 				mixer[lm_idx].mixer_op_mode |=
471 						1 << pstate->stage;
472 		}
473 	}
474 
475 	if (ctl->ops.set_active_pipes)
476 		ctl->ops.set_active_pipes(ctl, fetch_active);
477 
478 	_dpu_crtc_program_lm_output_roi(crtc);
479 }
480 
481 /**
482  * _dpu_crtc_blend_setup - configure crtc mixers
483  * @crtc: Pointer to drm crtc structure
484  */
485 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
486 {
487 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
488 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
489 	struct dpu_crtc_mixer *mixer = cstate->mixers;
490 	struct dpu_hw_ctl *ctl;
491 	struct dpu_hw_mixer *lm;
492 	struct dpu_hw_stage_cfg stage_cfg;
493 	int i;
494 
495 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
496 
497 	for (i = 0; i < cstate->num_mixers; i++) {
498 		mixer[i].mixer_op_mode = 0;
499 		mixer[i].flush_mask = 0;
500 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
501 			mixer[i].lm_ctl->ops.clear_all_blendstages(
502 					mixer[i].lm_ctl);
503 	}
504 
505 	/* initialize stage cfg */
506 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
507 
508 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
509 
510 	for (i = 0; i < cstate->num_mixers; i++) {
511 		ctl = mixer[i].lm_ctl;
512 		lm = mixer[i].hw_lm;
513 
514 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
515 
516 		mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
517 			mixer[i].hw_lm->idx);
518 
519 		/* stage config flush mask */
520 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
521 
522 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
523 			mixer[i].hw_lm->idx - LM_0,
524 			mixer[i].mixer_op_mode,
525 			ctl->idx - CTL_0,
526 			mixer[i].flush_mask);
527 
528 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
529 			&stage_cfg);
530 	}
531 }
532 
533 /**
534  *  _dpu_crtc_complete_flip - signal pending page_flip events
535  * Any pending vblank events are added to the vblank_event_list
536  * so that the next vblank interrupt shall signal them.
537  * However PAGE_FLIP events are not handled through the vblank_event_list.
538  * This API signals any pending PAGE_FLIP events requested through
539  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
540  * @crtc: Pointer to drm crtc structure
541  */
542 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
543 {
544 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
545 	struct drm_device *dev = crtc->dev;
546 	unsigned long flags;
547 
548 	spin_lock_irqsave(&dev->event_lock, flags);
549 	if (dpu_crtc->event) {
550 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
551 			      dpu_crtc->event);
552 		trace_dpu_crtc_complete_flip(DRMID(crtc));
553 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
554 		dpu_crtc->event = NULL;
555 	}
556 	spin_unlock_irqrestore(&dev->event_lock, flags);
557 }
558 
559 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
560 {
561 	struct drm_encoder *encoder;
562 
563 	/*
564 	 * TODO: This function is called from dpu debugfs and as part of atomic
565 	 * check. When called from debugfs, the crtc->mutex must be held to
566 	 * read crtc->state. However reading crtc->state from atomic check isn't
567 	 * allowed (unless you have a good reason, a big comment, and a deep
568 	 * understanding of how the atomic/modeset locks work (<- and this is
569 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
570 	 * really we need to figure out a better way to track our operating mode
571 	 */
572 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
573 
574 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
575 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
576 		return dpu_encoder_get_intf_mode(encoder);
577 
578 	return INTF_MODE_NONE;
579 }
580 
581 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
582 {
583 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
584 
585 	/* keep statistics on vblank callback - with auto reset via debugfs */
586 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
587 		dpu_crtc->vblank_cb_time = ktime_get();
588 	else
589 		dpu_crtc->vblank_cb_count++;
590 
591 	dpu_crtc_get_crc(crtc);
592 
593 	drm_crtc_handle_vblank(crtc);
594 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
595 }
596 
597 static void dpu_crtc_frame_event_work(struct kthread_work *work)
598 {
599 	struct dpu_crtc_frame_event *fevent = container_of(work,
600 			struct dpu_crtc_frame_event, work);
601 	struct drm_crtc *crtc = fevent->crtc;
602 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
603 	unsigned long flags;
604 	bool frame_done = false;
605 
606 	DPU_ATRACE_BEGIN("crtc_frame_event");
607 
608 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
609 			ktime_to_ns(fevent->ts));
610 
611 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
612 				| DPU_ENCODER_FRAME_EVENT_ERROR
613 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
614 
615 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
616 			/* ignore vblank when not pending */
617 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
618 			/* release bandwidth and other resources */
619 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
620 							fevent->event);
621 			dpu_core_perf_crtc_release_bw(crtc);
622 		} else {
623 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
624 								fevent->event);
625 		}
626 
627 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
628 					| DPU_ENCODER_FRAME_EVENT_ERROR))
629 			frame_done = true;
630 	}
631 
632 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
633 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
634 				crtc->base.id, ktime_to_ns(fevent->ts));
635 
636 	if (frame_done)
637 		complete_all(&dpu_crtc->frame_done_comp);
638 
639 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
640 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
641 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
642 	DPU_ATRACE_END("crtc_frame_event");
643 }
644 
645 /*
646  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
647  * registers this API to encoder for all frame event callbacks like
648  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
649  * from different context - IRQ, user thread, commit_thread, etc. Each event
650  * should be carefully reviewed and should be processed in proper task context
651  * to avoid schedulin delay or properly manage the irq context's bottom half
652  * processing.
