1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * Copyright (c) 2014 The Linux Foundation. All rights reserved. 7 */ 8 9 #include <linux/ascii85.h> 10 #include <linux/interconnect.h> 11 #include <linux/qcom_scm.h> 12 #include <linux/kernel.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/mdt_loader.h> 17 #include <soc/qcom/ocmem.h> 18 #include "adreno_gpu.h" 19 #include "msm_gem.h" 20 #include "msm_mmu.h" 21 22 static bool zap_available = true; 23 24 static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, 25 u32 pasid) 26 { 27 struct device *dev = &gpu->pdev->dev; 28 const struct firmware *fw; 29 const char *signed_fwname = NULL; 30 struct device_node *np, *mem_np; 31 struct resource r; 32 phys_addr_t mem_phys; 33 ssize_t mem_size; 34 void *mem_region = NULL; 35 int ret; 36 37 if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { 38 zap_available = false; 39 return -EINVAL; 40 } 41 42 np = of_get_child_by_name(dev->of_node, "zap-shader"); 43 if (!np) { 44 zap_available = false; 45 return -ENODEV; 46 } 47 48 mem_np = of_parse_phandle(np, "memory-region", 0); 49 of_node_put(np); 50 if (!mem_np) { 51 zap_available = false; 52 return -EINVAL; 53 } 54 55 ret = of_address_to_resource(mem_np, 0, &r); 56 of_node_put(mem_np); 57 if (ret) 58 return ret; 59 60 mem_phys = r.start; 61 62 /* 63 * Check for a firmware-name property. This is the new scheme 64 * to handle firmware that may be signed with device specific 65 * keys, allowing us to have a different zap fw path for different 66 * devices. 67 * 68 * If the firmware-name property is found, we bypass the 69 * adreno_request_fw() mechanism, because we don't need to handle 70 * the /lib/firmware/qcom/... vs /lib/firmware/... case. 71 * 72 * If the firmware-name property is not found, for backwards 73 * compatibility we fall back to the fwname from the gpulist 74 * table. 75 */ 76 of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); 77 if (signed_fwname) { 78 fwname = signed_fwname; 79 ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); 80 if (ret) 81 fw = ERR_PTR(ret); 82 } else if (fwname) { 83 /* Request the MDT file from the default location: */ 84 fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); 85 } else { 86 /* 87 * For new targets, we require the firmware-name property, 88 * if a zap-shader is required, rather than falling back 89 * to a firmware name specified in gpulist. 90 * 91 * Because the firmware is signed with a (potentially) 92 * device specific key, having the name come from gpulist 93 * was a bad idea, and is only provided for backwards 94 * compatibility for older targets. 95 */ 96 return -ENODEV; 97 } 98 99 if (IS_ERR(fw)) { 100 DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); 101 return PTR_ERR(fw); 102 } 103 104 /* Figure out how much memory we need */ 105 mem_size = qcom_mdt_get_size(fw); 106 if (mem_size < 0) { 107 ret = mem_size; 108 goto out; 109 } 110 111 if (mem_size > resource_size(&r)) { 112 DRM_DEV_ERROR(dev, 113 "memory region is too small to load the MDT\n"); 114 ret = -E2BIG; 115 goto out; 116 } 117 118 /* Allocate memory for the firmware image */ 119 mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); 120 if (!mem_region) { 121 ret = -ENOMEM; 122 goto out; 123 } 124 125 /* 126 * Load the rest of the MDT 127 * 128 * Note that we could be dealing with two different paths, since 129 * with upstream linux-firmware it would be in a qcom/ subdir.. 