1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * Copyright (c) 2014 The Linux Foundation. All rights reserved. 7 */ 8 9 #include <linux/ascii85.h> 10 #include <linux/interconnect.h> 11 #include <linux/qcom_scm.h> 12 #include <linux/kernel.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/mdt_loader.h> 17 #include <linux/nvmem-consumer.h> 18 #include <soc/qcom/ocmem.h> 19 #include "adreno_gpu.h" 20 #include "a6xx_gpu.h" 21 #include "msm_gem.h" 22 #include "msm_mmu.h" 23 24 static u64 address_space_size = 0; 25 MODULE_PARM_DESC(address_space_size, "Override for size of processes private GPU address space"); 26 module_param(address_space_size, ullong, 0600); 27 28 static bool zap_available = true; 29 30 static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, 31 u32 pasid) 32 { 33 struct device *dev = &gpu->pdev->dev; 34 const struct firmware *fw; 35 const char *signed_fwname = NULL; 36 struct device_node *np, *mem_np; 37 struct resource r; 38 phys_addr_t mem_phys; 39 ssize_t mem_size; 40 void *mem_region = NULL; 41 int ret; 42 43 if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { 44 zap_available = false; 45 return -EINVAL; 46 } 47 48 np = of_get_child_by_name(dev->of_node, "zap-shader"); 49 if (!np) { 50 zap_available = false; 51 return -ENODEV; 52 } 53 54 mem_np = of_parse_phandle(np, "memory-region", 0); 55 of_node_put(np); 56 if (!mem_np) { 57 zap_available = false; 58 return -EINVAL; 59 } 60 61 ret = of_address_to_resource(mem_np, 0, &r); 62 of_node_put(mem_np); 63 if (ret) 64 return ret; 65 66 mem_phys = r.start; 67 68 /* 69 * Check for a firmware-name property. This is the new scheme 70 * to handle firmware that may be signed with device specific 71 * keys, allowing us to have a different zap fw path for different 72 * devices. 73 * 74 * If the firmware-name property is found, we bypass the 75 * adreno_request_fw() mechanism, because we don't need to handle 76 * the /lib/firmware/qcom/... vs /lib/firmware/... case. 77 * 78 * If the firmware-name property is not found, for backwards 79 * compatibility we fall back to the fwname from the gpulist 80 * table. 81 */ 82 of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); 83 if (signed_fwname) { 84 fwname = signed_fwname; 85 ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); 86 if (ret) 87 fw = ERR_PTR(ret); 88 } else if (fwname) { 89 /* Request the MDT file from the default location: */ 90 fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); 91 } else { 92 /* 93 * For new targets, we require the firmware-name property, 94 * if a zap-shader is required, rather than falling back 95 * to a firmware name specified in gpulist. 96 * 97 * Because the firmware is signed with a (potentially) 98 * device specific key, having the name come from gpulist 99 * was a bad idea, and is only provided for backwards 100 * compatibility for older targets. 101 */ 102 return -ENODEV; 103 } 104 105 if (IS_ERR(fw)) { 106 DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); 107 return PTR_ERR(fw); 108 } 109 110 /* Figure out how much memory we need */ 111 mem_size = qcom_mdt_get_size(fw); 112 if (mem_size < 0) { 113 ret = mem_size; 114 goto out; 115 } 116 117 if (mem_size > resource_size(&r)) { 118 DRM_DEV_ERROR(dev, 119 "memory region is too small to load the MDT\n"); 120 ret = -E2BIG; 121 goto out; 122 } 123 124 /* Allocate memory for the firmware image */ 125 mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); 126 if (!mem_region) { 127 ret = -ENOMEM; 128 goto out; 129 } 130 131 /* 132 * Load the rest of the MDT 133 * 134 * Note that we could be dealing with two different paths, since 135 * with upstream linux-firmware it would be in a qcom/ subdir.. 