653  */
654 static void dpu_crtc_frame_event_cb(void *data, u32 event)
655 {
656 	struct drm_crtc *crtc = (struct drm_crtc *)data;
657 	struct dpu_crtc *dpu_crtc;
658 	struct msm_drm_private *priv;
659 	struct dpu_crtc_frame_event *fevent;
660 	unsigned long flags;
661 	u32 crtc_id;
662 
663 	/* Nothing to do on idle event */
664 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
665 		return;
666 
667 	dpu_crtc = to_dpu_crtc(crtc);
668 	priv = crtc->dev->dev_private;
669 	crtc_id = drm_crtc_index(crtc);
670 
671 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
672 
673 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
674 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
675 			struct dpu_crtc_frame_event, list);
676 	if (fevent)
677 		list_del_init(&fevent->list);
678 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
679 
680 	if (!fevent) {
681 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
682 		return;
683 	}
684 
685 	fevent->event = event;
686 	fevent->crtc = crtc;
687 	fevent->ts = ktime_get();
688 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
689 }
690 
691 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
692 {
693 	trace_dpu_crtc_complete_commit(DRMID(crtc));
694 	dpu_core_perf_crtc_update(crtc, 0, false);
695 	_dpu_crtc_complete_flip(crtc);
696 }
697 
698 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
699 		struct drm_crtc_state *state)
700 {
701 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
702 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
703 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
704 	int i;
705 
706 	for (i = 0; i < cstate->num_mixers; i++) {
707 		struct drm_rect *r = &cstate->lm_bounds[i];
708 		r->x1 = crtc_split_width * i;
709 		r->y1 = 0;
710 		r->x2 = r->x1 + crtc_split_width;
711 		r->y2 = adj_mode->vdisplay;
712 
713 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
714 	}
715 }
716 
717 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
718 		struct dpu_hw_pcc_cfg *cfg)
719 {
720 	struct drm_color_ctm *ctm;
721 
722 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
723 
724 	ctm = (struct drm_color_ctm *)state->ctm->data;
725 
726 	if (!ctm)
727 		return;
728 
729 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
730 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
731 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
732 
733 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
734 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
735 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
736 
737 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
738 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
739 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
740 }
741 
742 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
743 {
744 	struct drm_crtc_state *state = crtc->state;
745 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
746 	struct dpu_crtc_mixer *mixer = cstate->mixers;
747 	struct dpu_hw_pcc_cfg cfg;
748 	struct dpu_hw_ctl *ctl;
749 	struct dpu_hw_dspp *dspp;
750 	int i;
751 
752 
753 	if (!state->color_mgmt_changed)
754 		return;
755 
756 	for (i = 0; i < cstate->num_mixers; i++) {
757 		ctl = mixer[i].lm_ctl;
758 		dspp = mixer[i].hw_dspp;
759 
760 		if (!dspp || !dspp->ops.setup_pcc)
761 			continue;
762 
763 		if (!state->ctm) {
764 			dspp->ops.setup_pcc(dspp, NULL);
765 		} else {
766 			_dpu_crtc_get_pcc_coeff(state, &cfg);
767 			dspp->ops.setup_pcc(dspp, &cfg);
768 		}
769 
770 		mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
771 			mixer[i].hw_dspp->idx);
772 
773 		/* stage config flush mask */
774 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
775 
776 		DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n",
777 			mixer[i].hw_lm->idx - DSPP_0,
778 			ctl->idx - CTL_0,
779 			mixer[i].flush_mask);
780 	}
781 }
782 
783 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
784 		struct drm_atomic_state *state)
785 {
786 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
787 	struct drm_encoder *encoder;
788 
789 	if (!crtc->state->enable) {
790 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
791 				crtc->base.id, crtc->state->enable);
792 		return;
793 	}
794 
795 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
796 
797 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
798 
799 	/* encoder will trigger pending mask now */
800 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
801 		dpu_encoder_trigger_kickoff_pending(encoder);
802 
803 	/*
804 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
805 	 * it means we are trying to flush a CRTC whose state is disabled:
806 	 * nothing else needs to be done.