130 * adreno_request_fw() handles this, but qcom_mdt_load() does 131 * not. But since we've already gotten through adreno_request_fw() 132 * we know which of the two cases it is: 133 */ 134 if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { 135 ret = qcom_mdt_load(dev, fw, fwname, pasid, 136 mem_region, mem_phys, mem_size, NULL); 137 } else { 138 char *newname; 139 140 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 141 142 ret = qcom_mdt_load(dev, fw, newname, pasid, 143 mem_region, mem_phys, mem_size, NULL); 144 kfree(newname); 145 } 146 if (ret) 147 goto out; 148 149 /* Send the image to the secure world */ 150 ret = qcom_scm_pas_auth_and_reset(pasid); 151 152 /* 153 * If the scm call returns -EOPNOTSUPP we assume that this target 154 * doesn't need/support the zap shader so quietly fail 155 */ 156 if (ret == -EOPNOTSUPP) 157 zap_available = false; 158 else if (ret) 159 DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); 160 161 out: 162 if (mem_region) 163 memunmap(mem_region); 164 165 release_firmware(fw); 166 167 return ret; 168 } 169 170 int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) 171 { 172 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 173 struct platform_device *pdev = gpu->pdev; 174 175 /* Short cut if we determine the zap shader isn't available/needed */ 176 if (!zap_available) 177 return -ENODEV; 178 179 /* We need SCM to be able to load the firmware */ 180 if (!qcom_scm_is_available()) { 181 DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); 182 return -EPROBE_DEFER; 183 } 184 185 return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); 186 } 187 188 int adreno_get_param(struct msm_gpu *gpu, uint32_t param, uint64_t *value) 189 { 190 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 191 192 switch (param) { 193 case MSM_PARAM_GPU_ID: 194 *value = adreno_gpu->info->revn; 195 return 0; 196 case MSM_PARAM_GMEM_SIZE: 197 *value = adreno_gpu->gmem; 198 return 0; 199 case MSM_PARAM_GMEM_BASE: 200 *value = 0x100000; 201 return 0; 202 case MSM_PARAM_CHIP_ID: 203 *value = adreno_gpu->rev.patchid | 204 (adreno_gpu->rev.minor << 8) | 205 (adreno_gpu->rev.major << 16) | 206 (adreno_gpu->rev.core << 24); 207 return 0; 208 case MSM_PARAM_MAX_FREQ: 209 *value = adreno_gpu->base.fast_rate; 210 return 0; 211 case MSM_PARAM_TIMESTAMP: 212 if (adreno_gpu->funcs->get_timestamp) { 213 int ret; 214 215 pm_runtime_get_sync(&gpu->pdev->dev); 216 ret = adreno_gpu->funcs->get_timestamp(gpu, value); 217 pm_runtime_put_autosuspend(&gpu->pdev->dev); 218 219 return ret; 220 } 221 return -EINVAL; 222 case MSM_PARAM_NR_RINGS: 223 *value = gpu->nr_rings; 224 return 0; 225 case MSM_PARAM_PP_PGTABLE: 226 *value = 0; 227 return 0; 228 case MSM_PARAM_FAULTS: 229 *value = gpu->global_faults; 230 return 0; 231 default: 232 DBG("%s: invalid param: %u", gpu->name, param); 233 return -EINVAL; 234 } 235 } 236 237 const struct firmware * 238 adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) 239 { 240 struct drm_device *drm = adreno_gpu->base.dev; 241 const struct firmware *fw = NULL; 242 char *newname; 243 int ret; 244 245 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 246 if (!newname) 247 return ERR_PTR(-ENOMEM); 248 249 /* 250 * Try first to load from qcom/$fwfile using a direct load (to avoid 251 * a potential timeout waiting for usermode helper) 252 */ 253 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 254 (adreno_gpu->fwloc == FW_LOCATION_NEW)) { 255 256 ret = request_firmware_direct(&fw, newname, drm->dev); 257 if (!ret) { 258 DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", 259 newname); 260 adreno_gpu->fwloc = FW_LOCATION_NEW; 261 