136 * adreno_request_fw() handles this, but qcom_mdt_load() does 137 * not. But since we've already gotten through adreno_request_fw() 138 * we know which of the two cases it is: 139 */ 140 if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { 141 ret = qcom_mdt_load(dev, fw, fwname, pasid, 142 mem_region, mem_phys, mem_size, NULL); 143 } else { 144 char *newname; 145 146 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 147 148 ret = qcom_mdt_load(dev, fw, newname, pasid, 149 mem_region, mem_phys, mem_size, NULL); 150 kfree(newname); 151 } 152 if (ret) 153 goto out; 154 155 /* Send the image to the secure world */ 156 ret = qcom_scm_pas_auth_and_reset(pasid); 157 158 /* 159 * If the scm call returns -EOPNOTSUPP we assume that this target 160 * doesn't need/support the zap shader so quietly fail 161 */ 162 if (ret == -EOPNOTSUPP) 163 zap_available = false; 164 else if (ret) 165 DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); 166 167 out: 168 if (mem_region) 169 memunmap(mem_region); 170 171 release_firmware(fw); 172 173 return ret; 174 } 175 176 int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) 177 { 178 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 179 struct platform_device *pdev = gpu->pdev; 180 181 /* Short cut if we determine the zap shader isn't available/needed */ 182 if (!zap_available) 183 return -ENODEV; 184 185 /* We need SCM to be able to load the firmware */ 186 if (!qcom_scm_is_available()) { 187 DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); 188 return -EPROBE_DEFER; 189 } 190 191 return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); 192 } 193 194 void adreno_set_llc_attributes(struct iommu_domain *iommu) 195 { 196 iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA); 197 } 198 199 struct msm_gem_address_space * 200 adreno_iommu_create_address_space(struct msm_gpu *gpu, 201 struct platform_device *pdev) 202 { 203 struct iommu_domain *iommu; 204 struct msm_mmu *mmu; 205 struct msm_gem_address_space *aspace; 206 u64 start, size; 207 208 iommu = iommu_domain_alloc(&platform_bus_type); 209 if (!iommu) 210 return NULL; 211 212 mmu = msm_iommu_new(&pdev->dev, iommu); 213 if (IS_ERR(mmu)) { 214 iommu_domain_free(iommu); 215 return ERR_CAST(mmu); 216 } 217 218 /* 219 * Use the aperture start or SZ_16M, whichever is greater. This will 220 * ensure that we align with the allocated pagetable range while still 221 * allowing room in the lower 32 bits for GMEM and whatnot 222 */ 223 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 224 size = iommu->geometry.aperture_end - start + 1; 225 226 aspace = msm_gem_address_space_create(mmu, "gpu", 227 start & GENMASK_ULL(48, 0), size); 228 229 if (IS_ERR(aspace) && !IS_ERR(mmu)) 230 mmu->funcs->destroy(mmu); 231 232 return aspace; 233 } 234 235 u64 adreno_private_address_space_size(struct msm_gpu *gpu) 236 { 237 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 238 239 if (address_space_size) 240 return address_space_size; 241 242 if (adreno_gpu->info->address_space_size) 243 return adreno_gpu->info->address_space_size; 244 245 return SZ_4G; 246 } 247 248 int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx, 249 uint32_t param, uint64_t *value, uint32_t *len) 250 { 251 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 252 253 /* No pointer params yet */ 254 if (*len != 0) 255 return -EINVAL; 256 257 switch (param) { 258 case MSM_PARAM_GPU_ID: 259 *value = adreno_gpu->info->revn; 260 return 0; 261 case MSM_PARAM_GMEM_SIZE: 262 *value = adreno_gpu->gmem; 263 return 0; 264 case MSM_PARAM_GMEM_BASE: 265 *value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0; 266 return 0; 267 case MSM_PARAM_CHIP_ID: 268 *value = (uint64_t)adreno_gpu->rev.patchid | 269 ((uint64_t)adreno_gpu->rev.minor << 8) | 270 ((uint64_t)adreno_gpu->rev.major << 16) | 271 ((uint64_t)adreno_gpu->rev.core << 24); 272 if (!adreno_gpu->info->revn) 273 *value |= ((uint64_t) adreno_gpu->speedbin) << 32; 274 return 0; 275 case MSM_PARAM_MAX_FREQ: 276 *value = adreno_gpu->base.fast_rate; 277 return 0; 278 case MSM_PARAM_TIMESTAMP: 279 if (adreno_gpu->funcs->get_timestamp) { 280 int ret; 281 282 pm_runtime_get_sync(&gpu->pdev->dev); 283 ret = adreno_gpu->funcs->get_timestamp(gpu, value); 284 pm_runtime_put_autosuspend(&gpu->pdev->dev); 285 286 return ret; 287 } 288 return -EINVAL; 289 case MSM_PARAM_PRIORITIES: 290 *value = gpu->nr_rings * NR_SCHED_PRIORITIES; 291 return 0; 292 case MSM_PARAM_PP_PGTABLE: 293 *value = 0; 294 return 0; 295 case MSM_PARAM_FAULTS: 296 if (ctx->aspace) 297 *value = gpu->global_faults + ctx->aspace->faults; 298 else 299 *value = gpu->global_faults; 300 return 0; 301 case MSM_PARAM_SUSPENDS: 302 *value = gpu->suspend_count; 303 return 0; 304 case MSM_PARAM_VA_START: 305 if (ctx->aspace == gpu->aspace) 306 return -EINVAL; 307 *value = ctx->aspace->va_start; 308 return 0; 309 case MSM_PARAM_VA_SIZE: 310 if (ctx->aspace == gpu->aspace) 311 return -EINVAL; 312 *value = ctx->aspace->va_size; 313 return 0; 314 default: 315 DBG("%s: invalid param: %u", gpu->name, param); 316 return -EINVAL; 317 } 318 } 319 320 int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx, 321 uint32_t param, uint64_t value, uint32_t len) 322 { 323 switch (param) { 324 case MSM_PARAM_COMM: 325 case MSM_PARAM_CMDLINE: 326 /* kstrdup_quotable_cmdline() limits to PAGE_SIZE, so 327 * that should be a reasonable upper bound 328 */ 329 if (len > PAGE_SIZE) 330 return -EINVAL; 331 break; 332 default: 333 if (len != 0) 334 return -EINVAL; 335 } 336 337 switch (param) { 338 case MSM_PARAM_COMM: 339 case MSM_PARAM_CMDLINE: { 340 char *str, **paramp; 341 342 str = kmalloc(len + 1, GFP_KERNEL); 343 if (!str) 344 return -ENOMEM; 345 346 if (copy_from_user(str, u64_to_user_ptr(value), len)) { 347 kfree(str); 348 return -EFAULT; 349 } 350 351 /* Ensure string is null terminated: */ 352 str[len] = '\0'; 353 354 if (param == MSM_PARAM_COMM) { 355 paramp = &ctx->comm; 356 } else { 357 paramp = &ctx->cmdline; 358 } 359 360 kfree(*paramp); 361 *paramp = str; 362 363 return 0; 364 } 365 case MSM_PARAM_SYSPROF: 366 if (!capable(CAP_SYS_ADMIN)) 367 return -EPERM; 368 return msm_file_private_set_sysprof(ctx, gpu, value); 369 default: 370 DBG("%s: invalid param: %u", gpu->name, param); 371 return -EINVAL; 372 } 373 } 374 375 const struct firmware * 376 adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) 377 { 378 struct drm_device *drm = adreno_gpu->base.dev; 379 const struct firmware *fw = NULL; 380 char *newname; 381 int ret; 382 383 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 384 if (!newname) 385 return ERR_PTR(-ENOMEM); 386 387 /* 388 * Try first to load from qcom/$fwfile using a direct load (to avoid 389 * a potential timeout waiting for usermode helper) 390 */ 391 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 392 (adreno_gpu->fwloc == FW_LOCATION_NEW)) { 393 394 ret = request_firmware_direct(&fw, newname, drm->dev); 395 if (!ret) { 396 DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", 397 newname); 398 adreno_gpu->fwloc = FW_LOCATION_NEW; 399 goto out; 400 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 401 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 402 newname, ret); 403 fw = ERR_PTR(ret); 404 goto out; 405 } 406 } 407 408 /* 409 * Then try the legacy location without qcom/ prefix 410 */ 411 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 412 (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { 413 414 ret = request_firmware_direct(&fw, fwname, drm->dev); 415 if (!ret) { 