1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * Copyright (c) 2014 The Linux Foundation. All rights reserved. 7 */ 8 9 #include <linux/ascii85.h> 10 #include <linux/interconnect.h> 11 #include <linux/qcom_scm.h> 12 #include <linux/kernel.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/mdt_loader.h> 17 #include <soc/qcom/ocmem.h> 18 #include "adreno_gpu.h" 19 #include "a6xx_gpu.h" 20 #include "msm_gem.h" 21 #include "msm_mmu.h" 22 23 static bool zap_available = true; 24 25 static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, 26 u32 pasid) 27 { 28 struct device *dev = &gpu->pdev->dev; 29 const struct firmware *fw; 30 const char *signed_fwname = NULL; 31 struct device_node *np, *mem_np; 32 struct resource r; 33 phys_addr_t mem_phys; 34 ssize_t mem_size; 35 void *mem_region = NULL; 36 int ret; 37 38 if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { 39 zap_available = false; 40 return -EINVAL; 41 } 42 43 np = of_get_child_by_name(dev->of_node, "zap-shader"); 44 if (!np) { 45 zap_available = false; 46 return -ENODEV; 47 } 48 49 mem_np = of_parse_phandle(np, "memory-region", 0); 50 of_node_put(np); 51 if (!mem_np) { 52 zap_available = false; 53 return -EINVAL; 54 } 55 56 ret = of_address_to_resource(mem_np, 0, &r); 57 of_node_put(mem_np); 58 if (ret) 59 return ret; 60 61 mem_phys = r.start; 62 63 /* 64 * Check for a firmware-name property. This is the new scheme 65 * to handle firmware that may be signed with device specific 66 * keys, allowing us to have a different zap fw path for different 67 * devices. 68 * 69 * If the firmware-name property is found, we bypass the 70 * adreno_request_fw() mechanism, because we don't need to handle 71 * the /lib/firmware/qcom/... vs /lib/firmware/... case. 72 * 73 * If the firmware-name property is not found, for backwards 74 * compatibility we fall back to the fwname from the gpulist 75 * table. 76 */ 77 of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); 78 if (signed_fwname) { 79 fwname = signed_fwname; 80 ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); 81 if (ret) 82 fw = ERR_PTR(ret); 83 } else if (fwname) { 84 /* Request the MDT file from the default location: */ 85 fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); 86 } else { 87 /* 88 * For new targets, we require the firmware-name property, 89 * if a zap-shader is required, rather than falling back 90 * to a firmware name specified in gpulist. 91 * 92 * Because the firmware is signed with a (potentially) 93 * device specific key, having the name come from gpulist 94 * was a bad idea, and is only provided for backwards 95 * compatibility for older targets. 96 */ 97 return -ENODEV; 98 } 99 100 if (IS_ERR(fw)) { 101 DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); 102 return PTR_ERR(fw); 103 } 104 105 /* Figure out how much memory we need */ 106 mem_size = qcom_mdt_get_size(fw); 107 if (mem_size < 0) { 108 ret = mem_size; 109 goto out; 110 } 111 112 if (mem_size > resource_size(&r)) { 113 DRM_DEV_ERROR(dev, 114 "memory region is too small to load the MDT\n"); 115 ret = -E2BIG; 116 goto out; 117 } 118 119 /* Allocate memory for the firmware image */ 120 mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); 121 if (!mem_region) { 122 ret = -ENOMEM; 123 goto out; 124 } 125 126 /* 127 * Load the rest of the MDT 128 * 129 * Note that we could be dealing with two different paths, since 130 * with upstream linux-firmware it would be in a qcom/ subdir.. 