goto out; 262 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 263 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 264 newname, ret); 265 fw = ERR_PTR(ret); 266 goto out; 267 } 268 } 269 270 /* 271 * Then try the legacy location without qcom/ prefix 272 */ 273 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 274 (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { 275 276 ret = request_firmware_direct(&fw, fwname, drm->dev); 277 if (!ret) { 278 DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", 279 newname); 280 adreno_gpu->fwloc = FW_LOCATION_LEGACY; 281 goto out; 282 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 283 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 284 fwname, ret); 285 fw = ERR_PTR(ret); 286 goto out; 287 } 288 } 289 290 /* 291 * Finally fall back to request_firmware() for cases where the 292 * usermode helper is needed (I think mainly android) 293 */ 294 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 295 (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { 296 297 ret = request_firmware(&fw, newname, drm->dev); 298 if (!ret) { 299 DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", 300 newname); 301 adreno_gpu->fwloc = FW_LOCATION_HELPER; 302 goto out; 303 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 304 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 305 newname, ret); 306 fw = ERR_PTR(ret); 307 goto out; 308 } 309 } 310 311 DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); 312 fw = ERR_PTR(-ENOENT); 313 out: 314 kfree(newname); 315 return fw; 316 } 317 318 int adreno_load_fw(struct adreno_gpu *adreno_gpu) 319 { 320 int i; 321 322 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { 323 const struct firmware *fw; 324 325 if (!adreno_gpu->info->fw[i]) 326 continue; 327 328 /* Skip if the firmware has already been loaded */ 329 if (adreno_gpu->fw[i]) 330 continue; 331 332 fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); 333 if (IS_ERR(fw)) 334 return PTR_ERR(fw); 335 336 adreno_gpu->fw[i] = fw; 337 } 338 339 return 0; 340 } 341 342 struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, 343 const struct firmware *fw, u64 *iova) 344 { 345 struct drm_gem_object *bo; 346 void *ptr; 347 348 ptr = msm_gem_kernel_new_locked(gpu->dev, fw->size - 4, 349 MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); 350 351 if (IS_ERR(ptr)) 352 return ERR_CAST(ptr); 353 354 memcpy(ptr, &fw->data[4], fw->size - 4); 355 356 msm_gem_put_vaddr(bo); 357 358 return bo; 359 } 360 361 int adreno_hw_init(struct msm_gpu *gpu) 362 { 363 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 364 int ret, i; 365 366 DBG("%s", gpu->name); 367 368 ret = adreno_load_fw(adreno_gpu); 369 if (ret) 370 return ret; 371 372 for (i = 0; i < gpu->nr_rings; i++) { 373 struct msm_ringbuffer *ring = gpu->rb[i]; 374 375 if (!ring) 376 continue; 377 378 ring->cur = ring->start; 379 ring->next = ring->start; 380 381 /* reset completed fence seqno: */ 382 ring->memptrs->fence = ring->seqno; 383 ring->memptrs->rptr = 0; 384 } 385 386 /* 387 * Setup REG_CP_RB_CNTL. The same value is used across targets (with 388 * the excpetion of A430 that disables the RPTR shadow) - the cacluation 389 * for the ringbuffer size and block size is moved to msm_gpu.h for the 390 * pre-processor to deal with and the A430 variant is ORed in here 391 */ 392 adreno_gpu_write(adreno_gpu, REG_ADRENO_CP_RB_CNTL, 393 MSM_GPU_RB_CNTL_DEFAULT | 394 (adreno_is_a430(adreno_gpu) ? AXXX_CP_RB_CNTL_NO_UPDATE : 0)); 395 396 /* Setup ringbuffer address - use