416 DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", 417 newname); 418 adreno_gpu->fwloc = FW_LOCATION_LEGACY; 419 goto out; 420 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 421 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 422 fwname, ret); 423 fw = ERR_PTR(ret); 424 goto out; 425 } 426 } 427 428 /* 429 * Finally fall back to request_firmware() for cases where the 430 * usermode helper is needed (I think mainly android) 431 */ 432 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 433 (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { 434 435 ret = request_firmware(&fw, newname, drm->dev); 436 if (!ret) { 437 DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", 438 newname); 439 adreno_gpu->fwloc = FW_LOCATION_HELPER; 440 goto out; 441 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 442 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 443 newname, ret); 444 fw = ERR_PTR(ret); 445 goto out; 446 } 447 } 448 449 DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); 450 fw = ERR_PTR(-ENOENT); 451 out: 452 kfree(newname); 453 return fw; 454 } 455 456 int adreno_load_fw(struct adreno_gpu *adreno_gpu) 457 { 458 int i; 459 460 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { 461 const struct firmware *fw; 462 463 if (!adreno_gpu->info->fw[i]) 464 continue; 465 466 /* Skip if the firmware has already been loaded */ 467 if (adreno_gpu->fw[i]) 468 continue; 469 470 fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); 471 if (IS_ERR(fw)) 472 return PTR_ERR(fw); 473 474 adreno_gpu->fw[i] = fw; 475 } 476 477 return 0; 478 } 479 480 struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, 481 const struct firmware *fw, u64 *iova) 482 { 483 struct drm_gem_object *bo; 484 void *ptr; 485 486 ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4, 487 MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); 488 489 if (IS_ERR(ptr)) 490 return ERR_CAST(ptr); 491 492 memcpy(ptr, &fw->data[4], fw->size - 4); 493 494 msm_gem_put_vaddr(bo); 495 496 return bo; 497 } 498 499 int adreno_hw_init(struct msm_gpu *gpu) 500 { 501 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 502 int ret, i; 503 504 VERB("%s", gpu->name); 505 506 ret = adreno_load_fw(adreno_gpu); 507 if (ret) 508 return ret; 509 510 for (i = 0; i < gpu->nr_rings; i++) { 511 struct msm_ringbuffer *ring = gpu->rb[i]; 512 513 if (!ring) 514 continue; 515 516 ring->cur = ring->start; 517 ring->next = ring->start; 518 ring->memptrs->rptr = 0; 519 520 /* Detect and clean up an impossible fence, ie. if GPU managed 521 * to scribble something invalid, we don't want that to confuse 522 * us into mistakingly believing that submits have completed. 523 */ 524 if (fence_before(ring->fctx->last_fence, ring->memptrs->fence)) { 525 ring->memptrs->fence = ring->fctx->last_fence; 526 } 527 } 528 529 return 0; 530 } 531 532 /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ 533 static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, 534 struct msm_ringbuffer *ring) 535 { 536 struct msm_gpu *gpu = &adreno_gpu->base; 537 538 return gpu->funcs->get_rptr(gpu, ring); 539 } 540 541 struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) 542 { 543 return gpu->rb[0]; 544 } 545 546 void adreno_recover(struct msm_gpu *gpu) 547 { 548 struct drm_device *dev = gpu->dev; 549 int ret; 550 551 // XXX pm-runtime?? we *need* the device to be off after this 552 // so maybe continuing to call ->pm_suspend/resume() is better? 