807 	 */
808 	if (unlikely(!cstate->num_mixers))
809 		return;
810 
811 	_dpu_crtc_blend_setup(crtc);
812 
813 	_dpu_crtc_setup_cp_blocks(crtc);
814 
815 	/*
816 	 * PP_DONE irq is only used by command mode for now.
817 	 * It is better to request pending before FLUSH and START trigger
818 	 * to make sure no pp_done irq missed.
819 	 * This is safe because no pp_done will happen before SW trigger
820 	 * in command mode.
821 	 */
822 }
823 
824 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
825 		struct drm_atomic_state *state)
826 {
827 	struct dpu_crtc *dpu_crtc;
828 	struct drm_device *dev;
829 	struct drm_plane *plane;
830 	struct msm_drm_private *priv;
831 	unsigned long flags;
832 	struct dpu_crtc_state *cstate;
833 
834 	if (!crtc->state->enable) {
835 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
836 				crtc->base.id, crtc->state->enable);
837 		return;
838 	}
839 
840 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
841 
842 	dpu_crtc = to_dpu_crtc(crtc);
843 	cstate = to_dpu_crtc_state(crtc->state);
844 	dev = crtc->dev;
845 	priv = dev->dev_private;
846 
847 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
848 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
849 		return;
850 	}
851 
852 	WARN_ON(dpu_crtc->event);
853 	spin_lock_irqsave(&dev->event_lock, flags);
854 	dpu_crtc->event = crtc->state->event;
855 	crtc->state->event = NULL;
856 	spin_unlock_irqrestore(&dev->event_lock, flags);
857 
858 	/*
859 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
860 	 * it means we are trying to flush a CRTC whose state is disabled:
861 	 * nothing else needs to be done.
862 	 */
863 	if (unlikely(!cstate->num_mixers))
864 		return;
865 
866 	/* update performance setting before crtc kickoff */
867 	dpu_core_perf_crtc_update(crtc, 1, false);
868 
869 	/*
870 	 * Final plane updates: Give each plane a chance to complete all
871 	 *                      required writes/flushing before crtc's "flush
872 	 *                      everything" call below.
873 	 */
874 	drm_atomic_crtc_for_each_plane(plane, crtc) {
875 		if (dpu_crtc->smmu_state.transition_error)
876 			dpu_plane_set_error(plane, true);
877 		dpu_plane_flush(plane);
878 	}
879 
880 	/* Kickoff will be scheduled by outer layer */
881 }
882 
883 /**
884  * dpu_crtc_destroy_state - state destroy hook
885  * @crtc: drm CRTC
886  * @state: CRTC state object to release
887  */
888 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
889 		struct drm_crtc_state *state)
890 {
891 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
892 
893 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
894 
895 	__drm_atomic_helper_crtc_destroy_state(state);
896 
897 	kfree(cstate);
898 }
899 
900 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
901 {
902 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
903 	int ret, rc = 0;
904 
905 	if (!atomic_read(&dpu_crtc->frame_pending)) {
906 		DRM_DEBUG_ATOMIC("no frames pending\n");
907 		return 0;
908 	}
909 
910 	DPU_ATRACE_BEGIN("frame done completion wait");
911 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
912 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
913 	if (!ret) {
914 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
915 		rc = -ETIMEDOUT;
916 	}
917 	DPU_ATRACE_END("frame done completion wait");
918 
919 	return rc;
920 }
921 
922 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
923 {
924 	struct drm_encoder *encoder;
925 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
926 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
927 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
928 
929 	/*
930 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
931 	 * it means we are trying to start a CRTC whose state is disabled:
932 	 * nothing else needs to be done.