ringbuffer[0] for GPU init */ 397 adreno_gpu_write64(adreno_gpu, REG_ADRENO_CP_RB_BASE, 398 REG_ADRENO_CP_RB_BASE_HI, gpu->rb[0]->iova); 399 400 if (!adreno_is_a430(adreno_gpu)) { 401 adreno_gpu_write64(adreno_gpu, REG_ADRENO_CP_RB_RPTR_ADDR, 402 REG_ADRENO_CP_RB_RPTR_ADDR_HI, 403 rbmemptr(gpu->rb[0], rptr)); 404 } 405 406 return 0; 407 } 408 409 /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ 410 static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, 411 struct msm_ringbuffer *ring) 412 { 413 if (adreno_is_a430(adreno_gpu)) 414 return ring->memptrs->rptr = adreno_gpu_read( 415 adreno_gpu, REG_ADRENO_CP_RB_RPTR); 416 else 417 return ring->memptrs->rptr; 418 } 419 420 struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) 421 { 422 return gpu->rb[0]; 423 } 424 425 void adreno_recover(struct msm_gpu *gpu) 426 { 427 struct drm_device *dev = gpu->dev; 428 int ret; 429 430 // XXX pm-runtime?? we *need* the device to be off after this 431 // so maybe continuing to call ->pm_suspend/resume() is better? 432 433 gpu->funcs->pm_suspend(gpu); 434 gpu->funcs->pm_resume(gpu); 435 436 ret = msm_gpu_hw_init(gpu); 437 if (ret) { 438 DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); 439 /* hmm, oh well? */ 440 } 441 } 442 443 void adreno_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit, 444 struct msm_file_private *ctx) 445 { 446 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 447 struct msm_drm_private *priv = gpu->dev->dev_private; 448 struct msm_ringbuffer *ring = submit->ring; 449 unsigned i; 450 451 for (i = 0; i < submit->nr_cmds; i++) { 452 switch (submit->cmd[i].type) { 453 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 454 /* ignore IB-targets */ 455 break; 456 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 457 /* ignore if there has not been a ctx switch: */ 458 if (priv->lastctx == ctx) 459 break; 460 /* fall-thru */ 461 case MSM_SUBMIT_CMD_BUF: 462 OUT_PKT3(ring, adreno_is_a430(adreno_gpu) ? 463 CP_INDIRECT_BUFFER_PFE : CP_INDIRECT_BUFFER_PFD, 2); 464 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 465 OUT_RING(ring, submit->cmd[i].size); 466 OUT_PKT2(ring); 467 break; 468 } 469 } 470 471 OUT_PKT0(ring, REG_AXXX_CP_SCRATCH_REG2, 1); 472 OUT_RING(ring, submit->seqno); 473 474 if (adreno_is_a3xx(adreno_gpu) || adreno_is_a4xx(adreno_gpu)) { 475 /* Flush HLSQ lazy updates to make sure there is nothing 476 * pending for indirect loads after the timestamp has 477 * passed: 478 */ 479 OUT_PKT3(ring, CP_EVENT_WRITE, 1); 480 OUT_RING(ring, HLSQ_FLUSH); 481 } 482 483 /* wait for idle before cache flush/interrupt */ 484 OUT_PKT3(ring, CP_WAIT_FOR_IDLE, 1); 485 OUT_RING(ring, 0x00000000); 486 487 if (!adreno_is_a2xx(adreno_gpu)) { 488 /* BIT(31) of CACHE_FLUSH_TS triggers CACHE_FLUSH_TS IRQ from GPU */ 489 OUT_PKT3(ring, CP_EVENT_WRITE, 3); 490 OUT_RING(ring, CACHE_FLUSH_TS | BIT(31)); 491 OUT_RING(ring, rbmemptr(ring, fence)); 492 OUT_RING(ring, submit->seqno); 493 } else { 494 /* BIT(31) means something else on a2xx */ 495 OUT_PKT3(ring, CP_EVENT_WRITE, 3); 496 OUT_RING(ring, CACHE_FLUSH_TS); 497 OUT_RING(ring, rbmemptr(ring, fence)); 498 OUT_RING(ring, submit->seqno); 499 OUT_PKT3(ring, CP_INTERRUPT, 1); 500 OUT_RING(ring, 0x80000000); 501 } 502 503 #if 0 504 if (adreno_is_a3xx(adreno_gpu)) { 505 /* Dummy set-constant to trigger context rollover */ 506 OUT_PKT3(ring, CP_SET_CONSTANT, 2); 507 OUT_RING(ring, CP_REG(REG_A3XX_HLSQ_CL_KERNEL_GROUP_X_REG)); 508 OUT_RING(ring, 0x00000000); 509 } 510 #endif 511 512 gpu->funcs->flush(gpu, ring); 