131 * adreno_request_fw() handles this, but qcom_mdt_load() does 132 * not. But since we've already gotten through adreno_request_fw() 133 * we know which of the two cases it is: 134 */ 135 if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { 136 ret = qcom_mdt_load(dev, fw, fwname, pasid, 137 mem_region, mem_phys, mem_size, NULL); 138 } else { 139 char *newname; 140 141 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 142 143 ret = qcom_mdt_load(dev, fw, newname, pasid, 144 mem_region, mem_phys, mem_size, NULL); 145 kfree(newname); 146 } 147 if (ret) 148 goto out; 149 150 /* Send the image to the secure world */ 151 ret = qcom_scm_pas_auth_and_reset(pasid); 152 153 /* 154 * If the scm call returns -EOPNOTSUPP we assume that this target 155 * doesn't need/support the zap shader so quietly fail 156 */ 157 if (ret == -EOPNOTSUPP) 158 zap_available = false; 159 else if (ret) 160 DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); 161 162 out: 163 if (mem_region) 164 memunmap(mem_region); 165 166 release_firmware(fw); 167 168 return ret; 169 } 170 171 int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) 172 { 173 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 174 struct platform_device *pdev = gpu->pdev; 175 176 /* Short cut if we determine the zap shader isn't available/needed */ 177 if (!zap_available) 178 return -ENODEV; 179 180 /* We need SCM to be able to load the firmware */ 181 if (!qcom_scm_is_available()) { 182 DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); 183 return -EPROBE_DEFER; 184 } 185 186 return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); 187 } 188 189 void adreno_set_llc_attributes(struct iommu_domain *iommu) 190 { 191 iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA); 192 } 193 194 struct msm_gem_address_space * 195 adreno_iommu_create_address_space(struct msm_gpu *gpu, 196 struct platform_device *pdev) 197 { 198 struct iommu_domain *iommu; 199 struct msm_mmu *mmu; 200 struct msm_gem_address_space *aspace; 201 u64 start, size; 202 203 iommu = iommu_domain_alloc(&platform_bus_type); 204 if (!iommu) 205 return NULL; 206 207 mmu = msm_iommu_new(&pdev->dev, iommu); 208 if (IS_ERR(mmu)) { 209 iommu_domain_free(iommu); 210 return ERR_CAST(mmu); 211 } 212 213 /* 214 * Use the aperture start or SZ_16M, whichever is greater. This will 215 * ensure that we align with the allocated pagetable range while still 216 * allowing room in the lower 32 bits for GMEM and whatnot 217 */ 218 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 219 size = iommu->geometry.aperture_end - start + 1; 220 221 aspace = msm_gem_address_space_create(mmu, "gpu", 222 start & GENMASK_ULL(48, 0), size); 223 224 if (IS_ERR(aspace) && !IS_ERR(mmu)) 225 mmu->funcs->destroy(mmu); 226 227 return aspace; 228 } 229 230 int adreno_get_param(struct msm_gpu *gpu, uint32_t param, uint64_t *value) 231 { 232 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 233 234 switch (param) { 235 case MSM_PARAM_GPU_ID: 236 *value = adreno_gpu->info->revn; 237 return 0; 238 case MSM_PARAM_GMEM_SIZE: 239 *value = adreno_gpu->gmem; 240 return 0; 241 case MSM_PARAM_GMEM_BASE: 242 *value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0; 243 return 0; 244 case MSM_PARAM_CHIP_ID: 245 *value = adreno_gpu->rev.patchid | 246 (adreno_gpu->rev.minor << 8) | 247 (adreno_gpu->rev.major << 16) | 248 (adreno_gpu->rev.core << 24); 249 return 0; 250 case MSM_PARAM_MAX_FREQ: 251 *value = adreno_gpu->base.fast_rate; 252 return 0; 253 case MSM_PARAM_TIMESTAMP: 254 if (adreno_gpu->funcs->get_timestamp) { 255 int ret; 256 257 pm_runtime_get_sync(&gpu->pdev->dev); 258 ret = adreno_gpu->funcs->get_timestamp(gpu, value); 259 pm_runtime_put_autosuspend(&gpu->pdev->dev); 260 261 return ret; 262 } 263 return -EINVAL; 264 case MSM_PARAM_PRIORITIES: 265 *value = gpu->nr_rings * NR_SCHED_PRIORITIES; 266 return 0; 267 case MSM_PARAM_PP_PGTABLE: 268 *value = 0; 269 return 0; 270 case MSM_PARAM_FAULTS: 271 *value = gpu->global_faults; 272 return 0; 273 case MSM_PARAM_SUSPENDS: 274 *value = gpu->suspend_count; 275 return 0; 276 default: 277 DBG("%s: invalid param: %u", gpu->name, param); 278 return -EINVAL; 279 } 280 } 281 282 const struct firmware * 283 adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) 284 { 285 struct drm_device *drm = adreno_gpu->base.dev; 286 const struct firmware *fw = NULL; 287 char *newname; 288 int ret; 289 290 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 291 if (!newname) 292 return ERR_PTR(-ENOMEM); 293 294 /* 295 * Try first to load from qcom/$fwfile using a direct load (to avoid 296 * a potential timeout waiting for usermode helper) 297 */ 298 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 299 (adreno_gpu->fwloc == FW_LOCATION_NEW)) { 300 301 ret = request_firmware_direct(&fw, newname, drm->dev); 302 if (!ret) { 303 DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", 304 newname); 305 adreno_gpu->fwloc = FW_LOCATION_NEW; 306 goto out; 307 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 308 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 309 newname, ret); 310 fw = ERR_PTR(ret); 311 goto out; 312 } 313 } 314 315 /* 316 * Then try the legacy location without qcom/ prefix 317 */ 318 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 319 (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { 320 321 ret = request_firmware_direct(&fw, fwname, drm->dev); 322 if (!ret) { 323 DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", 324 newname); 325 adreno_gpu->fwloc = FW_LOCATION_LEGACY; 326 goto out; 327 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 328 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 329 fwname, ret); 330 fw = ERR_PTR(ret); 331 goto out; 332 } 333 } 334 335 /* 336 * Finally fall back to request_firmware() for cases where the 337 * usermode helper is needed (I think mainly android) 338 */ 339 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 340 (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { 341 342 ret = request_firmware(&fw, newname, drm->dev); 343 if (!ret) { 344 DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", 345 newname); 346 adreno_gpu->fwloc = FW_LOCATION_HELPER; 347 goto out; 348 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 349 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 350 newname, ret); 351 fw = ERR_PTR(ret); 352 goto out; 353 } 354 } 355 356 DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); 357 fw = ERR_PTR(-ENOENT); 358 out: 359 kfree(newname); 360 return fw; 361 } 362 363 int adreno_load_fw(struct adreno_gpu *adreno_gpu) 364 { 365 int i; 366 367 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { 368 const struct firmware *fw; 369 370 if (!adreno_gpu->info->fw[i]) 371 continue; 372 373 /* Skip if the firmware has already been loaded */ 374 if (adreno_gpu->fw[i]) 375 continue; 376 377 fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); 378 if (IS_ERR(fw)) 379 return PTR_ERR(fw); 380 381 adreno_gpu->fw[i] = fw; 382 } 383 384 return 0; 385 } 386 387 struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, 388 const struct firmware *fw, u64 *iova) 389 { 390 struct drm_gem_object *bo; 391 void *ptr; 392 393 ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4, 394 MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); 395 396 if (IS_ERR(ptr)) 397 return ERR_CAST(ptr); 398 399 memcpy(ptr, &fw->data[4], fw->size - 4); 400 401 msm_gem_put_vaddr(bo); 402 403 return bo; 404 } 405 406 int adreno_hw_init(struct msm_gpu *gpu) 407 { 408 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 409 int ret, i; 410 411 VERB("%s", gpu->name); 412 413 ret = adreno_load_fw(adreno_gpu); 414 if (ret) 415 return ret; 416 417 for (i = 0; i < gpu->nr_rings; i++) { 418 struct msm_ringbuffer *ring = gpu->rb[i]; 419 420 if (!ring) 421 continue; 422 423 ring->cur = ring->start; 424 ring->next = ring->start; 425 426 /* reset completed fence seqno: */ 427 ring->memptrs->fence = ring->fctx->completed_fence; 428 ring->memptrs->rptr = 0; 429 } 430 431 return 0; 432 } 433 434 /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ 435 static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, 436 struct msm_ringbuffer *ring) 437 { 438 struct msm_gpu *gpu = &adreno_gpu->base; 439 440 return gpu->funcs->get_rptr(gpu, ring); 441 } 442 443 struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) 444 { 445 return gpu->rb[0]; 446 } 447 448 void adreno_recover(struct msm_gpu *gpu) 449 { 450 struct drm_device *dev = gpu->dev; 451 int ret; 452 453 // XXX pm-runtime?? we *need* the device to be off after this 454 // so maybe continuing to call ->pm_suspend/resume() is better? 