1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. 5 * Copyright (C) 2013 Red Hat 6 * Author: Rob Clark <robdclark@gmail.com> 7 */ 8 9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 10 #include <linux/sort.h> 11 #include <linux/debugfs.h> 12 #include <linux/ktime.h> 13 #include <linux/bits.h> 14 15 #include <drm/drm_atomic.h> 16 #include <drm/drm_blend.h> 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_flip_work.h> 19 #include <drm/drm_framebuffer.h> 20 #include <drm/drm_mode.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_rect.h> 23 #include <drm/drm_vblank.h> 24 25 #include "dpu_kms.h" 26 #include "dpu_hw_lm.h" 27 #include "dpu_hw_ctl.h" 28 #include "dpu_hw_dspp.h" 29 #include "dpu_crtc.h" 30 #include "dpu_plane.h" 31 #include "dpu_encoder.h" 32 #include "dpu_vbif.h" 33 #include "dpu_core_perf.h" 34 #include "dpu_trace.h" 35 36 /* layer mixer index on dpu_crtc */ 37 #define LEFT_MIXER 0 38 #define RIGHT_MIXER 1 39 40 /* timeout in ms waiting for frame done */ 41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 42 43 #define CONVERT_S3_15(val) \ 44 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 45 46 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 47 { 48 struct msm_drm_private *priv = crtc->dev->dev_private; 49 50 return to_dpu_kms(priv->kms); 51 } 52 53 static void dpu_crtc_destroy(struct drm_crtc *crtc) 54 { 55 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 56 57 if (!crtc) 58 return; 59 60 drm_crtc_cleanup(crtc); 61 kfree(dpu_crtc); 62 } 63 64 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 65 { 66 struct drm_device *dev = crtc->dev; 67 struct drm_encoder *encoder; 68 69 drm_for_each_encoder(encoder, dev) 70 if (encoder->crtc == crtc) 71 return encoder; 72 73 return NULL; 74 } 75 76 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name) 77 { 78 if (!src_name || 79 !strcmp(src_name, "none")) 80 return DPU_CRTC_CRC_SOURCE_NONE; 81 if (!strcmp(src_name, "auto") || 82 !strcmp(src_name, "lm")) 83 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER; 84 if (!strcmp(src_name, "encoder")) 85 return DPU_CRTC_CRC_SOURCE_ENCODER; 86 87 return DPU_CRTC_CRC_SOURCE_INVALID; 88 } 89 90 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc, 91 const char *src_name, size_t *values_cnt) 92 { 93 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 94 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 95 96 if (source < 0) { 97 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index); 98 return -EINVAL; 99 } 100 101 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) { 102 *values_cnt = crtc_state->num_mixers; 103 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) { 104 struct drm_encoder *drm_enc; 105 106 *values_cnt = 0; 107 108 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 109 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc); 110 } 111 112 return 0; 113 } 114 115 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state) 116 { 117 struct dpu_crtc_mixer *m; 118 int i; 119 120 for (i = 0; i < crtc_state->num_mixers; ++i) { 121 m = &crtc_state->mixers[i]; 122 123 if (!m->hw_lm || !m->hw_lm->ops.setup_misr) 124 continue; 125 126 /* Calculate MISR over 1 frame */ 127 m->hw_lm->ops.setup_misr(m->hw_lm, true, 1); 128 } 129 } 130 131 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc) 132 { 133 struct drm_encoder *drm_enc; 134 135 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 136 dpu_encoder_setup_misr(drm_enc); 137 } 138 139 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name) 140 { 141 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 142 enum dpu_crtc_crc_source current_source; 143 struct dpu_crtc_state *crtc_state; 144 struct drm_device *drm_dev = crtc->dev; 145 146 bool was_enabled; 147 bool enable = false; 148 int ret = 0; 149 150 if (source < 0) { 151 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index); 152 return -EINVAL; 153 } 154 155 ret = drm_modeset_lock(&crtc->mutex, NULL); 156 157 if (ret) 158 return ret; 159 160 enable = (source != DPU_CRTC_CRC_SOURCE_NONE); 161 crtc_state = to_dpu_crtc_state(crtc->state); 162 163 spin_lock_irq(&drm_dev->event_lock); 164 current_source = crtc_state->crc_source; 165 spin_unlock_irq(&drm_dev->event_lock); 166 167 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE); 168 169 if (!was_enabled && enable) { 170 ret = drm_crtc_vblank_get(crtc); 171 172 if (ret) 173 goto cleanup; 174 175 } else if (was_enabled && !enable) { 176 drm_crtc_vblank_put(crtc); 177 } 178 179 spin_lock_irq(&drm_dev->event_lock); 180 crtc_state->crc_source = source; 181 spin_unlock_irq(&drm_dev->event_lock); 182 183 crtc_state->crc_frame_skip_count = 0; 184 185 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 186 dpu_crtc_setup_lm_misr(crtc_state); 187 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) 188 dpu_crtc_setup_encoder_misr(crtc); 189 else 190 ret = -EINVAL; 191 192 cleanup: 193 drm_modeset_unlock(&crtc->mutex); 194 195 return ret; 196 } 197 198 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 199 { 200 struct drm_encoder *encoder = get_encoder_from_crtc(crtc); 201 if (!encoder) { 202 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 203 return 0; 204 } 205 206 return dpu_encoder_get_vsync_count(encoder); 207 } 208 209 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc, 210 struct dpu_crtc_state *crtc_state) 211 { 212 struct dpu_crtc_mixer *m; 213 u32 crcs[CRTC_DUAL_MIXERS]; 214 215 int rc = 0; 216 int i; 217 218 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers)); 219 220 for (i = 0; i < crtc_state->num_mixers; ++i) { 221 222 m = &crtc_state->mixers[i]; 223 224 if (!m->hw_lm || !m->hw_lm->ops.collect_misr) 225 continue; 226 227 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]); 228 229 if (rc) { 230 if (rc != -ENODATA) 231 DRM_DEBUG_DRIVER("MISR read failed\n"); 232 return rc; 233 } 234 } 235 236 return drm_crtc_add_crc_entry(crtc, true, 237 drm_crtc_accurate_vblank_count(crtc), crcs); 238 } 239 240 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc) 