513 } 514 515 void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 516 { 517 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 518 uint32_t wptr; 519 520 /* Copy the shadow to the actual register */ 521 ring->cur = ring->next; 522 523 /* 524 * Mask wptr value that we calculate to fit in the HW range. This is 525 * to account for the possibility that the last command fit exactly into 526 * the ringbuffer and rb->next hasn't wrapped to zero yet 527 */ 528 wptr = get_wptr(ring); 529 530 /* ensure writes to ringbuffer have hit system memory: */ 531 mb(); 532 533 adreno_gpu_write(adreno_gpu, REG_ADRENO_CP_RB_WPTR, wptr); 534 } 535 536 bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 537 { 538 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 539 uint32_t wptr = get_wptr(ring); 540 541 /* wait for CP to drain ringbuffer: */ 542 if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) 543 return true; 544 545 /* TODO maybe we need to reset GPU here to recover from hang? */ 546 DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", 547 gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); 548 549 return false; 550 } 551 552 int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) 553 { 554 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 555 int i, count = 0; 556 557 kref_init(&state->ref); 558 559 ktime_get_real_ts64(&state->time); 560 561 for (i = 0; i < gpu->nr_rings; i++) { 562 int size = 0, j; 563 564 state->ring[i].fence = gpu->rb[i]->memptrs->fence; 565 state->ring[i].iova = gpu->rb[i]->iova; 566 state->ring[i].seqno = gpu->rb[i]->seqno; 567 state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); 568 state->ring[i].wptr = get_wptr(gpu->rb[i]); 569 570 /* Copy at least 'wptr' dwords of the data */ 571 size = state->ring[i].wptr; 572 573 /* After wptr find the last non zero dword to save space */ 574 for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) 575 if (gpu->rb[i]->start[j]) 576 size = j + 1; 577 578 if (size) { 579 state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); 580 if (state->ring[i].data) { 581 memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); 582 state->ring[i].data_size = size << 2; 583 } 584 } 585 } 586 587 /* Some targets prefer to collect their own registers */ 588 if (!adreno_gpu->registers) 589 return 0; 590 591 /* Count the number of registers */ 592 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) 593 count += adreno_gpu->registers[i + 1] - 594 adreno_gpu->registers[i] + 1; 595 596 state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); 597 if (state->registers) { 598 int pos = 0; 599 600 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 601 u32 start = adreno_gpu->registers[i]; 602 u32 end = adreno_gpu->registers[i + 1]; 603 u32 addr; 604 605 for (addr = start; addr <= end; addr++) { 606 state->registers[pos++] = addr; 607 state->registers[pos++] = gpu_read(gpu, addr); 608 } 609 } 610 611 state->nr_registers = count; 612 } 613 614 return 0; 615 } 616 617 void adreno_gpu_state_destroy(struct msm_gpu_state *state) 618 { 619 int i; 620 621 for (i = 0; i < ARRAY_SIZE(state->ring); i++) 622 kvfree(state->ring[i].data); 623 624 for (i = 0; state->bos && i < state->nr_bos; i++) 625 kvfree(state->bos[i].data); 626 627 kfree(state->bos); 628 kfree(state->comm); 629 kfree(state->cmd); 630 kfree(state->registers); 631 } 632 633 static void adreno_gpu_state_kref_destroy(struct kref *kref) 634 { 635 struct msm_gpu_state *state = container_of(kref, 636 struct msm_gpu_state, ref); 637 638 