455 456 gpu->funcs->pm_suspend(gpu); 457 gpu->funcs->pm_resume(gpu); 458 459 ret = msm_gpu_hw_init(gpu); 460 if (ret) { 461 DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); 462 /* hmm, oh well? */ 463 } 464 } 465 466 void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg) 467 { 468 uint32_t wptr; 469 470 /* Copy the shadow to the actual register */ 471 ring->cur = ring->next; 472 473 /* 474 * Mask wptr value that we calculate to fit in the HW range. This is 475 * to account for the possibility that the last command fit exactly into 476 * the ringbuffer and rb->next hasn't wrapped to zero yet 477 */ 478 wptr = get_wptr(ring); 479 480 /* ensure writes to ringbuffer have hit system memory: */ 481 mb(); 482 483 gpu_write(gpu, reg, wptr); 484 } 485 486 bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 487 { 488 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 489 uint32_t wptr = get_wptr(ring); 490 491 /* wait for CP to drain ringbuffer: */ 492 if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) 493 return true; 494 495 /* TODO maybe we need to reset GPU here to recover from hang? */ 496 DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", 497 gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); 498 499 return false; 500 } 501 502 int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) 503 { 504 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 505 int i, count = 0; 506 507 kref_init(&state->ref); 508 509 ktime_get_real_ts64(&state->time); 510 511 for (i = 0; i < gpu->nr_rings; i++) { 512 int size = 0, j; 513 514 state->ring[i].fence = gpu->rb[i]->memptrs->fence; 515 state->ring[i].iova = gpu->rb[i]->iova; 516 state->ring[i].seqno = gpu->rb[i]->seqno; 517 state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); 518 state->ring[i].wptr = get_wptr(gpu->rb[i]); 519 520 /* Copy at least 'wptr' dwords of the data */ 521 size = state->ring[i].wptr; 522 523 /* After wptr find the last non zero dword to save space */ 524 for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) 525 if (gpu->rb[i]->start[j]) 526 size = j + 1; 527 528 if (size) { 529 state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); 530 if (state->ring[i].data) { 531 memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); 532 state->ring[i].data_size = size << 2; 533 } 534 } 535 } 536 537 /* Some targets prefer to collect their own registers */ 538 if (!adreno_gpu->registers) 539 return 0; 540 541 /* Count the number of registers */ 542 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) 543 count += adreno_gpu->registers[i + 1] - 544 adreno_gpu->registers[i] + 1; 545 546 state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); 547 if (state->registers) { 548 int pos = 0; 549 550 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 551 u32 start = adreno_gpu->registers[i]; 552 u32 end = adreno_gpu->registers[i + 1]; 553 u32 addr; 554 555 for (addr = start; addr <= end; addr++) { 556 state->registers[pos++] = addr; 557 state->registers[pos++] = gpu_read(gpu, addr); 558 } 559 } 560 561 state->nr_registers = count; 562 } 563 564 return 0; 565 } 566 567 void adreno_gpu_state_destroy(struct msm_gpu_state *state) 568 { 569 int i; 570 571 for (i = 0; i < ARRAY_SIZE(state->ring); i++) 572 kvfree(state->ring[i].data); 573 574 for (i = 0; state->bos && i < state->nr_bos; i++) 575 kvfree(state->bos[i].data); 576 577 kfree(state->bos); 