1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 34 #define DPU_DRM_BLEND_OP_OPAQUE 1 35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 36 #define DPU_DRM_BLEND_OP_COVERAGE 3 37 #define DPU_DRM_BLEND_OP_MAX 4 38 39 /* layer mixer index on dpu_crtc */ 40 #define LEFT_MIXER 0 41 #define RIGHT_MIXER 1 42 43 /* timeout in ms waiting for frame done */ 44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 45 46 #define CONVERT_S3_15(val) \ 47 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 48 49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 50 { 51 struct msm_drm_private *priv = crtc->dev->dev_private; 52 53 return to_dpu_kms(priv->kms); 54 } 55 56 static void dpu_crtc_destroy(struct drm_crtc *crtc) 57 { 58 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 59 60 DPU_DEBUG("\n"); 61 62 if (!crtc) 63 return; 64 65 drm_crtc_cleanup(crtc); 66 kfree(dpu_crtc); 67 } 68 69 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 70 { 71 struct drm_device *dev = crtc->dev; 72 struct drm_encoder *encoder; 73 74 drm_for_each_encoder(encoder, dev) 75 if (encoder->crtc == crtc) 76 return encoder; 77 78 return NULL; 79 } 80 81 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 82 { 83 struct drm_encoder *encoder; 84 85 encoder = get_encoder_from_crtc(crtc); 86 if (!encoder) { 87 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 88 return false; 89 } 90 91 return dpu_encoder_get_frame_count(encoder); 92 } 93 94 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 95 bool in_vblank_irq, 96 int *vpos, int *hpos, 97 ktime_t *stime, ktime_t *etime, 98 const struct drm_display_mode *mode) 99 { 100 unsigned int pipe = crtc->index; 101 struct drm_encoder *encoder; 102 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 103 104 encoder = get_encoder_from_crtc(crtc); 105 if (!encoder) { 106 DRM_ERROR("no encoder found for crtc %d\n", pipe); 107 return false; 108 } 109 110 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 111 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 112 113 /* 114 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 115 * the end of VFP. Translate the porch values relative to the line 116 * counter positions. 117 */ 118 119 vactive_start = vsw + vbp + 1; 120 vactive_end = vactive_start + mode->crtc_vdisplay; 121 122 /* last scan line before VSYNC */ 123 vfp_end = mode->crtc_vtotal; 124 125 if (stime) 126 *stime = ktime_get(); 127 128 line = dpu_encoder_get_linecount(encoder); 129 130 if (line < vactive_start) 131 line -= vactive_start; 132 else if (line > vactive_end) 133 line = line - vfp_end - vactive_start; 134 else 135 line -= vactive_start; 136 137 *vpos = line; 138 *hpos = 0; 139 140 if (etime) 141 *etime = ktime_get(); 142 143 return true; 144 } 145 146 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 147 struct dpu_plane_state *pstate, struct dpu_format *format) 148 { 149 struct dpu_hw_mixer *lm = mixer->hw_lm; 150 uint32_t blend_op; 151 152 /* default to opaque blending */ 153 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 154 DPU_BLEND_BG_ALPHA_BG_CONST; 155 156 if (format->alpha_enable) { 157 /* coverage blending */ 158 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 159 DPU_BLEND_BG_ALPHA_FG_PIXEL | 160 DPU_BLEND_BG_INV_ALPHA; 161 } 162 163 lm->ops.setup_blend_config(lm, pstate->stage, 164 0xFF, 0, blend_op); 165 166 DPU_DEBUG("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 167 &format->base.pixel_format, format->alpha_enable, blend_op); 168 } 169 170 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 171 { 172 struct dpu_crtc_state *crtc_state; 173 int lm_idx, lm_horiz_position; 174 175 crtc_state = to_dpu_crtc_state(crtc->state); 176 177 lm_horiz_position = 0; 178 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 179 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 180 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 181 struct dpu_hw_mixer_cfg cfg; 182 183 if (!lm_roi || !drm_rect_visible(lm_roi)) 184 continue; 185 186 cfg.out_width = drm_rect_width(lm_roi); 187 cfg.out_height = drm_rect_height(lm_roi); 188 cfg.right_mixer = lm_horiz_position++; 189 cfg.flags = 0; 190 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 191 } 192 } 193 194 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 195 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 196 { 197 struct drm_plane *plane; 198 struct drm_framebuffer *fb; 199 struct drm_plane_state *state; 200 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 201 struct dpu_plane_state *pstate = NULL; 202 struct dpu_format *format; 203 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 204 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 205 206 u32 flush_mask; 207 uint32_t stage_idx, lm_idx; 208 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 209 bool bg_alpha_enable = false; 210 DECLARE_BITMAP(fetch_active, SSPP_MAX); 211 212 memset(fetch_active, 0, sizeof(fetch_active)); 213 drm_atomic_crtc_for_each_plane(plane, crtc) { 214 state = plane->state; 215 if (!state) 216 continue; 217 218 pstate = to_dpu_plane_state(state); 219 fb = state->fb; 220 221 