241 { 242 struct drm_encoder *drm_enc; 243 int rc, pos = 0; 244 u32 crcs[INTF_MAX]; 245 246 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) { 247 rc = dpu_encoder_get_crc(drm_enc, crcs, pos); 248 if (rc < 0) { 249 if (rc != -ENODATA) 250 DRM_DEBUG_DRIVER("MISR read failed\n"); 251 252 return rc; 253 } 254 255 pos += rc; 256 } 257 258 return drm_crtc_add_crc_entry(crtc, true, 259 drm_crtc_accurate_vblank_count(crtc), crcs); 260 } 261 262 static int dpu_crtc_get_crc(struct drm_crtc *crtc) 263 { 264 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 265 266 /* Skip first 2 frames in case of "uncooked" CRCs */ 267 if (crtc_state->crc_frame_skip_count < 2) { 268 crtc_state->crc_frame_skip_count++; 269 return 0; 270 } 271 272 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 273 return dpu_crtc_get_lm_crc(crtc, crtc_state); 274 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER) 275 return dpu_crtc_get_encoder_crc(crtc); 276 277 return -EINVAL; 278 } 279 280 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 281 bool in_vblank_irq, 282 int *vpos, int *hpos, 283 ktime_t *stime, ktime_t *etime, 284 const struct drm_display_mode *mode) 285 { 286 unsigned int pipe = crtc->index; 287 struct drm_encoder *encoder; 288 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 289 290 encoder = get_encoder_from_crtc(crtc); 291 if (!encoder) { 292 DRM_ERROR("no encoder found for crtc %d\n", pipe); 293 return false; 294 } 295 296 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 297 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 298 299 /* 300 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 301 * the end of VFP. Translate the porch values relative to the line 302 * counter positions. 303 */ 304 305 vactive_start = vsw + vbp + 1; 306 vactive_end = vactive_start + mode->crtc_vdisplay; 307 308 /* last scan line before VSYNC */ 309 vfp_end = mode->crtc_vtotal; 310 311 if (stime) 312 *stime = ktime_get(); 313 314 line = dpu_encoder_get_linecount(encoder); 315 316 if (line < vactive_start) 317 line -= vactive_start; 318 else if (line > vactive_end) 319 line = line - vfp_end - vactive_start; 320 else 321 line -= vactive_start; 322 323 *vpos = line; 324 *hpos = 0; 325 326 if (etime) 327 *etime = ktime_get(); 328 329 return true; 330 } 331 332 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 333 struct dpu_plane_state *pstate, struct dpu_format *format) 334 { 335 struct dpu_hw_mixer *lm = mixer->hw_lm; 336 uint32_t blend_op; 337 uint32_t fg_alpha, bg_alpha; 338 339 fg_alpha = pstate->base.alpha >> 8; 340 bg_alpha = 0xff - fg_alpha; 341 342 /* default to opaque blending */ 343 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || 344 !format->alpha_enable) { 345 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 346 DPU_BLEND_BG_ALPHA_BG_CONST; 347 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { 348 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 349 DPU_BLEND_BG_ALPHA_FG_PIXEL; 350 if (fg_alpha != 0xff) { 351 bg_alpha = fg_alpha; 352 blend_op |= DPU_BLEND_BG_MOD_ALPHA | 353 DPU_BLEND_BG_INV_MOD_ALPHA; 354 } else { 355 blend_op |= DPU_BLEND_BG_INV_ALPHA; 356 } 357 } else { 358 /* coverage blending */ 359 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 360 DPU_BLEND_BG_ALPHA_FG_PIXEL; 361 if (fg_alpha != 0xff) { 362 bg_alpha = fg_alpha; 363 blend_op |= DPU_BLEND_FG_MOD_ALPHA | 364 DPU_BLEND_FG_INV_MOD_ALPHA | 365 DPU_BLEND_BG_MOD_ALPHA | 366 DPU_BLEND_BG_INV_MOD_ALPHA; 367 } else { 368 blend_op |= DPU_BLEND_BG_INV_ALPHA; 369 } 370 } 371 372 lm->ops.setup_blend_config(lm, pstate->stage, 373 fg_alpha, bg_alpha, blend_op); 374 375 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 376 &format->base.pixel_format, format->alpha_enable, blend_op); 377 } 378 379 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 380 { 381 struct dpu_crtc_state *crtc_state; 382 int lm_idx, lm_horiz_position; 383 384 crtc_state = to_dpu_crtc_state(crtc->state); 385 386 lm_horiz_position = 0; 387 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 388 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 389 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 390 struct dpu_hw_mixer_cfg cfg; 391 392 if (!lm_roi || !drm_rect_visible(lm_roi)) 393 continue; 394 395 cfg.out_width = drm_rect_width(lm_roi); 396 cfg.out_height = drm_rect_height(lm_roi); 397 cfg.right_mixer = lm_horiz_position++; 398 cfg.flags = 0; 399 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 400 } 401 } 402 403 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 404 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer, 405 struct dpu_hw_stage_cfg *stage_cfg) 406 { 407 struct drm_plane *plane; 408 struct drm_framebuffer *fb; 409 struct drm_plane_state *state; 410 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 411 struct dpu_plane_state *pstate = NULL; 412 struct dpu_format *format; 413 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 414 415 uint32_t stage_idx, lm_idx; 416 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 417 bool bg_alpha_enable = false; 418 DECLARE_BITMAP(fetch_active, SSPP_MAX); 419 420 memset(fetch_active, 0, sizeof(fetch_active)); 421 drm_atomic_crtc_for_each_plane(plane, crtc) { 422 enum dpu_sspp sspp_idx; 423 424 state = plane->state; 425 if (!state) 426 continue; 427 428 if (!state->visible) 429 continue; 430 431 pstate = to_dpu_plane_state(state); 432 fb = state->fb; 433 434 sspp_idx = dpu_plane_pipe(plane); 435 set_bit(sspp_idx, fetch_active); 436 437 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n", 438 crtc->base.id, 439 pstate->stage, 440 plane->base.id, 441 sspp_idx - SSPP_VIG0, 442 state->fb ? state->fb->base.id : -1); 443 444 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 445 446 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 447 bg_alpha_enable = true; 448 449 stage_idx = zpos_cnt[pstate->stage]++; 450 stage_cfg->stage[pstate->stage][stage_idx] = 451 sspp_idx; 452 stage_cfg->multirect_index[pstate->stage][stage_idx] = 453 pstate->multirect_index; 