933 	 */
934 	if (unlikely(!cstate->num_mixers))
935 		return;
936 
937 	DPU_ATRACE_BEGIN("crtc_commit");
938 
939 	drm_for_each_encoder_mask(encoder, crtc->dev,
940 			crtc->state->encoder_mask) {
941 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
942 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
943 			goto end;
944 		}
945 	}
946 	/*
947 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
948 	 * may delay and flush at an irq event (e.g. ppdone)
949 	 */
950 	drm_for_each_encoder_mask(encoder, crtc->dev,
951 				  crtc->state->encoder_mask)
952 		dpu_encoder_prepare_for_kickoff(encoder);
953 
954 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
955 		/* acquire bandwidth and other resources */
956 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
957 	} else
958 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
959 
960 	dpu_crtc->play_count++;
961 
962 	dpu_vbif_clear_errors(dpu_kms);
963 
964 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
965 		dpu_encoder_kickoff(encoder);
966 
967 	reinit_completion(&dpu_crtc->frame_done_comp);
968 
969 end:
970 	DPU_ATRACE_END("crtc_commit");
971 }
972 
973 static void dpu_crtc_reset(struct drm_crtc *crtc)
974 {
975 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
976 
977 	if (crtc->state)
978 		dpu_crtc_destroy_state(crtc, crtc->state);
979 
980 	__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
981 }
982 
983 /**
984  * dpu_crtc_duplicate_state - state duplicate hook
985  * @crtc: Pointer to drm crtc structure
986  */
987 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
988 {
989 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
990 
991 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
992 	if (!cstate) {
993 		DPU_ERROR("failed to allocate state\n");
994 		return NULL;
995 	}
996 
997 	/* duplicate base helper */
998 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
999 
1000 	return &cstate->base;
1001 }
1002 
1003 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1004 					const struct drm_crtc_state *state)
1005 {
1006 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1007 	int i;
1008 
1009 	for (i = 0; i < cstate->num_mixers; i++) {
1010 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1011 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1012 		if (cstate->mixers[i].hw_dspp)
1013 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1014 	}
1015 }
1016 
1017 static void dpu_crtc_disable(struct drm_crtc *crtc,
1018 			     struct drm_atomic_state *state)
1019 {
1020 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1021 									      crtc);
1022 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1023 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1024 	struct drm_encoder *encoder;
1025 	unsigned long flags;
1026 	bool release_bandwidth = false;
1027 
1028 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1029 
1030 	/* Disable/save vblank irq handling */
1031 	drm_crtc_vblank_off(crtc);
1032 
1033 	drm_for_each_encoder_mask(encoder, crtc->dev,
1034 				  old_crtc_state->encoder_mask) {
1035 		/* in video mode, we hold an extra bandwidth reference
1036 		 * as we cannot drop bandwidth at frame-done if any
1037 		 * crtc is being used in video mode.
1038 		 */
1039 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1040 			release_bandwidth = true;
1041 		dpu_encoder_assign_crtc(encoder, NULL);
1042 	}
1043 
1044 	/* wait for frame_event_done completion */
1045 	if (_dpu_crtc_wait_for_frame_done(crtc))
1046 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1047 				crtc->base.id,
1048 				atomic_read(&dpu_crtc->frame_pending));
1049 
1050 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1051 	dpu_crtc->enabled = false;
1052 
1053 	if (atomic_read(&dpu_crtc->frame_pending)) {
1054 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1055 				     atomic_read(&dpu_crtc->frame_pending));
1056 		if (release_bandwidth)
1057 			dpu_core_perf_crtc_release_bw(crtc);
1058 		atomic_set(&dpu_crtc->frame_pending, 0);
1059 	}
1060 
1061 	dpu_core_perf_crtc_update(crtc, 0, true);
1062 
1063 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1064 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1065 
1066 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
1067 	cstate->num_mixers = 0;
1068 
1069 	/* disable clk & bw control until clk & bw properties are set */
1070 	cstate->bw_control = false;
1071 	cstate->bw_split_vote = false;
1072 
1073 	if (crtc->state->event && !crtc->state->active) {
1074 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1075 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1076 		crtc->state->event = NULL;
1077 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1078 	}
1079 
1080 	pm_runtime_put_sync(crtc->dev->dev);
1081 }
1082 
1083 static void dpu_crtc_enable(struct drm_crtc *crtc,
1084 		struct drm_atomic_state *state)
1085 {
1086 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1087 	struct drm_encoder *encoder;
1088 	bool request_bandwidth = false;
1089 
1090 	pm_runtime_get_sync(crtc->dev->dev);
1091 
1092 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1093 
1094 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1095 		/* in video mode, we hold an extra bandwidth reference
1096 		 * as we cannot drop bandwidth at frame-done if any
1097 		 * crtc is being used in video mode.