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 222 set_bit(dpu_plane_pipe(plane), fetch_active); 223 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n", 224 crtc->base.id, 225 pstate->stage, 226 plane->base.id, 227 dpu_plane_pipe(plane) - SSPP_VIG0, 228 state->fb ? state->fb->base.id : -1); 229 230 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 231 232 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 233 bg_alpha_enable = true; 234 235 stage_idx = zpos_cnt[pstate->stage]++; 236 stage_cfg->stage[pstate->stage][stage_idx] = 237 dpu_plane_pipe(plane); 238 stage_cfg->multirect_index[pstate->stage][stage_idx] = 239 pstate->multirect_index; 240 241 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 242 state, pstate, stage_idx, 243 dpu_plane_pipe(plane) - SSPP_VIG0, 244 format->base.pixel_format, 245 fb ? fb->modifier : 0); 246 247 /* blend config update */ 248 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 249 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 250 pstate, format); 251 252 mixer[lm_idx].flush_mask |= flush_mask; 253 254 if (bg_alpha_enable && !format->alpha_enable) 255 mixer[lm_idx].mixer_op_mode = 0; 256 else 257 mixer[lm_idx].mixer_op_mode |= 258 1 << pstate->stage; 259 } 260 } 261 262 if (ctl->ops.set_active_pipes) 263 ctl->ops.set_active_pipes(ctl, fetch_active); 264 265 _dpu_crtc_program_lm_output_roi(crtc); 266 } 267 268 /** 269 * _dpu_crtc_blend_setup - configure crtc mixers 270 * @crtc: Pointer to drm crtc structure 271 */ 272 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 273 { 274 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 275 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 276 struct dpu_crtc_mixer *mixer = cstate->mixers; 277 struct dpu_hw_ctl *ctl; 278 struct dpu_hw_mixer *lm; 279 int i; 280 281 DPU_DEBUG("%s\n", dpu_crtc->name); 282 283 for (i = 0; i < cstate->num_mixers; i++) { 284 mixer[i].mixer_op_mode = 0; 285 mixer[i].flush_mask = 0; 286 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 287 mixer[i].lm_ctl->ops.clear_all_blendstages( 288 mixer[i].lm_ctl); 289 } 290 291 /* initialize stage cfg */ 292 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 293 294 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 295 296 for (i = 0; i < cstate->num_mixers; i++) { 297 ctl = mixer[i].lm_ctl; 298 lm = mixer[i].hw_lm; 299 300 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 301 302 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 303 mixer[i].hw_lm->idx); 304 305 /* stage config flush mask */ 306 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 307 308 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 309 mixer[i].hw_lm->idx - LM_0, 310 mixer[i].mixer_op_mode, 311 ctl->idx - CTL_0, 312 mixer[i].flush_mask); 313 314 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 315 &dpu_crtc->stage_cfg); 316 } 317 } 318 319 /** 320 * _dpu_crtc_complete_flip - signal pending page_flip events 321 * Any pending vblank events are added to the vblank_event_list 322 * so that the next vblank interrupt shall signal them. 323 * However PAGE_FLIP events are not handled through the vblank_event_list. 324 * This API signals any pending PAGE_FLIP events requested through 325 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 326 * @crtc: Pointer to drm crtc structure 327 */ 328 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 329 { 330 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 331 struct drm_device *dev = crtc->dev; 332 unsigned long flags; 333 334 spin_lock_irqsave(&dev->event_lock, flags); 335 if (dpu_crtc->event) { 336 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 337 dpu_crtc->event); 338 trace_dpu_crtc_complete_flip(DRMID(crtc)); 339 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 340 dpu_crtc->event = NULL; 341 } 342 spin_unlock_irqrestore(&dev->event_lock, flags); 343 } 344 345 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 346 { 347 struct drm_encoder *encoder; 348 349 /* 350 * TODO: This function is called from dpu debugfs and as part of atomic 351 * check. When called from debugfs, the crtc->mutex must be held to 352 * read crtc->state. However reading crtc->state from atomic check isn't 353 * allowed (unless you have a good reason, a big comment, and a deep 354 * understanding of how the atomic/modeset locks work (<- and this is 355 * probably not possible)). So we'll keep the WARN_ON here for now, but 356 * really we need to figure out a better way to track our operating mode 357 */ 358 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 359 360 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 361 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 362 return dpu_encoder_get_intf_mode(encoder); 363 364 return INTF_MODE_NONE; 365 } 366 367 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 368 { 369 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 370 371 /* keep statistics on vblank callback - with auto reset via debugfs */ 372 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 373 dpu_crtc->vblank_cb_time = ktime_get(); 374 else 375 dpu_crtc->vblank_cb_count++; 376 drm_crtc_handle_vblank(crtc); 