454 455 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 456 state, pstate, stage_idx, 457 sspp_idx - SSPP_VIG0, 458 format->base.pixel_format, 459 fb ? fb->modifier : 0); 460 461 /* blend config update */ 462 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 463 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 464 pstate, format); 465 466 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, 467 sspp_idx); 468 469 if (bg_alpha_enable && !format->alpha_enable) 470 mixer[lm_idx].mixer_op_mode = 0; 471 else 472 mixer[lm_idx].mixer_op_mode |= 473 1 << pstate->stage; 474 } 475 } 476 477 if (ctl->ops.set_active_pipes) 478 ctl->ops.set_active_pipes(ctl, fetch_active); 479 480 _dpu_crtc_program_lm_output_roi(crtc); 481 } 482 483 /** 484 * _dpu_crtc_blend_setup - configure crtc mixers 485 * @crtc: Pointer to drm crtc structure 486 */ 487 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 488 { 489 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 490 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 491 struct dpu_crtc_mixer *mixer = cstate->mixers; 492 struct dpu_hw_ctl *ctl; 493 struct dpu_hw_mixer *lm; 494 struct dpu_hw_stage_cfg stage_cfg; 495 int i; 496 497 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 498 499 for (i = 0; i < cstate->num_mixers; i++) { 500 mixer[i].mixer_op_mode = 0; 501 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 502 mixer[i].lm_ctl->ops.clear_all_blendstages( 503 mixer[i].lm_ctl); 504 } 505 506 /* initialize stage cfg */ 507 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 508 509 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg); 510 511 for (i = 0; i < cstate->num_mixers; i++) { 512 ctl = mixer[i].lm_ctl; 513 lm = mixer[i].hw_lm; 514 515 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 516 517 /* stage config flush mask */ 518 ctl->ops.update_pending_flush_mixer(ctl, 519 mixer[i].hw_lm->idx); 520 521 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n", 522 mixer[i].hw_lm->idx - LM_0, 523 mixer[i].mixer_op_mode, 524 ctl->idx - CTL_0); 525 526 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 527 &stage_cfg); 528 } 529 } 530 531 /** 532 * _dpu_crtc_complete_flip - signal pending page_flip events 533 * Any pending vblank events are added to the vblank_event_list 534 * so that the next vblank interrupt shall signal them. 535 * However PAGE_FLIP events are not handled through the vblank_event_list. 536 * This API signals any pending PAGE_FLIP events requested through 537 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 538 * @crtc: Pointer to drm crtc structure 539 */ 540 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 541 { 542 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 543 struct drm_device *dev = crtc->dev; 544 unsigned long flags; 545 546 spin_lock_irqsave(&dev->event_lock, flags); 547 if (dpu_crtc->event) { 548 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 549 dpu_crtc->event); 550 trace_dpu_crtc_complete_flip(DRMID(crtc)); 551 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 552 dpu_crtc->event = NULL; 553 } 554 spin_unlock_irqrestore(&dev->event_lock, flags); 555 } 556 557 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 558 { 559 struct drm_encoder *encoder; 560 561 /* 562 * TODO: This function is called from dpu debugfs and as part of atomic 563 * check. When called from debugfs, the crtc->mutex must be held to 564 * read crtc->state. However reading crtc->state from atomic check isn't 565 * allowed (unless you have a good reason, a big comment, and a deep 566 * understanding of how the atomic/modeset locks work (<- and this is 567 * probably not possible)). So we'll keep the WARN_ON here for now, but 568 * really we need to figure out a better way to track our operating mode 569 */ 570 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 571 572 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 573 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 574 return dpu_encoder_get_intf_mode(encoder); 575 576 return INTF_MODE_NONE; 577 } 578 579 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 580 { 581 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 582 583 /* keep statistics on vblank callback - with auto reset via debugfs */ 584 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 585 dpu_crtc->vblank_cb_time = ktime_get(); 586 else 587 dpu_crtc->vblank_cb_count++; 588 589 dpu_crtc_get_crc(crtc); 590 591 drm_crtc_handle_vblank(crtc); 592 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 593 } 594 595 static void dpu_crtc_frame_event_work(struct kthread_work *work) 596 { 597 struct dpu_crtc_frame_event *fevent = container_of(work, 598 struct dpu_crtc_frame_event, work); 599 struct drm_crtc *crtc = fevent->crtc; 600 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 601 unsigned long flags; 602 bool frame_done = false; 603 604 DPU_ATRACE_BEGIN("crtc_frame_event"); 605 606 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 607 ktime_to_ns(fevent->ts)); 608 609 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 610 | DPU_ENCODER_FRAME_EVENT_ERROR 611 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 612 613 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 614 /* ignore vblank when not pending */ 615 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 616 /* release bandwidth and other resources */ 617 trace_dpu_crtc_frame_event_done(DRMID(crtc), 618 fevent->event); 619 dpu_core_perf_crtc_release_bw(crtc); 620 } else { 621 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 622 fevent->event); 623 } 624 625 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 626 | DPU_ENCODER_FRAME_EVENT_ERROR)) 627 frame_done = true; 628 } 629 630 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 631 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 632 crtc->base.id, ktime_to_ns(fevent->ts)); 633 634 if (frame_done) 635 complete_all(&dpu_crtc->frame_done_comp); 636 637 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 638 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 639 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 640 DPU_ATRACE_END("crtc_frame_event"); 641 } 642 643 /* 644 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 645 * registers this API to encoder for all frame event callbacks like 646 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 647 * from different context - IRQ, user thread, commit_thread, etc. Each event 648 * should be carefully reviewed and should be processed in proper task context 649 * to avoid schedulin delay or properly manage the irq context's bottom half 650 * processing. 