553 554 gpu->funcs->pm_suspend(gpu); 555 gpu->funcs->pm_resume(gpu); 556 557 ret = msm_gpu_hw_init(gpu); 558 if (ret) { 559 DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); 560 /* hmm, oh well? */ 561 } 562 } 563 564 void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg) 565 { 566 uint32_t wptr; 567 568 /* Copy the shadow to the actual register */ 569 ring->cur = ring->next; 570 571 /* 572 * Mask wptr value that we calculate to fit in the HW range. This is 573 * to account for the possibility that the last command fit exactly into 574 * the ringbuffer and rb->next hasn't wrapped to zero yet 575 */ 576 wptr = get_wptr(ring); 577 578 /* ensure writes to ringbuffer have hit system memory: */ 579 mb(); 580 581 gpu_write(gpu, reg, wptr); 582 } 583 584 bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 585 { 586 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 587 uint32_t wptr = get_wptr(ring); 588 589 /* wait for CP to drain ringbuffer: */ 590 if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) 591 return true; 592 593 /* TODO maybe we need to reset GPU here to recover from hang? */ 594 DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", 595 gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); 596 597 return false; 598 } 599 600 int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) 601 { 602 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 603 int i, count = 0; 604 605 WARN_ON(!mutex_is_locked(&gpu->lock)); 606 607 kref_init(&state->ref); 608 609 ktime_get_real_ts64(&state->time); 610 611 for (i = 0; i < gpu->nr_rings; i++) { 612 int size = 0, j; 613 614 state->ring[i].fence = gpu->rb[i]->memptrs->fence; 615 state->ring[i].iova = gpu->rb[i]->iova; 616 state->ring[i].seqno = gpu->rb[i]->fctx->last_fence; 617 state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); 618 state->ring[i].wptr = get_wptr(gpu->rb[i]); 619 620 /* Copy at least 'wptr' dwords of the data */ 621 size = state->ring[i].wptr; 622 623 /* After wptr find the last non zero dword to save space */ 624 for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) 625 if (gpu->rb[i]->start[j]) 626 size = j + 1; 627 628 if (size) { 629 state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); 630 if (state->ring[i].data) { 631 memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); 632 state->ring[i].data_size = size << 2; 633 } 634 } 635 } 636 637 /* Some targets prefer to collect their own registers */ 638 if (!adreno_gpu->registers) 639 return 0; 640 641 /* Count the number of registers */ 642 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) 643 count += adreno_gpu->registers[i + 1] - 644 adreno_gpu->registers[i] + 1; 645 646 state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); 647 if (state->registers) { 648 int pos = 0; 649 650 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 651 u32 start = adreno_gpu->registers[i]; 652 u32 end = adreno_gpu->registers[i + 1]; 653 u32 addr; 654 655 for (addr = start; addr <= end; addr++) { 656 state->registers[pos++] = addr; 657 state->registers[pos++] = gpu_read(gpu, addr); 658 } 659 } 660 661 state->nr_registers = count; 662 } 663 664 return 0; 665 } 666 667 void adreno_gpu_state_destroy(struct msm_gpu_state *state) 668 { 669 int i; 670 671 for (i = 0; i < ARRAY_SIZE(state->ring); i++) 672 kvfree(state->ring[i].data); 673 674 for (i = 0; state->bos && i < state->nr_bos; i++) 675 kvfree(state->bos[i].data); 676 677 kfree(state->bos); 678 kfree(state->comm); 679 kfree(state->cmd); 680 kfree(state->registers); 681 } 682 683 static void adreno_gpu_state_kref_destroy(struct kref *kref) 684 { 685 struct msm_gpu_state *state = container_of(kref, 686 struct msm_gpu_state, ref); 687 688 adreno_gpu_state_destroy(state); 689 kfree(state); 690 } 691 692 int adreno_gpu_state_put(struct msm_gpu_state *state) 693 { 694 if (IS_ERR_OR_NULL(state)) 695 return 1; 696 697 return kref_put(&state->ref, adreno_gpu_state_kref_destroy); 698 } 699 700 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 