adreno_gpu_state_destroy(state); 639 kfree(state); 640 } 641 642 int adreno_gpu_state_put(struct msm_gpu_state *state) 643 { 644 if (IS_ERR_OR_NULL(state)) 645 return 1; 646 647 return kref_put(&state->ref, adreno_gpu_state_kref_destroy); 648 } 649 650 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 651 652 static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) 653 { 654 void *buf; 655 size_t buf_itr = 0, buffer_size; 656 char out[ASCII85_BUFSZ]; 657 long l; 658 int i; 659 660 if (!src || !len) 661 return NULL; 662 663 l = ascii85_encode_len(len); 664 665 /* 666 * Ascii85 outputs either a 5 byte string or a 1 byte string. So we 667 * account for the worst case of 5 bytes per dword plus the 1 for '\0' 668 */ 669 buffer_size = (l * 5) + 1; 670 671 buf = kvmalloc(buffer_size, GFP_KERNEL); 672 if (!buf) 673 return NULL; 674 675 for (i = 0; i < l; i++) 676 buf_itr += snprintf(buf + buf_itr, buffer_size - buf_itr, "%s", 677 ascii85_encode(src[i], out)); 678 679 return buf; 680 } 681 682 /* len is expected to be in bytes */ 683 static void adreno_show_object(struct drm_printer *p, void **ptr, int len, 684 bool *encoded) 685 { 686 if (!*ptr || !len) 687 return; 688 689 if (!*encoded) { 690 long datalen, i; 691 u32 *buf = *ptr; 692 693 /* 694 * Only dump the non-zero part of the buffer - rarely will 695 * any data completely fill the entire allocated size of 696 * the buffer. 697 */ 698 for (datalen = 0, i = 0; i < len >> 2; i++) 699 if (buf[i]) 700 datalen = ((i + 1) << 2); 701 702 /* 703 * If we reach here, then the originally captured binary buffer 704 * will be replaced with the ascii85 encoded string 705 */ 706 *ptr = adreno_gpu_ascii85_encode(buf, datalen); 707 708 kvfree(buf); 709 710 *encoded = true; 711 } 712 713 if (!*ptr) 714 return; 715 716 drm_puts(p, " data: !!ascii85 |\n"); 717 drm_puts(p, " "); 718 719 drm_puts(p, *ptr); 720 721 drm_puts(p, "\n"); 722 } 723 724 void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, 725 struct drm_printer *p) 726 { 727 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 728 int i; 729 730 if (IS_ERR_OR_NULL(state)) 731 return; 732 733 drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", 734 adreno_gpu->info->revn, adreno_gpu->rev.core, 735 adreno_gpu->rev.major, adreno_gpu->rev.minor, 736 adreno_gpu->rev.patchid); 737 738 drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); 739 740 drm_puts(p, "ringbuffer:\n"); 741 742 for (i = 0; i < gpu->nr_rings; i++) { 743 drm_printf(p, " - id: %d\n", i); 744 drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); 745 drm_printf(p, " last-fence: %d\n", state->ring[i].seqno); 746 drm_printf(p, " retired-fence: %d\n", state->ring[i].fence); 747 drm_printf(p, " rptr: %d\n", state->ring[i].rptr); 748 drm_printf(p, " wptr: %d\n", state->ring[i].wptr); 749 drm_printf(p, " size: %d\n", MSM_GPU_RINGBUFFER_SZ); 750 751 adreno_show_object(p, &state->ring[i].data, 752 state->ring[i].data_size, &state->ring[i].encoded); 753 } 754 755 if (state->bos) { 756 drm_puts(p, "bos:\n"); 757 758 for (i = 0; i < state->nr_bos; i++) { 759 drm_printf(p, " - iova: 0x%016llx\n", 760 state->bos[i].iova); 761 drm_printf(p, " size: %zd\n", state->bos[i].size); 762 763 adreno_show_object(p, &state->bos[i].data, 764 state->bos[i].size, &state->bos[i].encoded); 765 } 766 } 767 768 if (state->nr_registers) { 769 drm_puts(p, "registers:\n"); 770 771 for (i = 0; i < state->nr_registers; i++) { 772 drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", 773 state->registers[i * 2] << 2, 774 state->registers[(i * 2) + 1]); 775 } 776 } 777 } 778 #endif 779 780 /* Dump common gpu status and scratch registers on any hang, to make 781 * the hangcheck logs more useful. The scratch registers seem always 782 * safe to read when GPU has hung (unlike some other regs, depending 783 * on how the GPU hung), and they are useful to match up to cmdstream 784 * dumps when debugging hangs: 785 */ 786 void adreno_dump_info(struct msm_gpu *gpu) 787 { 788 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 789 int i; 790 791 printk("revision: %d (%d.