578 kfree(state->comm); 579 kfree(state->cmd); 580 kfree(state->registers); 581 } 582 583 static void adreno_gpu_state_kref_destroy(struct kref *kref) 584 { 585 struct msm_gpu_state *state = container_of(kref, 586 struct msm_gpu_state, ref); 587 588 adreno_gpu_state_destroy(state); 589 kfree(state); 590 } 591 592 int adreno_gpu_state_put(struct msm_gpu_state *state) 593 { 594 if (IS_ERR_OR_NULL(state)) 595 return 1; 596 597 return kref_put(&state->ref, adreno_gpu_state_kref_destroy); 598 } 599 600 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 601 602 static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) 603 { 604 void *buf; 605 size_t buf_itr = 0, buffer_size; 606 char out[ASCII85_BUFSZ]; 607 long l; 608 int i; 609 610 if (!src || !len) 611 return NULL; 612 613 l = ascii85_encode_len(len); 614 615 /* 616 * Ascii85 outputs either a 5 byte string or a 1 byte string. So we 617 * account for the worst case of 5 bytes per dword plus the 1 for '\0' 618 */ 619 buffer_size = (l * 5) + 1; 620 621 buf = kvmalloc(buffer_size, GFP_KERNEL); 622 if (!buf) 623 return NULL; 624 625 for (i = 0; i < l; i++) 626 buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s", 627 ascii85_encode(src[i], out)); 628 629 return buf; 630 } 631 632 /* len is expected to be in bytes */ 633 static void adreno_show_object(struct drm_printer *p, void **ptr, int len, 634 bool *encoded) 635 { 636 if (!*ptr || !len) 637 return; 638 639 if (!*encoded) { 640 long datalen, i; 641 u32 *buf = *ptr; 642 643 /* 644 * Only dump the non-zero part of the buffer - rarely will 645 * any data completely fill the entire allocated size of 646 * the buffer. 647 */ 648 for (datalen = 0, i = 0; i < len >> 2; i++) 649 if (buf[i]) 650 datalen = ((i + 1) << 2); 651 652 /* 653 * If we reach here, then the originally captured binary buffer 654 * will be replaced with the ascii85 encoded string 655 */ 656 *ptr = adreno_gpu_ascii85_encode(buf, datalen); 657 658 kvfree(buf); 659 660 *encoded = true; 661 } 662 663 if (!*ptr) 664 return; 665 666 drm_puts(p, " data: !!ascii85 |\n"); 667 drm_puts(p, " "); 668 669 drm_puts(p, *ptr); 670 671 drm_puts(p, "\n"); 672 } 673 674 void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, 675 struct drm_printer *p) 676 { 677 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 678 int i; 679 680 if (IS_ERR_OR_NULL(state)) 681 return; 682 683 drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", 684 adreno_gpu->info->revn, adreno_gpu->rev.core, 685 adreno_gpu->rev.major, adreno_gpu->rev.minor, 686 adreno_gpu->rev.patchid); 687 /* 688 * If this is state collected due to iova fault, so fault related info 689 * 690 * TTBR0 would not be zero, so this is a good way to distinguish 691 */ 692 if (state->fault_info.ttbr0) { 693 const struct msm_gpu_fault_info *info = &state->fault_info; 694 695 drm_puts(p, "fault-info:\n"); 696 drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0); 697 drm_printf(p, " - iova=%.16lx\n", info->iova); 698 drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ"); 699 drm_printf(p, " - type=%s\n", info->type); 700 drm_printf(p, " - source=%s\n", info->block); 701 } 702 703 drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); 704 705 drm_puts(p, "ringbuffer:\n"); 706 707 for (i = 0; i < gpu->nr_rings; i++) { 708 drm_printf(p, " - id: %d\n", i); 709 drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); 710 drm_printf(p, " last-fence: %d\n", state->ring[i].seqno); 711 drm_printf(p, " retired-fence: %d\n", state->ring[i].fence); 712 drm_printf(p, " rptr: %d\n", state->ring[i].rptr); 713 drm_printf(p, " wptr: %d\n", state->ring[i].wptr); 714 drm_printf(p, " size: %d\n", MSM_GPU_RINGBUFFER_SZ); 715 716 adreno_show_object(p, &state->ring[i].data, 717 state->ring[i].data_size, &state->ring[i].encoded); 718 } 719 720 if (state->bos) { 721 drm_puts(p, "bos:\n"); 722 723 for (i = 