651 */ 652 static void dpu_crtc_frame_event_cb(void *data, u32 event) 653 { 654 struct drm_crtc *crtc = (struct drm_crtc *)data; 655 struct dpu_crtc *dpu_crtc; 656 struct msm_drm_private *priv; 657 struct dpu_crtc_frame_event *fevent; 658 unsigned long flags; 659 u32 crtc_id; 660 661 /* Nothing to do on idle event */ 662 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 663 return; 664 665 dpu_crtc = to_dpu_crtc(crtc); 666 priv = crtc->dev->dev_private; 667 crtc_id = drm_crtc_index(crtc); 668 669 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 670 671 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 672 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 673 struct dpu_crtc_frame_event, list); 674 if (fevent) 675 list_del_init(&fevent->list); 676 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 677 678 if (!fevent) { 679 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 680 return; 681 } 682 683 fevent->event = event; 684 fevent->crtc = crtc; 685 fevent->ts = ktime_get(); 686 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 687 } 688 689 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 690 { 691 trace_dpu_crtc_complete_commit(DRMID(crtc)); 692 dpu_core_perf_crtc_update(crtc, 0, false); 693 _dpu_crtc_complete_flip(crtc); 694 } 695 696 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 697 struct drm_crtc_state *state) 698 { 699 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 700 struct drm_display_mode *adj_mode = &state->adjusted_mode; 701 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 702 int i; 703 704 for (i = 0; i < cstate->num_mixers; i++) { 705 struct drm_rect *r = &cstate->lm_bounds[i]; 706 r->x1 = crtc_split_width * i; 707 r->y1 = 0; 708 r->x2 = r->x1 + crtc_split_width; 709 r->y2 = adj_mode->vdisplay; 710 711 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 712 } 713 } 714 715 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 716 struct dpu_hw_pcc_cfg *cfg) 717 { 718 struct drm_color_ctm *ctm; 719 720 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 721 722 ctm = (struct drm_color_ctm *)state->ctm->data; 723 724 if (!ctm) 725 return; 726 727 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 728 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 729 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 730 731 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 732 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 733 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 734 735 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 736 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 737 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 738 } 739 740 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 741 { 742 struct drm_crtc_state *state = crtc->state; 743 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 744 struct dpu_crtc_mixer *mixer = cstate->mixers; 745 struct dpu_hw_pcc_cfg cfg; 746 struct dpu_hw_ctl *ctl; 747 struct dpu_hw_dspp *dspp; 748 int i; 749 750 751 if (!state->color_mgmt_changed) 752 return; 753 754 for (i = 0; i < cstate->num_mixers; i++) { 755 ctl = mixer[i].lm_ctl; 756 dspp = mixer[i].hw_dspp; 757 758 if (!dspp || !dspp->ops.setup_pcc) 759 continue; 760 761 if (!state->ctm) { 762 dspp->ops.setup_pcc(dspp, NULL); 763 } else { 764 _dpu_crtc_get_pcc_coeff(state, &cfg); 765 dspp->ops.setup_pcc(dspp, &cfg); 766 } 767 768 /* stage config flush mask */ 769 ctl->ops.update_pending_flush_dspp(ctl, 770 mixer[i].hw_dspp->idx); 771 } 772 } 773 774 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 775 struct drm_atomic_state *state) 776 { 777 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 778 struct drm_encoder *encoder; 779 780 if (!crtc->state->enable) { 781 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 782 crtc->base.id, crtc->state->enable); 783 return; 784 } 785 786 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 787 788 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 789 790 /* encoder will trigger pending mask now */ 791 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 792 dpu_encoder_trigger_kickoff_pending(encoder); 793 794 /* 795 * If no mixers have been allocated in dpu_crtc_atomic_check(), 796 * it means we are trying to flush a CRTC whose state is disabled: 797 * nothing else needs to be done. 798 */ 799 if (unlikely(!cstate->num_mixers)) 800 return; 801 802 _dpu_crtc_blend_setup(crtc); 803 804 _dpu_crtc_setup_cp_blocks(crtc); 805 806 /* 807 * PP_DONE irq is only used by command mode for now. 808 * It is better to request pending before FLUSH and START trigger 809 * to make sure no pp_done irq missed. 