377 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 378 } 379 380 static void dpu_crtc_frame_event_work(struct kthread_work *work) 381 { 382 struct dpu_crtc_frame_event *fevent = container_of(work, 383 struct dpu_crtc_frame_event, work); 384 struct drm_crtc *crtc = fevent->crtc; 385 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 386 unsigned long flags; 387 bool frame_done = false; 388 389 DPU_ATRACE_BEGIN("crtc_frame_event"); 390 391 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 392 ktime_to_ns(fevent->ts)); 393 394 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 395 | DPU_ENCODER_FRAME_EVENT_ERROR 396 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 397 398 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 399 /* ignore vblank when not pending */ 400 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 401 /* release bandwidth and other resources */ 402 trace_dpu_crtc_frame_event_done(DRMID(crtc), 403 fevent->event); 404 dpu_core_perf_crtc_release_bw(crtc); 405 } else { 406 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 407 fevent->event); 408 } 409 410 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE) 411 dpu_core_perf_crtc_update(crtc, 0, false); 412 413 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 414 | DPU_ENCODER_FRAME_EVENT_ERROR)) 415 frame_done = true; 416 } 417 418 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 419 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 420 crtc->base.id, ktime_to_ns(fevent->ts)); 421 422 if (frame_done) 423 complete_all(&dpu_crtc->frame_done_comp); 424 425 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 426 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 427 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 428 DPU_ATRACE_END("crtc_frame_event"); 429 } 430 431 /* 432 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 433 * registers this API to encoder for all frame event callbacks like 434 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 435 * from different context - IRQ, user thread, commit_thread, etc. Each event 436 * should be carefully reviewed and should be processed in proper task context 437 * to avoid schedulin delay or properly manage the irq context's bottom half 438 * processing. 439 */ 440 static void dpu_crtc_frame_event_cb(void *data, u32 event) 441 { 442 struct drm_crtc *crtc = (struct drm_crtc *)data; 443 struct dpu_crtc *dpu_crtc; 444 struct msm_drm_private *priv; 445 struct dpu_crtc_frame_event *fevent; 446 unsigned long flags; 447 u32 crtc_id; 448 449 /* Nothing to do on idle event */ 450 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 451 return; 452 453 dpu_crtc = to_dpu_crtc(crtc); 454 priv = crtc->dev->dev_private; 455 crtc_id = drm_crtc_index(crtc); 456 457 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 458 459 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 460 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 461 struct dpu_crtc_frame_event, list); 462 if (fevent) 463 list_del_init(&fevent->list); 464 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 465 466 if (!fevent) { 467 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 468 return; 469 } 470 471 fevent->event = event; 472 fevent->crtc = crtc; 473 fevent->ts = ktime_get(); 474 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 475 } 476 477 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 478 { 479 trace_dpu_crtc_complete_commit(DRMID(crtc)); 480 _dpu_crtc_complete_flip(crtc); 481 } 482 483 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 484 struct drm_crtc_state *state) 485 { 486 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 487 struct drm_display_mode *adj_mode = &state->adjusted_mode; 488 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 489 int i; 490 491 for (i = 0; i < cstate->num_mixers; i++) { 492 struct drm_rect *r = &cstate->lm_bounds[i]; 493 r->x1 = crtc_split_width * i; 494 r->y1 = 0; 495 r->x2 = r->x1 + crtc_split_width; 496 r->y2 = adj_mode->vdisplay; 497 498 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 499 } 500 } 501 502 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 503 struct dpu_hw_pcc_cfg *cfg) 504 { 505 struct drm_color_ctm *ctm; 506 507 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 508 509 ctm = (struct drm_color_ctm *)state->ctm->data; 510 511 if (!ctm) 512 return; 513 514 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 515 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 516 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 517 518 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 519 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 520 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 521 522 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 523 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 524 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 525 } 526 527 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 528 { 529 struct drm_crtc_state *state = crtc->state; 530 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 531 struct dpu_crtc_mixer *mixer = cstate->mixers; 532 struct dpu_hw_pcc_cfg cfg; 533 struct dpu_hw_ctl *ctl; 534 struct dpu_hw_dspp *dspp; 535 int i; 536 537 538 if (!state->color_mgmt_changed) 539 return; 540 541 for (i = 0; i < cstate->num_mixers; i++) { 542 ctl = mixer[i].lm_ctl; 543 dspp = mixer[i].hw_dspp; 544 545 if (!dspp || !dspp->ops.setup_pcc) 546 continue; 547 548 if (!state->ctm) { 549 dspp->ops.setup_pcc(dspp, NULL); 550 } else { 551 _dpu_crtc_get_pcc_coeff(state, &cfg); 552 dspp->ops.setup_pcc(dspp, &cfg); 553 } 554 555 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 556 mixer[i].hw_dspp->idx); 557 558 /* stage config flush mask */ 559 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 560 561 DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n", 562 mixer[i].hw_lm->idx - DSPP_0, 563 ctl->idx - CTL_0, 564 mixer[i].flush_mask); 565 } 566 } 567 568 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 569 struct drm_atomic_state *state) 570 { 571 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 572 struct drm_encoder *encoder; 573 574 if (!crtc->state->enable) { 575 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n", 576 crtc->base.id, crtc->state->enable); 577 return; 578 } 579 580 DPU_DEBUG("crtc%d\n", crtc->base.id); 581 582 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 583 584 /* encoder will trigger pending mask now */ 585 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 586 dpu_encoder_trigger_kickoff_pending(encoder); 587 588 /* 589 * If no mixers have been allocated in dpu_crtc_atomic_check(), 590 * it means we are trying to flush a CRTC whose state is disabled: 591 * nothing else needs to be done. 592 */ 593 if (unlikely(!cstate->num_mixers)) 594 return; 595 596 _dpu_crtc_blend_setup(crtc); 597 598 _dpu_crtc_setup_cp_blocks(crtc); 599 600 /* 601 * PP_DONE irq is only used by command mode for now. 602 * It is better to request pending before FLUSH and START trigger 603 * to make sure no pp_done irq missed. 604 * This is safe because no pp_done will happen before SW trigger 605 * in command mode. 606 */ 607 } 608 609 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 610 struct drm_atomic_state *state) 611 { 612 struct dpu_crtc *dpu_crtc; 613 struct drm_device *dev; 614 struct drm_plane *plane; 615 struct msm_drm_private *priv; 616 unsigned long flags; 617 struct dpu_crtc_state *cstate; 618 619 if (!crtc->state->enable) { 620 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n", 621 crtc->base.id, crtc->state->enable); 622 return; 623 } 624 625 DPU_DEBUG("crtc%d\n", crtc->base.id); 626 627 dpu_crtc = to_dpu_crtc(crtc); 628 cstate = to_dpu_crtc_state(crtc->state); 629 dev = crtc->dev; 630 priv = dev->dev_private; 631 632 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 633 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 634 return; 635 } 636 637 WARN_ON(dpu_crtc->event); 638 spin_lock_irqsave(&dev->event_lock, flags); 639 dpu_crtc->event = crtc->state->event; 640 crtc->state->event = NULL; 641 spin_unlock_irqrestore(&dev->event_lock, flags); 642 643 /* 644 * If no mixers has been allocated in dpu_crtc_atomic_check(), 645 * it means we are trying to flush a CRTC whose state is disabled: 646 * nothing else needs to be done. 647 */ 648 if (unlikely(!cstate->num_mixers)) 649 return; 650 651 /* update performance setting before crtc kickoff */ 652 dpu_core_perf_crtc_update(crtc, 1, false); 653 654 /* 655 * Final plane updates: Give each plane a chance to complete all 656 * required writes/flushing before crtc's "flush 657 * everything" call below. 658 */ 659 drm_atomic_crtc_for_each_plane(plane, crtc) { 660 if (dpu_crtc->smmu_state.transition_error) 661 dpu_plane_set_error(plane, true); 662 dpu_plane_flush(plane); 663 } 664 665 /* Kickoff will be scheduled by outer layer */ 666 } 667 668 /** 669 * dpu_crtc_destroy_state - state destroy hook 670 * @crtc: drm CRTC 671 * @state: CRTC state object to release 672 */ 673 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 674 struct drm_crtc_state *state) 675 { 676 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 677 678 DPU_DEBUG("crtc%d\n", crtc->base.id); 679 680 __drm_atomic_helper_crtc_destroy_state(state); 681 682 kfree(cstate); 683 } 684 685 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 686 { 687 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 688 int ret, rc = 0; 689 690 if (!atomic_read(&dpu_crtc->frame_pending)) { 691 DPU_DEBUG("no frames pending\n"); 692 return 0; 693 } 694 695 DPU_ATRACE_BEGIN("frame done completion wait"); 696 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 697 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 698 if (!ret) { 699 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 700 rc = -ETIMEDOUT; 701 } 702 DPU_ATRACE_END("frame done completion wait"); 703 704 return rc; 705 } 706 707 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 708 { 709 struct drm_encoder *encoder; 710 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 711 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 712 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 713 714 /* 715 * If no mixers has been