1098 		 */
1099 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1100 			request_bandwidth = true;
1101 		dpu_encoder_register_frame_event_callback(encoder,
1102 				dpu_crtc_frame_event_cb, (void *)crtc);
1103 	}
1104 
1105 	if (request_bandwidth)
1106 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1107 
1108 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1109 	dpu_crtc->enabled = true;
1110 
1111 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1112 		dpu_encoder_assign_crtc(encoder, crtc);
1113 
1114 	/* Enable/restore vblank irq handling */
1115 	drm_crtc_vblank_on(crtc);
1116 }
1117 
1118 struct plane_state {
1119 	struct dpu_plane_state *dpu_pstate;
1120 	const struct drm_plane_state *drm_pstate;
1121 	int stage;
1122 	u32 pipe_id;
1123 };
1124 
1125 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1126 {
1127 	struct drm_crtc *crtc = cstate->crtc;
1128 	struct drm_encoder *encoder;
1129 
1130 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1131 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1132 			return true;
1133 		}
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1140 		struct drm_atomic_state *state)
1141 {
1142 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1143 									  crtc);
1144 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1145 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1146 	struct plane_state *pstates;
1147 
1148 	const struct drm_plane_state *pstate;
1149 	struct drm_plane *plane;
1150 	struct drm_display_mode *mode;
1151 
1152 	int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
1153 
1154 	struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
1155 	int multirect_count = 0;
1156 	const struct drm_plane_state *pipe_staged[SSPP_MAX];
1157 	int left_zpos_cnt = 0, right_zpos_cnt = 0;
1158 	struct drm_rect crtc_rect = { 0 };
1159 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1160 
1161 	pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
1162 
1163 	if (!crtc_state->enable || !crtc_state->active) {
1164 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1165 				crtc->base.id, crtc_state->enable,
1166 				crtc_state->active);
1167 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1168 		goto end;
1169 	}
1170 
1171 	mode = &crtc_state->adjusted_mode;
1172 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1173 
1174 	/* force a full mode set if active state changed */
1175 	if (crtc_state->active_changed)
1176 		crtc_state->mode_changed = true;
1177 
1178 	memset(pipe_staged, 0, sizeof(pipe_staged));
1179 
1180 	if (cstate->num_mixers) {
1181 		mixer_width = mode->hdisplay / cstate->num_mixers;
1182 
1183 		_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
1184 	}
1185 
1186 	crtc_rect.x2 = mode->hdisplay;
1187 	crtc_rect.y2 = mode->vdisplay;
1188 
1189 	 /* get plane state for all drm planes associated with crtc state */
1190 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1191 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1192 		struct drm_rect dst, clip = crtc_rect;
1193 
1194 		if (IS_ERR_OR_NULL(pstate)) {
1195 			rc = PTR_ERR(pstate);
1196 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1197 					dpu_crtc->name, plane->base.id, rc);
1198 			goto end;
1199 		}
1200 		if (cnt >= DPU_STAGE_MAX * 4)
1201 			continue;
1202 
1203 		if (!pstate->visible)
1204 			continue;
1205 
1206 		pstates[cnt].dpu_pstate = dpu_pstate;
1207 		pstates[cnt].drm_pstate = pstate;
1208 		pstates[cnt].stage = pstate->normalized_zpos;
1209 		pstates[cnt].pipe_id = dpu_plane_pipe(plane);
1210 
1211 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1212 
1213 		if (pipe_staged[pstates[cnt].pipe_id]) {
1214 			multirect_plane[multirect_count].r0 =
1215 				pipe_staged[pstates[cnt].pipe_id];
1216 			multirect_plane[multirect_count].r1 = pstate;
1217 			multirect_count++;