810 * This is safe because no pp_done will happen before SW trigger 811 * in command mode. 812 */ 813 } 814 815 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 816 struct drm_atomic_state *state) 817 { 818 struct dpu_crtc *dpu_crtc; 819 struct drm_device *dev; 820 struct drm_plane *plane; 821 struct msm_drm_private *priv; 822 unsigned long flags; 823 struct dpu_crtc_state *cstate; 824 825 if (!crtc->state->enable) { 826 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 827 crtc->base.id, crtc->state->enable); 828 return; 829 } 830 831 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 832 833 dpu_crtc = to_dpu_crtc(crtc); 834 cstate = to_dpu_crtc_state(crtc->state); 835 dev = crtc->dev; 836 priv = dev->dev_private; 837 838 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 839 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 840 return; 841 } 842 843 WARN_ON(dpu_crtc->event); 844 spin_lock_irqsave(&dev->event_lock, flags); 845 dpu_crtc->event = crtc->state->event; 846 crtc->state->event = NULL; 847 spin_unlock_irqrestore(&dev->event_lock, flags); 848 849 /* 850 * If no mixers has been allocated in dpu_crtc_atomic_check(), 851 * it means we are trying to flush a CRTC whose state is disabled: 852 * nothing else needs to be done. 853 */ 854 if (unlikely(!cstate->num_mixers)) 855 return; 856 857 /* update performance setting before crtc kickoff */ 858 dpu_core_perf_crtc_update(crtc, 1, false); 859 860 /* 861 * Final plane updates: Give each plane a chance to complete all 862 * required writes/flushing before crtc's "flush 863 * everything" call below. 864 */ 865 drm_atomic_crtc_for_each_plane(plane, crtc) { 866 if (dpu_crtc->smmu_state.transition_error) 867 dpu_plane_set_error(plane, true); 868 dpu_plane_flush(plane); 869 } 870 871 /* Kickoff will be scheduled by outer layer */ 872 } 873 874 /** 875 * dpu_crtc_destroy_state - state destroy hook 876 * @crtc: drm CRTC 877 * @state: CRTC state object to release 878 */ 879 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 880 struct drm_crtc_state *state) 881 { 882 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 883 884 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 885 886 __drm_atomic_helper_crtc_destroy_state(state); 887 888 kfree(cstate); 889 } 890 891 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 892 { 893 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 894 int ret, rc = 0; 895 896 if (!atomic_read(&dpu_crtc->frame_pending)) { 897 DRM_DEBUG_ATOMIC("no frames pending\n"); 898 return 0; 899 } 900 901 DPU_ATRACE_BEGIN("frame done completion wait"); 902 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 903 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 904 if (!ret) { 905 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 906 rc = -ETIMEDOUT; 907 } 908 DPU_ATRACE_END("frame done completion wait"); 909 910 return rc; 911 } 912 913 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 914 { 915 struct drm_encoder *encoder; 916 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 917 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 918 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 919 920 /* 921 * If no mixers has been allocated in dpu_crtc_atomic_check(), 922 * it means we are trying to start a CRTC whose state is disabled: 923 * nothing else needs to be done. 924 */ 925 if (unlikely(!cstate->num_mixers)) 926 return; 927 928 DPU_ATRACE_BEGIN("crtc_commit"); 929 930 drm_for_each_encoder_mask(encoder, crtc->dev, 931 crtc->state->encoder_mask) { 932 if (!dpu_encoder_is_valid_for_commit(encoder)) { 933 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n"); 934 goto end; 935 } 936 } 937 /* 938 * Encoder will flush/start now, unless it has a tx pending. If so, it 939 * may delay and flush at an irq event (e.g. ppdone) 940 */ 941 drm_for_each_encoder_mask(encoder, crtc->dev, 942 crtc->state->encoder_mask) 943 dpu_encoder_prepare_for_kickoff(encoder); 944 945 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 946 /* acquire bandwidth and other resources */ 947 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 948 } else 949 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 950 951 dpu_crtc->play_count++; 952 953 dpu_vbif_clear_errors(dpu_kms); 954 955 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 956 dpu_encoder_kickoff(encoder); 957 958 reinit_completion(&dpu_crtc->frame_done_comp); 959 960 end: 961 DPU_ATRACE_END("crtc_commit"); 962 } 963 964 static void dpu_crtc_reset(struct drm_crtc *crtc) 965 { 966 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 967 968 if (crtc->state) 969 dpu_crtc_destroy_state(crtc, crtc->state); 970 971 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 972 } 973 974 /** 975 * dpu_crtc_duplicate_state - state duplicate hook 976 * @crtc: Pointer to drm crtc structure 977 */ 978 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 979 { 980 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 981 982 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 983 if (!cstate) { 984 DPU_ERROR("failed to allocate state\n"); 985 return NULL; 986 } 987 988 /* duplicate base helper */ 989 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 990 991 return &cstate->base; 992 } 993 994 static void dpu_crtc_atomic_print_state(struct drm_printer *p, 995 const struct drm_crtc_state *state) 996 { 997 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 998 int i; 999 1000 for (i = 0; i < cstate->num_mixers; i++) { 1001 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0); 1002 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0); 1003 if (cstate->mixers[i].hw_dspp) 1004 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0); 1005 } 1006 } 1007 1008 static void dpu_crtc_disable(struct drm_crtc *crtc, 1009 struct drm_atomic_state *state) 1010 { 1011 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1012 crtc); 1013 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1014 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 1015 struct drm_encoder *encoder; 1016 unsigned long flags; 1017 bool release_bandwidth = false; 1018 1019 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1020 1021 /* Disable/save vblank irq handling */ 1022 drm_crtc_vblank_off(crtc); 1023 1024 drm_for_each_encoder_mask(encoder, crtc->dev, 1025 old_crtc_state->encoder_mask) { 1026 /* in video mode, we hold an extra bandwidth reference 1027 * as we cannot drop bandwidth at frame-done if any 1028 * crtc is being used in video mode. 1029 */ 1030 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1031 release_bandwidth = true; 1032 dpu_encoder_assign_crtc(encoder, NULL); 1033 } 1034 1035 /* wait for frame_event_done completion */ 1036 if (_dpu_crtc_wait_for_frame_done(crtc)) 1037 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 1038 crtc->base.id, 