%d.%d.%d)\n", 792 adreno_gpu->info->revn, adreno_gpu->rev.core, 793 adreno_gpu->rev.major, adreno_gpu->rev.minor, 794 adreno_gpu->rev.patchid); 795 796 for (i = 0; i < gpu->nr_rings; i++) { 797 struct msm_ringbuffer *ring = gpu->rb[i]; 798 799 printk("rb %d: fence: %d/%d\n", i, 800 ring->memptrs->fence, 801 ring->seqno); 802 803 printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); 804 printk("rb wptr: %d\n", get_wptr(ring)); 805 } 806 } 807 808 /* would be nice to not have to duplicate the _show() stuff with printk(): */ 809 void adreno_dump(struct msm_gpu *gpu) 810 { 811 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 812 int i; 813 814 if (!adreno_gpu->registers) 815 return; 816 817 /* dump these out in a form that can be parsed by demsm: */ 818 printk("IO:region %s 00000000 00020000\n", gpu->name); 819 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 820 uint32_t start = adreno_gpu->registers[i]; 821 uint32_t end = adreno_gpu->registers[i+1]; 822 uint32_t addr; 823 824 for (addr = start; addr <= end; addr++) { 825 uint32_t val = gpu_read(gpu, addr); 826 printk("IO:R %08x %08x\n", addr<<2, val); 827 } 828 } 829 } 830 831 static uint32_t ring_freewords(struct msm_ringbuffer *ring) 832 { 833 struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); 834 uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; 835 /* Use ring->next to calculate free size */ 836 uint32_t wptr = ring->next - ring->start; 837 uint32_t rptr = get_rptr(adreno_gpu, ring); 838 return (rptr + (size - 1) - wptr) % size; 839 } 840 841 void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) 842 { 843 if (spin_until(ring_freewords(ring) >= ndwords)) 844 DRM_DEV_ERROR(ring->gpu->dev->dev, 845 "timeout waiting for space in ringbuffer %d\n", 846 ring->id); 847 } 848 849 /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ 850 static int adreno_get_legacy_pwrlevels(struct device *dev) 851 { 852 struct device_node *child, *node; 853 int ret; 854 855 node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); 856 if (!node) { 857 DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); 858 return -ENXIO; 859 } 860 861 for_each_child_of_node(node, child) { 862 unsigned int val; 863 864 ret = of_property_read_u32(child, "qcom,gpu-freq", &val); 865 if (ret) 866 continue; 867 868 /* 869 * Skip the intentionally bogus clock value found at the bottom 870 * of most legacy frequency tables 871 */ 872 if (val != 27000000) 873 dev_pm_opp_add(dev, val, 0); 874 } 875 876 of_node_put(node); 877 878 return 0; 879 } 880 881 static int adreno_get_pwrlevels(struct device *dev, 882 struct msm_gpu *gpu) 883 { 884 unsigned long freq = ULONG_MAX; 885 struct dev_pm_opp *opp; 886 int ret; 887 888 gpu->fast_rate = 0; 889 890 /* You down with OPP? */ 891 if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) 892 ret = adreno_get_legacy_pwrlevels(dev); 893 else { 894 ret = dev_pm_opp_of_add_table(dev); 895 if (ret) 896 DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); 897 } 898 899 if (!ret) { 