1218 
1219 			pipe_staged[pstates[cnt].pipe_id] = NULL;
1220 		} else {
1221 			pipe_staged[pstates[cnt].pipe_id] = pstate;
1222 		}
1223 
1224 		cnt++;
1225 
1226 		dst = drm_plane_state_dest(pstate);
1227 		if (!drm_rect_intersect(&clip, &dst)) {
1228 			DPU_ERROR("invalid vertical/horizontal destination\n");
1229 			DPU_ERROR("display: " DRM_RECT_FMT " plane: "
1230 				  DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
1231 				  DRM_RECT_ARG(&dst));
1232 			rc = -E2BIG;
1233 			goto end;
1234 		}
1235 	}
1236 
1237 	for (i = 1; i < SSPP_MAX; i++) {
1238 		if (pipe_staged[i]) {
1239 			dpu_plane_clear_multirect(pipe_staged[i]);
1240 
1241 			if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
1242 				DPU_ERROR(
1243 					"r1 only virt plane:%d not supported\n",
1244 					pipe_staged[i]->plane->base.id);
1245 				rc  = -EINVAL;
1246 				goto end;
1247 			}
1248 		}
1249 	}
1250 
1251 	z_pos = -1;
1252 	for (i = 0; i < cnt; i++) {
1253 		/* reset counts at every new blend stage */
1254 		if (pstates[i].stage != z_pos) {
1255 			left_zpos_cnt = 0;
1256 			right_zpos_cnt = 0;
1257 			z_pos = pstates[i].stage;
1258 		}
1259 
1260 		/* verify z_pos setting before using it */
1261 		if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1262 			DPU_ERROR("> %d plane stages assigned\n",
1263 					DPU_STAGE_MAX - DPU_STAGE_0);
1264 			rc = -EINVAL;
1265 			goto end;
1266 		} else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
1267 			if (left_zpos_cnt == 2) {
1268 				DPU_ERROR("> 2 planes @ stage %d on left\n",
1269 					z_pos);
1270 				rc = -EINVAL;
1271 				goto end;
1272 			}
1273 			left_zpos_cnt++;
1274 
1275 		} else {
1276 			if (right_zpos_cnt == 2) {
1277 				DPU_ERROR("> 2 planes @ stage %d on right\n",
1278 					z_pos);
1279 				rc = -EINVAL;
1280 				goto end;
1281 			}
1282 			right_zpos_cnt++;
1283 		}
1284 
1285 		pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1286 		DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1287 	}
1288 
1289 	for (i = 0; i < multirect_count; i++) {
1290 		if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1291 			DPU_ERROR(
1292 			"multirect validation failed for planes (%d - %d)\n",
1293 					multirect_plane[i].r0->plane->base.id,
1294 					multirect_plane[i].r1->plane->base.id);
1295 			rc = -EINVAL;
1296 			goto end;
1297 		}
1298 	}
1299 
1300 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1301 
1302 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1303 	if (rc) {
1304 		DPU_ERROR("crtc%d failed performance check %d\n",
1305 				crtc->base.id, rc);
1306 		goto end;
1307 	}
1308 
1309 	/* validate source split:
1310 	 * use pstates sorted by stage to check planes on same stage
1311 	 * we assume that all pipes are in source split so its valid to compare
1312 	 * without taking into account left/right mixer placement
1313 	 */
1314 	for (i = 1; i < cnt; i++) {
1315 		struct plane_state *prv_pstate, *cur_pstate;
1316 		struct drm_rect left_rect, right_rect;
1317 		int32_t left_pid, right_pid;
1318 		int32_t stage;
1319 
1320 		prv_pstate = &pstates[i - 1];
1321 		cur_pstate = &pstates[i];
1322 		if (prv_pstate->stage != cur_pstate->stage)
1323 			continue;
1324 
1325 		stage = cur_pstate->stage;
1326 
1327 		left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1328 		left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1329 
1330 		right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1331 		right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1332 
1333 		if (right_rect.x1 < left_rect.x1) {
1334 			swap(left_pid, right_pid);
1335 			swap(left_rect, right_rect);
1336 		}
1337 
1338 		/**
1339 		 * - planes are enumerated in pipe-priority order such that
1340 		 *   planes with lower drm_id must be left-most in a shared
1341 		 *   blend-stage when using source split.