1039 atomic_read(&dpu_crtc->frame_pending)); 1040 1041 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 1042 dpu_crtc->enabled = false; 1043 1044 if (atomic_read(&dpu_crtc->frame_pending)) { 1045 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 1046 atomic_read(&dpu_crtc->frame_pending)); 1047 if (release_bandwidth) 1048 dpu_core_perf_crtc_release_bw(crtc); 1049 atomic_set(&dpu_crtc->frame_pending, 0); 1050 } 1051 1052 dpu_core_perf_crtc_update(crtc, 0, true); 1053 1054 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1055 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 1056 1057 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 1058 cstate->num_mixers = 0; 1059 1060 /* disable clk & bw control until clk & bw properties are set */ 1061 cstate->bw_control = false; 1062 cstate->bw_split_vote = false; 1063 1064 if (crtc->state->event && !crtc->state->active) { 1065 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1066 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1067 crtc->state->event = NULL; 1068 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1069 } 1070 1071 pm_runtime_put_sync(crtc->dev->dev); 1072 } 1073 1074 static void dpu_crtc_enable(struct drm_crtc *crtc, 1075 struct drm_atomic_state *state) 1076 { 1077 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1078 struct drm_encoder *encoder; 1079 bool request_bandwidth = false; 1080 1081 pm_runtime_get_sync(crtc->dev->dev); 1082 1083 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1084 1085 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 1086 /* in video mode, we hold an extra bandwidth reference 1087 * as we cannot drop bandwidth at frame-done if any 1088 * crtc is being used in video mode. 1089 */ 1090 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1091 request_bandwidth = true; 1092 dpu_encoder_register_frame_event_callback(encoder, 1093 dpu_crtc_frame_event_cb, (void *)crtc); 1094 } 1095 1096 if (request_bandwidth) 1097 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1098 1099 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 1100 dpu_crtc->enabled = true; 1101 1102 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1103 dpu_encoder_assign_crtc(encoder, crtc); 1104 1105 /* Enable/restore vblank irq handling */ 1106 drm_crtc_vblank_on(crtc); 1107 } 1108 1109 struct plane_state { 1110 struct dpu_plane_state *dpu_pstate; 1111 const struct drm_plane_state *drm_pstate; 1112 int stage; 1113 u32 pipe_id; 1114 }; 1115 1116 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate) 1117 { 1118 struct drm_crtc *crtc = cstate->crtc; 1119 struct drm_encoder *encoder; 1120 1121 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) { 1122 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) { 1123 return true; 1124 } 1125 } 1126 1127 return false; 1128 } 1129 1130 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 1131 struct drm_atomic_state *state) 1132 { 1133 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1134 crtc); 1135 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1136 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 1137 struct plane_state *pstates; 1138 1139 const struct drm_plane_state *pstate; 1140 struct drm_plane *plane; 1141 struct drm_display_mode *mode; 1142 1143 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 1144 1145 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 1146 int multirect_count = 0; 1147 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 1148 int left_zpos_cnt = 0, right_zpos_cnt = 0; 1149 struct drm_rect crtc_rect = { 0 }; 1150 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state); 1151 1152 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 1153 1154 if (!crtc_state->enable || !crtc_state->active) { 1155 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 1156 crtc->base.id, crtc_state->enable, 1157 crtc_state->active); 1158 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 1159 goto end; 1160 } 1161 1162 mode = &crtc_state->adjusted_mode; 1163 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 1164 1165 /* force a full mode set if active state changed */ 1166 if (crtc_state->active_changed) 1167 crtc_state->mode_changed = true; 1168 1169 memset(pipe_staged, 0, sizeof(pipe_staged)); 1170 1171 if (cstate->num_mixers) { 1172 mixer_width = mode->hdisplay / cstate->num_mixers; 1173 1174 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 1175 } 1176 1177 crtc_rect.x2 = mode->hdisplay; 1178 crtc_rect.y2 = mode->vdisplay; 1179 1180 /* get plane state for all drm planes associated with crtc state */ 1181 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 1182 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate); 1183 struct drm_rect dst, clip = crtc_rect; 1184 1185 if (IS_ERR_OR_NULL(pstate)) { 1186 rc = PTR_ERR(pstate); 1187 DPU_ERROR("%s: failed to get plane%d state, %d\n", 1188 dpu_crtc->name, plane->base.id, rc); 1189 goto end; 1190 } 1191 if (cnt >= DPU_STAGE_MAX * 4) 1192 continue; 1193 1194 if (!pstate->visible) 1195 continue; 1196 1197 pstates[cnt].dpu_pstate = dpu_pstate; 1198 pstates[cnt].drm_pstate = pstate; 1199 pstates[cnt].stage = pstate->normalized_zpos; 1200 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 1201 1202 dpu_pstate->needs_dirtyfb = needs_dirtyfb; 1203 1204 if (pipe_staged[pstates[cnt].pipe_id]) { 1205 multirect_plane[multirect_count].r0 = 1206 pipe_staged[pstates[cnt].pipe_id]; 1207 multirect_plane[multirect_count].r1 = pstate; 1208 multirect_count++; 1209 1210 pipe_staged[pstates[cnt].pipe_id] = NULL; 1211 } else { 1212 pipe_staged[pstates[cnt].pipe_id] = pstate; 1213 } 1214 1215 cnt++; 1216 1217 dst = drm_plane_state_dest(pstate); 1218 if (!drm_rect_intersect(&clip, &dst)) { 1219 DPU_ERROR("invalid vertical/horizontal destination\n"); 1220 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 1221 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 1222 DRM_RECT_ARG(&dst)); 1223 rc = -E2BIG; 1224 goto end; 1225 } 1226 } 1227 1228 for (i = 1; i < SSPP_MAX; i++) { 1229 if (pipe_staged[i]) 