allocated in dpu_crtc_atomic_check(), 716 * it means we are trying to start a CRTC whose state is disabled: 717 * nothing else needs to be done. 718 */ 719 if (unlikely(!cstate->num_mixers)) 720 return; 721 722 DPU_ATRACE_BEGIN("crtc_commit"); 723 724 /* 725 * Encoder will flush/start now, unless it has a tx pending. If so, it 726 * may delay and flush at an irq event (e.g. ppdone) 727 */ 728 drm_for_each_encoder_mask(encoder, crtc->dev, 729 crtc->state->encoder_mask) 730 dpu_encoder_prepare_for_kickoff(encoder); 731 732 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 733 /* acquire bandwidth and other resources */ 734 DPU_DEBUG("crtc%d first commit\n", crtc->base.id); 735 } else 736 DPU_DEBUG("crtc%d commit\n", crtc->base.id); 737 738 dpu_crtc->play_count++; 739 740 dpu_vbif_clear_errors(dpu_kms); 741 742 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 743 dpu_encoder_kickoff(encoder); 744 745 reinit_completion(&dpu_crtc->frame_done_comp); 746 DPU_ATRACE_END("crtc_commit"); 747 } 748 749 static void dpu_crtc_reset(struct drm_crtc *crtc) 750 { 751 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 752 753 if (crtc->state) 754 dpu_crtc_destroy_state(crtc, crtc->state); 755 756 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 757 } 758 759 /** 760 * dpu_crtc_duplicate_state - state duplicate hook 761 * @crtc: Pointer to drm crtc structure 762 */ 763 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 764 { 765 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 766 767 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 768 if (!cstate) { 769 DPU_ERROR("failed to allocate state\n"); 770 return NULL; 771 } 772 773 /* duplicate base helper */ 774 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 775 776 return &cstate->base; 777 } 778 779 static void dpu_crtc_disable(struct drm_crtc *crtc, 780 struct drm_atomic_state *state) 781 { 782 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 783 crtc); 784 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 785 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 786 struct drm_encoder *encoder; 787 unsigned long flags; 788 bool release_bandwidth = false; 789 790 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 791 792 /* Disable/save vblank irq handling */ 793 drm_crtc_vblank_off(crtc); 794 795 drm_for_each_encoder_mask(encoder, crtc->dev, 796 old_crtc_state->encoder_mask) { 797 /* in video mode, we hold an extra bandwidth reference 798 * as we cannot drop bandwidth at frame-done if any 799 * crtc is being used in video mode. 800 */ 801 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 802 release_bandwidth = true; 803 dpu_encoder_assign_crtc(encoder, NULL); 804 } 805 806 /* wait for frame_event_done completion */ 807 if (_dpu_crtc_wait_for_frame_done(crtc)) 808 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 809 crtc->base.id, 810 atomic_read(&dpu_crtc->frame_pending)); 811 812 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 813 dpu_crtc->enabled = false; 814 815 if (atomic_read(&dpu_crtc->frame_pending)) { 816 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 817 atomic_read(&dpu_crtc->frame_pending)); 818 if (release_bandwidth) 819 dpu_core_perf_crtc_release_bw(crtc); 820 atomic_set(&dpu_crtc->frame_pending, 0); 821 } 822 823 dpu_core_perf_crtc_update(crtc, 0, true); 824 825 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 826 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 827 828 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 829 cstate->num_mixers = 0; 830 831 /* disable clk & bw control until clk & bw properties are set */ 832 cstate->bw_control = false; 833 cstate->bw_split_vote = false; 834 835 if (crtc->state->event && !crtc->state->active) { 836 spin_lock_irqsave(&crtc->dev->event_lock, flags); 837 drm_crtc_send_vblank_event(crtc, crtc->state->event); 838 crtc->state->event = NULL; 839 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 840 } 841 842 pm_runtime_put_sync(crtc->dev->dev); 843 } 844 845 static void dpu_crtc_enable(struct drm_crtc *crtc, 846 struct drm_atomic_state *state) 847 { 848 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 849 struct drm_encoder *encoder; 850 bool request_bandwidth = false; 851 852 pm_runtime_get_sync(crtc->dev->dev); 853 854 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 855 856 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 857 /* in video mode, we hold an extra bandwidth reference 858 * as we cannot drop bandwidth at frame-done if any 859 * crtc is being used in video mode. 860 */ 861 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 862 request_bandwidth = true; 863 dpu_encoder_register_frame_event_callback(encoder, 864 dpu_crtc_frame_event_cb, (void *)crtc); 865 } 866 867 if (request_bandwidth) 868 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 869 870 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 871 dpu_crtc->enabled = true; 872 873 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 874 dpu_encoder_assign_crtc(encoder, crtc); 875 876 /* Enable/restore vblank irq handling */ 877 drm_crtc_vblank_on(crtc); 878 } 879 880 