701 702 static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) 703 { 704 void *buf; 705 size_t buf_itr = 0, buffer_size; 706 char out[ASCII85_BUFSZ]; 707 long l; 708 int i; 709 710 if (!src || !len) 711 return NULL; 712 713 l = ascii85_encode_len(len); 714 715 /* 716 * Ascii85 outputs either a 5 byte string or a 1 byte string. So we 717 * account for the worst case of 5 bytes per dword plus the 1 for '\0' 718 */ 719 buffer_size = (l * 5) + 1; 720 721 buf = kvmalloc(buffer_size, GFP_KERNEL); 722 if (!buf) 723 return NULL; 724 725 for (i = 0; i < l; i++) 726 buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s", 727 ascii85_encode(src[i], out)); 728 729 return buf; 730 } 731 732 /* len is expected to be in bytes 733 * 734 * WARNING: *ptr should be allocated with kvmalloc or friends. It can be free'd 735 * with kvfree() and replaced with a newly kvmalloc'd buffer on the first call 736 * when the unencoded raw data is encoded 737 */ 738 void adreno_show_object(struct drm_printer *p, void **ptr, int len, 739 bool *encoded) 740 { 741 if (!*ptr || !len) 742 return; 743 744 if (!*encoded) { 745 long datalen, i; 746 u32 *buf = *ptr; 747 748 /* 749 * Only dump the non-zero part of the buffer - rarely will 750 * any data completely fill the entire allocated size of 751 * the buffer. 752 */ 753 for (datalen = 0, i = 0; i < len >> 2; i++) 754 if (buf[i]) 755 datalen = ((i + 1) << 2); 756 757 /* 758 * If we reach here, then the originally captured binary buffer 759 * will be replaced with the ascii85 encoded string 760 */ 761 *ptr = adreno_gpu_ascii85_encode(buf, datalen); 762 763 kvfree(buf); 764 765 *encoded = true; 766 } 767 768 if (!*ptr) 769 return; 770 771 drm_puts(p, " data: !!ascii85 |\n"); 772 drm_puts(p, " "); 773 774 drm_puts(p, *ptr); 775 776 drm_puts(p, "\n"); 777 } 778 779 void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, 780 struct drm_printer *p) 781 { 782 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 783 int i; 784 785 if (IS_ERR_OR_NULL(state)) 786 return; 787 788 drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", 789 adreno_gpu->info->revn, adreno_gpu->rev.core, 790 adreno_gpu->rev.major, adreno_gpu->rev.minor, 791 adreno_gpu->rev.patchid); 792 /* 793 * If this is state collected due to iova fault, so fault related info 794 * 795 * TTBR0 would not be zero, so this is a good way to distinguish 796 */ 797 if (state->fault_info.ttbr0) { 798 const struct msm_gpu_fault_info *info = &state->fault_info; 799 800 drm_puts(p, "fault-info:\n"); 801 drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0); 802 drm_printf(p, " - iova=%.16lx\n", info->iova); 803 drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ"); 804 drm_printf(p, " - type=%s\n", info->type); 805 drm_printf(p, " - source=%s\n", info->block); 806 } 807 808 drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); 809 810 drm_puts(p, "ringbuffer:\n"); 811 812 for (i = 0; i < gpu->nr_rings; i++) { 813 drm_printf(p, " - id: %d\n", i); 814 drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); 815 drm_printf(p, " last-fence: %u\n", state->ring[i].seqno); 816 drm_printf(p, " retired-fence: %u\n", state->ring[i].fence); 817 drm_printf(p, " rptr: %u\n", state->ring[i].rptr); 818 drm_printf(p, " wptr: %u\n", state->ring[i].wptr); 819 drm_printf(p, " size: %u\n", MSM_GPU_RINGBUFFER_SZ); 820 821 adreno_show_object(p, &state->ring[i].data, 822 state->ring[i].data_size, &state->ring[i].encoded); 823 } 824 825 if (state->bos) { 826 drm_puts(p, "bos:\n"); 827 828 for (i = 0; i < state->nr_bos; i++) { 829 drm_printf(p, " - iova: 0x%016llx\n", 830 state->bos[i].iova); 831 drm_printf(p, " size: %zd\n", state->bos[i].size); 832 drm_printf(p, " name: %-32s\n", state->bos[i].name); 