1230 dpu_plane_clear_multirect(pipe_staged[i]); 1231 } 1232 1233 z_pos = -1; 1234 for (i = 0; i < cnt; i++) { 1235 /* reset counts at every new blend stage */ 1236 if (pstates[i].stage != z_pos) { 1237 left_zpos_cnt = 0; 1238 right_zpos_cnt = 0; 1239 z_pos = pstates[i].stage; 1240 } 1241 1242 /* verify z_pos setting before using it */ 1243 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1244 DPU_ERROR("> %d plane stages assigned\n", 1245 DPU_STAGE_MAX - DPU_STAGE_0); 1246 rc = -EINVAL; 1247 goto end; 1248 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1249 if (left_zpos_cnt == 2) { 1250 DPU_ERROR("> 2 planes @ stage %d on left\n", 1251 z_pos); 1252 rc = -EINVAL; 1253 goto end; 1254 } 1255 left_zpos_cnt++; 1256 1257 } else { 1258 if (right_zpos_cnt == 2) { 1259 DPU_ERROR("> 2 planes @ stage %d on right\n", 1260 z_pos); 1261 rc = -EINVAL; 1262 goto end; 1263 } 1264 right_zpos_cnt++; 1265 } 1266 1267 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1268 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos); 1269 } 1270 1271 for (i = 0; i < multirect_count; i++) { 1272 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1273 DPU_ERROR( 1274 "multirect validation failed for planes (%d - %d)\n", 1275 multirect_plane[i].r0->plane->base.id, 1276 multirect_plane[i].r1->plane->base.id); 1277 rc = -EINVAL; 1278 goto end; 1279 } 1280 } 1281 1282 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1283 1284 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1285 if (rc) { 1286 DPU_ERROR("crtc%d failed performance check %d\n", 1287 crtc->base.id, rc); 1288 goto end; 1289 } 1290 1291 /* validate source split: 1292 * use pstates sorted by stage to check planes on same stage 1293 * we assume that all pipes are in source split so its valid to compare 1294 * without taking into account left/right mixer placement 1295 */ 1296 for (i = 1; i < cnt; i++) { 1297 struct plane_state *prv_pstate, *cur_pstate; 1298 struct drm_rect left_rect, right_rect; 1299 int32_t left_pid, right_pid; 1300 int32_t stage; 1301 1302 prv_pstate = &pstates[i - 1]; 1303 cur_pstate = &pstates[i]; 1304 if (prv_pstate->stage != cur_pstate->stage) 1305 continue; 1306 1307 stage = cur_pstate->stage; 1308 1309 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1310 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1311 1312 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1313 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1314 1315 if (right_rect.x1 < left_rect.x1) { 1316 swap(left_pid, right_pid); 1317 swap(left_rect, right_rect); 1318 } 1319 1320 /** 1321 * - planes are enumerated in pipe-priority order such that 1322 * planes with lower drm_id must be left-most in a shared 1323 * blend-stage when using source split. 1324 * - planes in source split must be contiguous in width 1325 * - planes in source split must have same dest yoff and height 1326 */ 1327 if (right_pid < left_pid) { 1328 DPU_ERROR( 1329 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1330 stage, left_pid, right_pid); 1331 rc = -EINVAL; 1332 goto end; 1333 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1334 DPU_ERROR("non-contiguous coordinates for src split. " 1335 "stage: %d left: " DRM_RECT_FMT " right: " 1336 DRM_RECT_FMT "\n", stage, 1337 DRM_RECT_ARG(&left_rect), 1338 DRM_RECT_ARG(&right_rect)); 1339 rc = -EINVAL; 1340 goto end; 1341 } else if (left_rect.y1 != right_rect.y1 || 1342 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1343 DPU_ERROR("source split at stage: %d. invalid " 1344 "yoff/height: left: " DRM_RECT_FMT " right: " 1345 DRM_RECT_FMT "\n", stage, 1346 DRM_RECT_ARG(&left_rect), 1347 DRM_RECT_ARG(&right_rect)); 1348 rc = -EINVAL; 1349 goto end; 1350 } 1351 } 1352 1353 end: 1354 kfree(pstates); 1355 return rc; 1356 } 1357 1358 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1359 { 1360 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1361 struct drm_encoder *enc; 1362 1363 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1364 1365 /* 1366 * Normally we would iterate through encoder_mask in crtc state to find 1367 * attached encoders. In this case, we might be disabling vblank _after_ 1368 * encoder_mask has been cleared. 1369 * 1370 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1371 * disable (which is also after encoder_mask is cleared). So instead of 1372 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1373 * currently assigned to our crtc. 1374 * 1375 * Note also that this function cannot be called while crtc is disabled 1376 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1377 * about the assigned crtcs being inconsistent with the current state 1378 * (which means no need to worry about modeset locks). 1379 */ 1380 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1381 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1382 dpu_crtc); 1383 1384 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1385 } 1386 1387 return 0; 1388 } 1389 1390 #ifdef CONFIG_DEBUG_FS 1391 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1392 { 1393 struct dpu_crtc *dpu_crtc; 1394 struct dpu_plane_state *pstate = NULL; 1395 struct dpu_crtc_mixer *m; 1396 1397 struct drm_crtc *crtc; 1398 struct drm_plane *plane; 1399 struct drm_display_mode *mode; 1400 struct drm_framebuffer *fb; 1401 struct drm_plane_state *state; 1402 struct dpu_crtc_state *cstate; 1403 1404 int i, out_width; 1405 1406 dpu_crtc = s->private; 1407 crtc = &dpu_crtc->base; 1408 1409 drm_modeset_lock_all(crtc->dev); 1410 cstate = to_dpu_crtc_state(crtc->state); 1411 1412 mode = &crtc->state->adjusted_mode; 1413 out_width = mode->hdisplay / cstate->num_mixers; 1414 1415 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1416 mode->hdisplay, mode->vdisplay); 1417 1418 seq_puts(s, "\n"); 1419 1420 for (i = 0; i < cstate->num_mixers; ++i) { 1421 m = &cstate->mixers[i]; 1422 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1423 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1424 out_width, mode->vdisplay); 1425 } 1426 1427 