900 /* Find the fastest defined rate */ 901 opp = dev_pm_opp_find_freq_floor(dev, &freq); 902 if (!IS_ERR(opp)) { 903 gpu->fast_rate = freq; 904 dev_pm_opp_put(opp); 905 } 906 } 907 908 if (!gpu->fast_rate) { 909 dev_warn(dev, 910 "Could not find a clock rate. Using a reasonable default\n"); 911 /* Pick a suitably safe clock speed for any target */ 912 gpu->fast_rate = 200000000; 913 } 914 915 DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); 916 917 /* Check for an interconnect path for the bus */ 918 gpu->icc_path = of_icc_get(dev, "gfx-mem"); 919 if (!gpu->icc_path) { 920 /* 921 * Keep compatbility with device trees that don't have an 922 * interconnect-names property. 923 */ 924 gpu->icc_path = of_icc_get(dev, NULL); 925 } 926 if (IS_ERR(gpu->icc_path)) 927 gpu->icc_path = NULL; 928 929 gpu->ocmem_icc_path = of_icc_get(dev, "ocmem"); 930 if (IS_ERR(gpu->ocmem_icc_path)) 931 gpu->ocmem_icc_path = NULL; 932 933 return 0; 934 } 935 936 int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, 937 struct adreno_ocmem *adreno_ocmem) 938 { 939 struct ocmem_buf *ocmem_hdl; 940 struct ocmem *ocmem; 941 942 ocmem = of_get_ocmem(dev); 943 if (IS_ERR(ocmem)) { 944 if (PTR_ERR(ocmem) == -ENODEV) { 945 /* 946 * Return success since either the ocmem property was 947 * not specified in device tree, or ocmem support is 948 * not compiled into the kernel. 949 */ 950 return 0; 951 } 952 953 return PTR_ERR(ocmem); 954 } 955 956 ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); 957 if (IS_ERR(ocmem_hdl)) 958 return PTR_ERR(ocmem_hdl); 959 960 adreno_ocmem->ocmem = ocmem; 961 adreno_ocmem->base = ocmem_hdl->addr; 962 adreno_ocmem->hdl = ocmem_hdl; 963 adreno_gpu->gmem = ocmem_hdl->len; 964 965 return 0; 966 } 967 968 void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) 969 { 970 if (adreno_ocmem && adreno_ocmem->base) 971 ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, 972 adreno_ocmem->hdl); 973 } 974 975 int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, 976 struct adreno_gpu *adreno_gpu, 977 const struct adreno_gpu_funcs *funcs, int nr_rings) 978 { 979 struct adreno_platform_config *config = pdev->dev.platform_data; 980 struct msm_gpu_config adreno_gpu_config = { 0 }; 981 struct msm_gpu *gpu = &adreno_gpu->base; 982 983 adreno_gpu->funcs = funcs; 984 adreno_gpu->info = adreno_info(config->rev); 985 adreno_gpu->gmem = adreno_gpu->info->gmem; 986 adreno_gpu->revn = adreno_gpu->info->revn; 987 adreno_gpu->rev = config->rev; 988 989 adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; 990 991 adreno_gpu_config.va_start = SZ_16M; 992 adreno_gpu_config.va_end = 0xffffffff; 993 /* maximum range of a2xx mmu */ 994 if (adreno_is_a2xx(adreno_gpu)) 995 adreno_gpu_config.va_end = SZ_16M + 0xfff * SZ_64K; 996 997 adreno_gpu_config.nr_rings = nr_rings; 998 999 adreno_get_pwrlevels(&pdev->dev, gpu); 1000 1001 pm_runtime_set_autosuspend_delay(&pdev->dev, 1002 adreno_gpu->info->inactive_period); 1003 pm_runtime_use_autosuspend(&pdev->dev); 1004 pm_runtime_enable(&pdev->dev); 1005 1006 return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, 1007 adreno_gpu->info->name, &adreno_gpu_config); 1008 } 1009 1010 void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) 1011 { 1012 struct msm_gpu *gpu = &adreno_gpu->base; 1013 unsigned int i; 1014 1015 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) 1016 release_firmware(adreno_gpu->fw[i]); 1017 1018 icc_put(gpu->icc_path); 1019 icc_put(gpu->ocmem_icc_path); 1020 1021 msm_gpu_cleanup(&adreno_gpu->base); 1022 } 1023