struct plane_state { 881 struct dpu_plane_state *dpu_pstate; 882 const struct drm_plane_state *drm_pstate; 883 int stage; 884 u32 pipe_id; 885 }; 886 887 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 888 struct drm_atomic_state *state) 889 { 890 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 891 crtc); 892 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 893 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 894 struct plane_state *pstates; 895 896 const struct drm_plane_state *pstate; 897 struct drm_plane *plane; 898 struct drm_display_mode *mode; 899 900 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 901 902 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 903 int multirect_count = 0; 904 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 905 int left_zpos_cnt = 0, right_zpos_cnt = 0; 906 struct drm_rect crtc_rect = { 0 }; 907 908 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 909 910 if (!crtc_state->enable || !crtc_state->active) { 911 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n", 912 crtc->base.id, crtc_state->enable, 913 crtc_state->active); 914 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 915 goto end; 916 } 917 918 mode = &crtc_state->adjusted_mode; 919 DPU_DEBUG("%s: check\n", dpu_crtc->name); 920 921 /* force a full mode set if active state changed */ 922 if (crtc_state->active_changed) 923 crtc_state->mode_changed = true; 924 925 memset(pipe_staged, 0, sizeof(pipe_staged)); 926 927 if (cstate->num_mixers) { 928 mixer_width = mode->hdisplay / cstate->num_mixers; 929 930 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 931 } 932 933 crtc_rect.x2 = mode->hdisplay; 934 crtc_rect.y2 = mode->vdisplay; 935 936 /* get plane state for all drm planes associated with crtc state */ 937 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 938 struct drm_rect dst, clip = crtc_rect; 939 940 if (IS_ERR_OR_NULL(pstate)) { 941 rc = PTR_ERR(pstate); 942 DPU_ERROR("%s: failed to get plane%d state, %d\n", 943 dpu_crtc->name, plane->base.id, rc); 944 goto end; 945 } 946 if (cnt >= DPU_STAGE_MAX * 4) 947 continue; 948 949 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 950 pstates[cnt].drm_pstate = pstate; 951 pstates[cnt].stage = pstate->normalized_zpos; 952 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 953 954 if (pipe_staged[pstates[cnt].pipe_id]) { 955 multirect_plane[multirect_count].r0 = 956 pipe_staged[pstates[cnt].pipe_id]; 957 multirect_plane[multirect_count].r1 = pstate; 958 multirect_count++; 959 960 pipe_staged[pstates[cnt].pipe_id] = NULL; 961 } else { 962 pipe_staged[pstates[cnt].pipe_id] = pstate; 963 } 964 965 cnt++; 966 967 dst = drm_plane_state_dest(pstate); 968 if (!drm_rect_intersect(&clip, &dst)) { 969 DPU_ERROR("invalid vertical/horizontal destination\n"); 970 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 971 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 972 DRM_RECT_ARG(&dst)); 973 rc = -E2BIG; 974 goto end; 975 } 976 } 977 978 for (i = 1; i < SSPP_MAX; i++) { 979 if (pipe_staged[i]) { 980 dpu_plane_clear_multirect(pipe_staged[i]); 981 982 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 983 DPU_ERROR( 984 "r1 only virt plane:%d not supported\n", 985 pipe_staged[i]->plane->base.id); 986 rc = -EINVAL; 987 goto end; 988 } 989 } 990 } 991 992 z_pos = -1; 993 for (i = 0; i < cnt; i++) { 994 /* reset counts at every new blend stage */ 995 if (pstates[i].stage != z_pos) { 996 left_zpos_cnt = 0; 997 right_zpos_cnt = 0; 998 z_pos = pstates[i].stage; 999 } 1000 1001 /* verify z_pos setting before using it */ 1002 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1003 DPU_ERROR("> %d plane stages assigned\n", 1004 DPU_STAGE_MAX - DPU_STAGE_0); 1005 rc = -EINVAL; 1006 goto end; 1007 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1008 if (left_zpos_cnt == 2) { 1009 DPU_ERROR("> 2 planes @ stage %d on left\n", 1010 z_pos); 1011 rc = -EINVAL; 1012 goto end; 1013 } 1014 left_zpos_cnt++; 1015 1016 } else { 1017 if (right_zpos_cnt == 2) { 1018 DPU_ERROR("> 2 planes @ stage %d on right\n", 1019 z_pos); 1020 rc = -EINVAL; 1021 goto end; 1022 } 1023 right_zpos_cnt++; 1024 } 1025 1026 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1027 DPU_DEBUG("%s: zpos %d\n", dpu_crtc->name, z_pos); 1028 } 1029 1030 for (i = 0; i < multirect_count; i++) { 1031 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1032 DPU_ERROR( 1033 "multirect validation failed for planes (%d - %d)\n", 1034 multirect_plane[i].r0->plane->base.id, 1035 multirect_plane[i].r1->plane->base.id); 1036 rc = -EINVAL; 1037 goto end; 1038 } 1039 } 1040 1041 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1042 1043 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1044 if (rc) { 1045 DPU_ERROR("crtc%d failed performance check %d\n", 1046 crtc->base.id, rc); 1047 goto end; 1048 } 1049 1050 /* validate source split: 1051 * use pstates sorted by stage to check planes on same stage 1052 * we assume that all pipes are in source split so its valid to compare 1053 * without taking into account left/right mixer placement 1054 */ 1055 for (i = 1; i < cnt; i++) { 