seq_puts(s, "\n"); 1428 1429 drm_atomic_crtc_for_each_plane(plane, crtc) { 1430 pstate = to_dpu_plane_state(plane->state); 1431 state = plane->state; 1432 1433 if (!pstate || !state) 1434 continue; 1435 1436 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1437 pstate->stage); 1438 1439 if (plane->state->fb) { 1440 fb = plane->state->fb; 1441 1442 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1443 fb->base.id, (char *) &fb->format->format, 1444 fb->width, fb->height); 1445 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1446 seq_printf(s, "cpp[%d]:%u ", 1447 i, fb->format->cpp[i]); 1448 seq_puts(s, "\n\t"); 1449 1450 seq_printf(s, "modifier:%8llu ", fb->modifier); 1451 seq_puts(s, "\n"); 1452 1453 seq_puts(s, "\t"); 1454 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1455 seq_printf(s, "pitches[%d]:%8u ", i, 1456 fb->pitches[i]); 1457 seq_puts(s, "\n"); 1458 1459 seq_puts(s, "\t"); 1460 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1461 seq_printf(s, "offsets[%d]:%8u ", i, 1462 fb->offsets[i]); 1463 seq_puts(s, "\n"); 1464 } 1465 1466 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1467 state->src_x, state->src_y, state->src_w, state->src_h); 1468 1469 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1470 state->crtc_x, state->crtc_y, state->crtc_w, 1471 state->crtc_h); 1472 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1473 pstate->multirect_mode, pstate->multirect_index); 1474 1475 seq_puts(s, "\n"); 1476 } 1477 if (dpu_crtc->vblank_cb_count) { 1478 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1479 s64 diff_ms = ktime_to_ms(diff); 1480 s64 fps = diff_ms ? div_s64( 1481 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1482 1483 seq_printf(s, 1484 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1485 fps, dpu_crtc->vblank_cb_count, 1486 ktime_to_ms(diff), dpu_crtc->play_count); 1487 1488 /* reset time & count for next measurement */ 1489 dpu_crtc->vblank_cb_count = 0; 1490 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1491 } 1492 1493 drm_modeset_unlock_all(crtc->dev); 1494 1495 return 0; 1496 } 1497 1498 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1499 1500 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1501 { 1502 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1503 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1504 1505 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1506 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1507 seq_printf(s, "core_clk_rate: %llu\n", 1508 dpu_crtc->cur_perf.core_clk_rate); 1509 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1510 seq_printf(s, "max_per_pipe_ib: %llu\n", 1511 dpu_crtc->cur_perf.max_per_pipe_ib); 1512 1513 return 0; 1514 } 1515 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1516 1517 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1518 { 1519 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1520 struct dentry *debugfs_root; 1521 1522 debugfs_root = debugfs_create_dir(dpu_crtc->name, 1523 crtc->dev->primary->debugfs_root); 1524 1525 debugfs_create_file("status", 0400, 1526 debugfs_root, 1527 dpu_crtc, &_dpu_debugfs_status_fops); 1528 debugfs_create_file("state", 0600, 1529 debugfs_root, 1530 &dpu_crtc->base, 1531 &dpu_crtc_debugfs_state_fops); 1532 1533 return 0; 1534 } 1535 #else 1536 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1537 { 1538 return 0; 1539 } 1540 #endif /* CONFIG_DEBUG_FS */ 1541 1542 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1543 { 1544 return _dpu_crtc_init_debugfs(crtc); 1545 } 1546 1547 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1548 .set_config = drm_atomic_helper_set_config, 1549 .destroy = dpu_crtc_destroy, 1550 .page_flip = drm_atomic_helper_page_flip, 1551 .reset = dpu_crtc_reset, 1552 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1553 .atomic_destroy_state = dpu_crtc_destroy_state, 1554 .atomic_print_state = dpu_crtc_atomic_print_state, 1555 .late_register = dpu_crtc_late_register, 1556 .verify_crc_source = dpu_crtc_verify_crc_source, 1557 .set_crc_source = dpu_crtc_set_crc_source, 1558 .enable_vblank = msm_crtc_enable_vblank, 1559 .disable_vblank = msm_crtc_disable_vblank, 1560 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1561 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1562 }; 1563 1564 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1565 .atomic_disable = dpu_crtc_disable, 1566 .atomic_enable = dpu_crtc_enable, 1567 .atomic_check = dpu_crtc_atomic_check, 1568 .atomic_begin = dpu_crtc_atomic_begin, 1569 .atomic_flush = dpu_crtc_atomic_flush, 1570 .get_scanout_position = dpu_crtc_get_scanout_position, 1571 }; 1572 1573 /* initialize crtc */ 1574 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1575 struct drm_plane *cursor) 1576 { 1577 struct drm_crtc *crtc = NULL; 1578 struct dpu_crtc *dpu_crtc = NULL; 1579 int i; 1580 1581 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1582 if (!dpu_crtc) 1583 return ERR_PTR(-ENOMEM); 1584 1585 crtc = &dpu_crtc->base; 1586 crtc->dev = dev; 1587 1588 spin_lock_init(&dpu_crtc->spin_lock); 1589 atomic_set(&dpu_crtc->frame_pending, 0); 1590 1591 init_completion(&dpu_crtc->frame_done_comp); 1592 1593 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1594 1595 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1596 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1597 list_add(&dpu_crtc->frame_events[i].list, 1598 &dpu_crtc->frame_event_list); 1599 kthread_init_work(&dpu_crtc->frame_events[i].work, 1600 dpu_crtc_frame_event_work); 1601 } 1602 1603 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1604 NULL); 1605 1606 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1607 1608 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1609 1610 /* save user friendly CRTC name for later */ 1611 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1612 1613 /* initialize event handling */ 1614 spin_lock_init(&dpu_crtc->event_lock); 1615 1616 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1617 return crtc; 1618 } 1619