1342 		 * - planes in source split must be contiguous in width
1343 		 * - planes in source split must have same dest yoff and height
1344 		 */
1345 		if (right_pid < left_pid) {
1346 			DPU_ERROR(
1347 				"invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1348 				stage, left_pid, right_pid);
1349 			rc = -EINVAL;
1350 			goto end;
1351 		} else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1352 			DPU_ERROR("non-contiguous coordinates for src split. "
1353 				  "stage: %d left: " DRM_RECT_FMT " right: "
1354 				  DRM_RECT_FMT "\n", stage,
1355 				  DRM_RECT_ARG(&left_rect),
1356 				  DRM_RECT_ARG(&right_rect));
1357 			rc = -EINVAL;
1358 			goto end;
1359 		} else if (left_rect.y1 != right_rect.y1 ||
1360 			   drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1361 			DPU_ERROR("source split at stage: %d. invalid "
1362 				  "yoff/height: left: " DRM_RECT_FMT " right: "
1363 				  DRM_RECT_FMT "\n", stage,
1364 				  DRM_RECT_ARG(&left_rect),
1365 				  DRM_RECT_ARG(&right_rect));
1366 			rc = -EINVAL;
1367 			goto end;
1368 		}
1369 	}
1370 
1371 end:
1372 	kfree(pstates);
1373 	return rc;
1374 }
1375 
1376 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1377 {
1378 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1379 	struct drm_encoder *enc;
1380 
1381 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1382 
1383 	/*
1384 	 * Normally we would iterate through encoder_mask in crtc state to find
1385 	 * attached encoders. In this case, we might be disabling vblank _after_
1386 	 * encoder_mask has been cleared.
1387 	 *
1388 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1389 	 * disable (which is also after encoder_mask is cleared). So instead of
1390 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1391 	 * currently assigned to our crtc.
1392 	 *
1393 	 * Note also that this function cannot be called while crtc is disabled
1394 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1395 	 * about the assigned crtcs being inconsistent with the current state
1396 	 * (which means no need to worry about modeset locks).
1397 	 */
1398 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1399 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1400 					     dpu_crtc);
1401 
1402 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 #ifdef CONFIG_DEBUG_FS
1409 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1410 {
1411 	struct dpu_crtc *dpu_crtc;
1412 	struct dpu_plane_state *pstate = NULL;
1413 	struct dpu_crtc_mixer *m;
1414 
1415 	struct drm_crtc *crtc;
1416 	struct drm_plane *plane;
1417 	struct drm_display_mode *mode;
1418 	struct drm_framebuffer *fb;
1419 	struct drm_plane_state *state;
1420 	struct dpu_crtc_state *cstate;
1421 
1422 	int i, out_width;
1423 
1424 	dpu_crtc = s->private;
1425 	crtc = &dpu_crtc->base;
1426 
1427 	drm_modeset_lock_all(crtc->dev);
1428 	cstate = to_dpu_crtc_state(crtc->state);
1429 
1430 	mode = &crtc->state->adjusted_mode;
1431 	out_width = mode->hdisplay / cstate->num_mixers;
1432 
1433 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1434 				mode->hdisplay, mode->vdisplay);
1435 
1436 	seq_puts(s, "\n");
1437 
1438 	for (i = 0; i < cstate->num_mixers; ++i) {
1439 		m = &cstate->mixers[i];
1440 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1441 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1442 			out_width, mode->vdisplay);
1443 	}
1444 
1445 	seq_puts(s, "\n");
1446 
1447 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1448 		pstate = to_dpu_plane_state(plane->state);
1449 		state = plane->state;
1450 
1451 		if (!pstate || !state)
1452 			continue;
1453 
1454 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1455 			pstate->stage);
1456 
1457 		if (plane->state->fb) {
1458 			fb = plane->state->fb;
1459 
1460 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1461 				fb->base.id, (char *) &fb->format->format,
1462 				fb->width, fb->height);
1463 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1464 				seq_printf(s, "cpp[%d]:%u ",
1465 						i, fb->format->cpp[i]);
1466 			seq_puts(s, "\n\t");
1467 
1468 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1469 			seq_puts(s, "\n");
1470 
1471 			seq_puts(s, "\t");
1472 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1473 				seq_printf(s, "pitches[%d]:%8u ", i,
1474 							fb->pitches[i]);
1475 			seq_puts(s, "\n");
1476 
1477 			seq_puts(s, "\t");
1478 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1479 				seq_printf(s, "offsets[%d]:%8u ", i,
1480 							fb->offsets[i]);
1481 			seq_puts(s, "\n");
1482 		}
1483 
1484 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1485 			state->src_x, state->src_y, state->src_w, state->src_h);
1486 
1487 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1488 			state->crtc_x, state->crtc_y, state->crtc_w,
1489 			state->crtc_h);