1056 struct plane_state *prv_pstate, *cur_pstate; 1057 struct drm_rect left_rect, right_rect; 1058 int32_t left_pid, right_pid; 1059 int32_t stage; 1060 1061 prv_pstate = &pstates[i - 1]; 1062 cur_pstate = &pstates[i]; 1063 if (prv_pstate->stage != cur_pstate->stage) 1064 continue; 1065 1066 stage = cur_pstate->stage; 1067 1068 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1069 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1070 1071 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1072 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1073 1074 if (right_rect.x1 < left_rect.x1) { 1075 swap(left_pid, right_pid); 1076 swap(left_rect, right_rect); 1077 } 1078 1079 /** 1080 * - planes are enumerated in pipe-priority order such that 1081 * planes with lower drm_id must be left-most in a shared 1082 * blend-stage when using source split. 1083 * - planes in source split must be contiguous in width 1084 * - planes in source split must have same dest yoff and height 1085 */ 1086 if (right_pid < left_pid) { 1087 DPU_ERROR( 1088 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1089 stage, left_pid, right_pid); 1090 rc = -EINVAL; 1091 goto end; 1092 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1093 DPU_ERROR("non-contiguous coordinates for src split. " 1094 "stage: %d left: " DRM_RECT_FMT " right: " 1095 DRM_RECT_FMT "\n", stage, 1096 DRM_RECT_ARG(&left_rect), 1097 DRM_RECT_ARG(&right_rect)); 1098 rc = -EINVAL; 1099 goto end; 1100 } else if (left_rect.y1 != right_rect.y1 || 1101 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1102 DPU_ERROR("source split at stage: %d. invalid " 1103 "yoff/height: left: " DRM_RECT_FMT " right: " 1104 DRM_RECT_FMT "\n", stage, 1105 DRM_RECT_ARG(&left_rect), 1106 DRM_RECT_ARG(&right_rect)); 1107 rc = -EINVAL; 1108 goto end; 1109 } 1110 } 1111 1112 end: 1113 kfree(pstates); 1114 return rc; 1115 } 1116 1117 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1118 { 1119 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1120 struct drm_encoder *enc; 1121 1122 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1123 1124 /* 1125 * Normally we would iterate through encoder_mask in crtc state to find 1126 * attached encoders. In this case, we might be disabling vblank _after_ 1127 * encoder_mask has been cleared. 1128 * 1129 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1130 * disable (which is also after encoder_mask is cleared). So instead of 1131 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1132 * currently assigned to our crtc. 1133 * 1134 * Note also that this function cannot be called while crtc is disabled 1135 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1136 * about the assigned crtcs being inconsistent with the current state 1137 * (which means no need to worry about modeset locks). 1138 */ 1139 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1140 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1141 dpu_crtc); 1142 1143 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1144 } 1145 1146 return 0; 1147 } 1148 1149 #ifdef CONFIG_DEBUG_FS 1150 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1151 { 1152 struct dpu_crtc *dpu_crtc; 1153 struct dpu_plane_state *pstate = NULL; 1154 struct dpu_crtc_mixer *m; 1155 1156 struct drm_crtc *crtc; 1157 struct drm_plane *plane; 1158 struct drm_display_mode *mode; 1159 struct drm_framebuffer *fb; 1160 struct drm_plane_state *state; 1161 struct dpu_crtc_state *cstate; 1162 1163 int i, out_width; 1164 1165 dpu_crtc = s->private; 1166 crtc = &dpu_crtc->base; 1167 1168 drm_modeset_lock_all(crtc->dev); 1169 cstate = to_dpu_crtc_state(crtc->state); 1170 1171 mode = &crtc->state->adjusted_mode; 1172 out_width = mode->hdisplay / cstate->num_mixers; 1173 1174 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1175 mode->hdisplay, mode->vdisplay); 1176 1177 seq_puts(s, "\n"); 1178 1179 for (i = 0; i < cstate->num_mixers; ++i) { 1180 m = &cstate->mixers[i]; 1181 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1182 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1183 out_width, mode->vdisplay); 1184 } 1185 1186 seq_puts(s, "\n"); 1187 1188 drm_atomic_crtc_for_each_plane(plane, crtc) { 1189 pstate = to_dpu_plane_state(plane->state); 1190 state = plane->state; 1191 1192 if (!pstate || !state) 1193 continue; 1194 1195 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1196 pstate->stage); 1197 1198 if (plane->state->fb) { 1199 fb = plane->state->fb; 1200 1201 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1202 fb->base.id, (char *) &fb->format->format, 1203 fb->width, fb->height); 1204 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1205 seq_printf(s, "cpp[%d]:%u ", 1206 i, fb->format->cpp[i]); 1207 seq_puts(s, "\n\t"); 1208 1209 seq_printf(s, "modifier:%8llu ", fb->modifier); 1210 seq_puts(s, "\n"); 1211 1212 seq_puts(s, "\t"); 1213 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1214 seq_printf(s, "pitches[%d]:%8u ", i, 1215 fb->pitches[i]); 1216 seq_puts(s, "\n"); 1217 1218 seq_puts(s, "\t"); 1219 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1220 seq_printf(s, "offsets[%d]:%8u ", i, 1221 fb->offsets[i]); 1222 seq_puts(s, "\n"); 1223 } 1224 1225 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1226 state->src_x, state->src_y, state->src_w, state->src_h); 1227 1228 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1229 state->crtc_x, state->crtc_y, state->crtc_w, 1230 state->crtc_h); 1231 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1232 pstate->multirect_mode, pstate->multirect_index); 1233 1234 seq_puts(s, "\n"); 1235 } 1236 if (dpu_crtc->vblank_cb_count) { 1237 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1238 s64 diff_ms = ktime_to_ms(diff); 1239 s64 fps = diff_ms ? div_s64( 1240 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1241 1242 seq_printf(s, 1243 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1244 fps, dpu_crtc->vblank_cb_count, 1245 ktime_to_ms(diff), dpu_crtc->play_count); 1246 1247 /* reset time & count for next measurement */ 1248 dpu_crtc->vblank_cb_count = 0; 1249 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1250 } 1251 1252 drm_modeset_unlock_all(crtc->dev); 1253 1254 return 0; 1255 } 1256 1257 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1258 1259 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1260 { 1261 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1262 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1263 1264 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1265 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1266 seq_printf(s, "core_clk_rate: %llu\n", 1267 dpu_crtc->cur_perf.core_clk_rate); 1268 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1269 seq_printf(s, "max_per_pipe_ib: %llu\n", 1270 dpu_crtc->cur_perf.max_per_pipe_ib); 1271 1272 return 0; 1273 } 1274 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1275 1276 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1277 { 1278 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1279 1280 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1281 crtc->dev->primary->debugfs_root); 1282 1283 debugfs_create_file("status", 0400, 1284 dpu_crtc->debugfs_root, 1285 dpu_crtc, &_dpu_debugfs_status_fops); 1286 debugfs_create_file("state", 0600, 1287 dpu_crtc->debugfs_root, 1288 &dpu_crtc->base, 1289 &dpu_crtc_debugfs_state_fops); 1290 1291 return 0; 1292 } 1293 #else 1294 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1295 { 1296 return 0; 1297 } 1298 #endif /* CONFIG_DEBUG_FS */ 1299 1300 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1301 { 1302 return _dpu_crtc_init_debugfs(crtc); 1303 } 1304 1305 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1306 { 1307 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1308 1309 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1310 } 1311 1312 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1313 .set_config = drm_atomic_helper_set_config, 1314 .destroy = dpu_crtc_destroy, 1315 .page_flip = drm_atomic_helper_page_flip, 1316 .reset = dpu_crtc_reset, 1317 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1318 .atomic_destroy_state = dpu_crtc_destroy_state, 1319 .late_register = dpu_crtc_late_register, 1320 .early_unregister = dpu_crtc_early_unregister, 1321 .enable_vblank = msm_crtc_enable_vblank, 1322 .disable_vblank = msm_crtc_disable_vblank, 1323 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1324 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1325 }; 1326 1327 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1328 .atomic_disable = dpu_crtc_disable, 1329 .atomic_enable = dpu_crtc_enable, 1330 .atomic_check = dpu_crtc_atomic_check, 1331 .atomic_begin = dpu_crtc_atomic_begin, 1332 .atomic_flush = dpu_crtc_atomic_flush, 1333 .get_scanout_position = dpu_crtc_get_scanout_position, 1334 }; 1335 1336 /* initialize crtc */ 1337 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1338 struct drm_plane *cursor) 1339 { 1340 struct drm_crtc *crtc = NULL; 1341 struct dpu_crtc *dpu_crtc = NULL; 1342 int i; 1343 1344 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1345 if (!dpu_crtc) 1346 return ERR_PTR(-ENOMEM); 1347 1348 crtc = &dpu_crtc->base; 1349 crtc->dev = dev; 1350 1351 spin_lock_init(&dpu_crtc->spin_lock); 1352 atomic_set(&dpu_crtc->frame_pending, 0); 1353 1354 init_completion(&dpu_crtc->frame_done_comp); 1355 1356 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1357 1358 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1359 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1360 list_add(&dpu_crtc->frame_events[i].list, 1361 &dpu_crtc->frame_event_list); 1362 kthread_init_work(&dpu_crtc->frame_events[i].work, 1363 dpu_crtc_frame_event_work); 1364 } 1365 1366 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1367 NULL); 1368 1369 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1370 1371 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1372 1373 /* save user friendly CRTC name for later */ 1374 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1375 1376 /* initialize event handling */ 1377 spin_lock_init(&dpu_crtc->event_lock); 1378 1379 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name); 1380 return crtc; 1381 } 1382