833 834 adreno_show_object(p, &state->bos[i].data, 835 state->bos[i].size, &state->bos[i].encoded); 836 } 837 } 838 839 if (state->nr_registers) { 840 drm_puts(p, "registers:\n"); 841 842 for (i = 0; i < state->nr_registers; i++) { 843 drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", 844 state->registers[i * 2] << 2, 845 state->registers[(i * 2) + 1]); 846 } 847 } 848 } 849 #endif 850 851 /* Dump common gpu status and scratch registers on any hang, to make 852 * the hangcheck logs more useful. The scratch registers seem always 853 * safe to read when GPU has hung (unlike some other regs, depending 854 * on how the GPU hung), and they are useful to match up to cmdstream 855 * dumps when debugging hangs: 856 */ 857 void adreno_dump_info(struct msm_gpu *gpu) 858 { 859 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 860 int i; 861 862 printk("revision: %d (%d.%d.%d.%d)\n", 863 adreno_gpu->info->revn, adreno_gpu->rev.core, 864 adreno_gpu->rev.major, adreno_gpu->rev.minor, 865 adreno_gpu->rev.patchid); 866 867 for (i = 0; i < gpu->nr_rings; i++) { 868 struct msm_ringbuffer *ring = gpu->rb[i]; 869 870 printk("rb %d: fence: %d/%d\n", i, 871 ring->memptrs->fence, 872 ring->fctx->last_fence); 873 874 printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); 875 printk("rb wptr: %d\n", get_wptr(ring)); 876 } 877 } 878 879 /* would be nice to not have to duplicate the _show() stuff with printk(): */ 880 void adreno_dump(struct msm_gpu *gpu) 881 { 882 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 883 int i; 884 885 if (!adreno_gpu->registers) 886 return; 887 888 /* dump these out in a form that can be parsed by demsm: */ 889 printk("IO:region %s 00000000 00020000\n", gpu->name); 890 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 891 uint32_t start = adreno_gpu->registers[i]; 892 uint32_t end = adreno_gpu->registers[i+1]; 893 uint32_t addr; 894 895 for (addr = start; addr <= end; addr++) { 896 uint32_t val = gpu_read(gpu, addr); 897 printk("IO:R %08x %08x\n", addr<<2, val); 898 } 899 } 900 } 901 902 static uint32_t ring_freewords(struct msm_ringbuffer *ring) 903 { 904 struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); 905 uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; 906 /* Use ring->next to calculate free size */ 907 uint32_t wptr = ring->next - ring->start; 908 uint32_t rptr = get_rptr(adreno_gpu, ring); 909 return (rptr + (size - 1) - wptr) % size; 910 } 911 912 void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) 913 { 914 if (spin_until(ring_freewords(ring) >= ndwords)) 915 DRM_DEV_ERROR(ring->gpu->dev->dev, 916 "timeout waiting for space in ringbuffer %d\n", 917 ring->id); 918 } 919 920 /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ 921 static int adreno_get_legacy_pwrlevels(struct device *dev) 922 { 923 struct device_node *child, *node; 924 int ret; 925 926 node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); 927 if (!node) { 928 DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); 929 return -ENXIO; 930 } 931 932 for_each_child_of_node(node, child) { 933 unsigned int val; 934 935 ret = of_property_read_u32(child, "qcom,gpu-freq", &val); 936 if (ret) 937 continue; 938 939 /* 940 * Skip the intentionally bogus clock value found at the bottom 941 * of most legacy frequency tables 942 */ 943 if (val != 27000000) 944 dev_pm_opp_add(dev, val, 0); 945 } 946 947 of_node_put(node); 948 949 return 0; 950 } 951 952 static void adreno_get_pwrlevels(struct device *dev, 953 struct msm_gpu *gpu) 954 { 955 unsigned long freq = ULONG_MAX; 956 struct dev_pm_opp *opp; 957 int ret; 958 959 gpu->fast_rate = 0; 960 961 /* You down with OPP? */ 962 if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) 963 ret = adreno_get_legacy_pwrlevels(dev); 964 else { 965 ret = devm_pm_opp_of_add_table(dev); 966 if (ret) 967 DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); 968 } 969 970 if (!ret) { 971 /* Find the fastest defined rate */ 972 opp = dev_pm_opp_find_freq_floor(dev, &freq); 973 if (!IS_ERR(opp)) { 974 gpu->fast_rate = freq; 975 dev_pm_opp_put(opp); 976 } 977 } 978 979 if (!gpu->fast_rate) { 980 dev_warn(dev, 981 "Could not find a clock rate. Using a reasonable default\n"); 982 /* Pick a suitably safe clock speed for any target */ 983 gpu->fast_rate = 200000000; 984 } 985 986 DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); 987 } 988 989 int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, 990 struct adreno_ocmem *adreno_ocmem) 991 { 992 struct ocmem_buf *ocmem_hdl; 993 struct ocmem *ocmem; 994 995 ocmem = of_get_ocmem(dev); 996 if (IS_ERR(ocmem)) { 997 if (PTR_ERR(ocmem) == -ENODEV) { 998 /* 999 * Return success since either the ocmem property was 1000 * not specified in device tree, or ocmem support is 1001 * not compiled into the kernel. 1002 */ 1003 return 0; 1004 } 1005 1006 return PTR_ERR(ocmem); 1007 } 1008 1009 ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); 1010 if (IS_ERR(ocmem_hdl)) 1011 return PTR_ERR(ocmem_hdl); 1012 1013 adreno_ocmem->ocmem = ocmem; 1014 adreno_ocmem->base = ocmem_hdl->addr; 1015 adreno_ocmem->hdl = ocmem_hdl; 1016 adreno_gpu->gmem = ocmem_hdl->len; 1017 1018 return 0; 1019 } 1020 1021 void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) 1022 { 1023 if (adreno_ocmem && adreno_ocmem->base) 1024 ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, 1025 adreno_ocmem->hdl); 1026 } 1027 1028 int adreno_read_speedbin(struct device *dev, u32 *speedbin) 1029 { 1030 return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin); 1031 } 1032 1033 int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, 1034 struct adreno_gpu *adreno_gpu, 1035 const struct adreno_gpu_funcs *funcs, int nr_rings) 1036 { 1037 struct device *dev = &pdev->dev; 1038 struct adreno_platform_config *config = dev->platform_data; 1039 struct msm_gpu_config adreno_gpu_config = { 0 }; 1040 struct msm_gpu *gpu = &adreno_gpu->base; 1041 struct adreno_rev *rev = &config->rev; 1042 const char *gpu_name; 1043 u32 speedbin; 1044 1045 adreno_gpu->funcs = funcs; 1046 adreno_gpu->info = adreno_info(config->rev); 1047 adreno_gpu->gmem = adreno_gpu->info->gmem; 1048 adreno_gpu->revn = adreno_gpu->info->revn; 1049 adreno_gpu->rev = *rev; 1050 1051 if (adreno_read_speedbin(dev, &speedbin) || !speedbin) 1052 speedbin = 0xffff; 1053 adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin); 1054 1055 gpu_name = adreno_gpu->info->name; 1056 if (!gpu_name) { 1057 gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d", 1058 rev->core, rev->major, rev->minor, 1059 rev->patchid); 1060 if (!gpu_name) 1061 return -ENOMEM; 1062 } 1063 1064 adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; 1065 1066 adreno_gpu_config.nr_rings = nr_rings; 1067 1068 adreno_get_pwrlevels(dev, gpu); 1069 1070 pm_runtime_set_autosuspend_delay(dev, 1071 adreno_gpu->info->inactive_period); 1072 pm_runtime_use_autosuspend(dev); 1073 1074 return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, 1075 gpu_name, &adreno_gpu_config); 1076 } 1077 1078 void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) 1079 { 1080 struct msm_gpu *gpu = &adreno_gpu->base; 1081 struct msm_drm_private *priv = gpu->dev->dev_private; 1082 unsigned int i; 1083 1084 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) 1085 release_firmware(adreno_gpu->fw[i]); 1086 1087 if (pm_runtime_enabled(&priv->gpu_pdev->dev)) 1088 pm_runtime_disable(&priv->gpu_pdev->dev); 1089 1090 msm_gpu_cleanup(&adreno_gpu->base); 1091 } 1092