1490 		seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1491 			pstate->multirect_mode, pstate->multirect_index);
1492 
1493 		seq_puts(s, "\n");
1494 	}
1495 	if (dpu_crtc->vblank_cb_count) {
1496 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1497 		s64 diff_ms = ktime_to_ms(diff);
1498 		s64 fps = diff_ms ? div_s64(
1499 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1500 
1501 		seq_printf(s,
1502 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1503 				fps, dpu_crtc->vblank_cb_count,
1504 				ktime_to_ms(diff), dpu_crtc->play_count);
1505 
1506 		/* reset time & count for next measurement */
1507 		dpu_crtc->vblank_cb_count = 0;
1508 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1509 	}
1510 
1511 	drm_modeset_unlock_all(crtc->dev);
1512 
1513 	return 0;
1514 }
1515 
1516 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1517 
1518 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1519 {
1520 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1521 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1522 
1523 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1524 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1525 	seq_printf(s, "core_clk_rate: %llu\n",
1526 			dpu_crtc->cur_perf.core_clk_rate);
1527 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1528 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1529 				dpu_crtc->cur_perf.max_per_pipe_ib);
1530 
1531 	return 0;
1532 }
1533 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1534 
1535 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1536 {
1537 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1538 	struct dentry *debugfs_root;
1539 
1540 	debugfs_root = debugfs_create_dir(dpu_crtc->name,
1541 			crtc->dev->primary->debugfs_root);
1542 
1543 	debugfs_create_file("status", 0400,
1544 			debugfs_root,
1545 			dpu_crtc, &_dpu_debugfs_status_fops);
1546 	debugfs_create_file("state", 0600,
1547 			debugfs_root,
1548 			&dpu_crtc->base,
1549 			&dpu_crtc_debugfs_state_fops);
1550 
1551 	return 0;
1552 }
1553 #else
1554 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1555 {
1556 	return 0;
1557 }
1558 #endif /* CONFIG_DEBUG_FS */
1559 
1560 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1561 {
1562 	return _dpu_crtc_init_debugfs(crtc);
1563 }
1564 
1565 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1566 	.set_config = drm_atomic_helper_set_config,
1567 	.destroy = dpu_crtc_destroy,
1568 	.page_flip = drm_atomic_helper_page_flip,
1569 	.reset = dpu_crtc_reset,
1570 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1571 	.atomic_destroy_state = dpu_crtc_destroy_state,
1572 	.atomic_print_state = dpu_crtc_atomic_print_state,
1573 	.late_register = dpu_crtc_late_register,
1574 	.verify_crc_source = dpu_crtc_verify_crc_source,
1575 	.set_crc_source = dpu_crtc_set_crc_source,
1576 	.enable_vblank  = msm_crtc_enable_vblank,
1577 	.disable_vblank = msm_crtc_disable_vblank,
1578 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1579 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1580 };
1581 
1582 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1583 	.atomic_disable = dpu_crtc_disable,
1584 	.atomic_enable = dpu_crtc_enable,
1585 	.atomic_check = dpu_crtc_atomic_check,
1586 	.atomic_begin = dpu_crtc_atomic_begin,
1587 	.atomic_flush = dpu_crtc_atomic_flush,
1588 	.get_scanout_position = dpu_crtc_get_scanout_position,
1589 };
1590 
1591 /* initialize crtc */
1592 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1593 				struct drm_plane *cursor)
1594 {
1595 	struct drm_crtc *crtc = NULL;
1596 	struct dpu_crtc *dpu_crtc = NULL;
1597 	int i;
1598 
1599 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1600 	if (!dpu_crtc)
1601 		return ERR_PTR(-ENOMEM);
1602 
1603 	crtc = &dpu_crtc->base;
1604 	crtc->dev = dev;
1605 
1606 	spin_lock_init(&dpu_crtc->spin_lock);
1607 	atomic_set(&dpu_crtc->frame_pending, 0);
1608 
1609 	init_completion(&dpu_crtc->frame_done_comp);
1610 
1611 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1612 
1613 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1614 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1615 		list_add(&dpu_crtc->frame_events[i].list,
1616 				&dpu_crtc->frame_event_list);
1617 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1618 				dpu_crtc_frame_event_work);
1619 	}
1620 
1621 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1622 				NULL);
1623 
1624 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1625 
1626 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1627 
1628 	/* save user friendly CRTC name for later */
1629 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1630 
1631 	/* initialize event handling */
1632 	spin_lock_init(&dpu_crtc->event_lock);
1633 
1634 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1635 	return crtc;
1636 }
1637