0; i < state->nr_bos; i++) { 724 drm_printf(p, " - iova: 0x%016llx\n", 725 state->bos[i].iova); 726 drm_printf(p, " size: %zd\n", state->bos[i].size); 727 728 adreno_show_object(p, &state->bos[i].data, 729 state->bos[i].size, &state->bos[i].encoded); 730 } 731 } 732 733 if (state->nr_registers) { 734 drm_puts(p, "registers:\n"); 735 736 for (i = 0; i < state->nr_registers; i++) { 737 drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", 738 state->registers[i * 2] << 2, 739 state->registers[(i * 2) + 1]); 740 } 741 } 742 } 743 #endif 744 745 /* Dump common gpu status and scratch registers on any hang, to make 746 * the hangcheck logs more useful. The scratch registers seem always 747 * safe to read when GPU has hung (unlike some other regs, depending 748 * on how the GPU hung), and they are useful to match up to cmdstream 749 * dumps when debugging hangs: 750 */ 751 void adreno_dump_info(struct msm_gpu *gpu) 752 { 753 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 754 int i; 755 756 printk("revision: %d (%d.%d.%d.%d)\n", 757 adreno_gpu->info->revn, adreno_gpu->rev.core, 758 adreno_gpu->rev.major, adreno_gpu->rev.minor, 759 adreno_gpu->rev.patchid); 760 761 for (i = 0; i < gpu->nr_rings; i++) { 762 struct msm_ringbuffer *ring = gpu->rb[i]; 763 764 printk("rb %d: fence: %d/%d\n", i, 765 ring->memptrs->fence, 766 ring->seqno); 767 768 printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); 769 printk("rb wptr: %d\n", get_wptr(ring)); 770 } 771 } 772 773 /* would be nice to not have to duplicate the _show() stuff with printk(): */ 774 void adreno_dump(struct msm_gpu *gpu) 775 { 776 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 777 int i; 778 779 if (!adreno_gpu->registers) 780 return; 781 782 /* dump these out in a form that can be parsed by demsm: */ 783 printk("IO:region %s 00000000 00020000\n", gpu->name); 784 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 785 uint32_t start = adreno_gpu->registers[i]; 786 uint32_t end = adreno_gpu->registers[i+1]; 787 uint32_t addr; 788 789 for (addr = start; addr <= end; addr++) { 790 uint32_t val = gpu_read(gpu, addr); 791 printk("IO:R %08x %08x\n", addr<<2, val); 792 } 793 } 794 } 795 796 static uint32_t ring_freewords(struct msm_ringbuffer *ring) 797 { 798 struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); 799 uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; 800 /* Use ring->next to calculate free size */ 801 uint32_t wptr = ring->next - ring->start; 802 uint32_t rptr = get_rptr(adreno_gpu, ring); 803 return (rptr + (size - 1) - wptr) % size; 804 } 805 806 void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) 807 { 808 if (spin_until(ring_freewords(ring) >= ndwords)) 809 DRM_DEV_ERROR(ring->gpu->dev->dev, 810 "timeout waiting for space in ringbuffer %d\n", 811 ring->id); 812 } 813 814 /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ 815 static int adreno_get_legacy_pwrlevels(struct device *dev) 816 { 817 struct device_node *child, *node; 818 int ret; 819 820 node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); 821 if (!node) { 822 DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); 823 return -ENXIO; 824 } 825 826 for_each_child_of_node(node, child) { 827 unsigned int val; 828 829 ret = of_property_read_u32(child, "qcom,gpu-freq", &val); 830 if (ret) 831 continue; 832 833 /* 834 * Skip the intentionally bogus clock value found at the bottom 835 * of most legacy frequency tables 836 */ 837 if (val != 27000000) 838 dev_pm_opp_add(dev, val, 0); 839 } 840 841 of_node_put(node); 842 843 return 0; 844 } 845 846 static void adreno_get_pwrlevels(struct device *dev, 847 struct msm_gpu *gpu) 848 { 849 unsigned long freq = ULONG_MAX; 850 struct dev_pm_opp *opp; 851 int ret; 852 853 gpu->fast_rate = 0; 854 855 /* You down with OPP? */ 856 if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) 857 ret = adreno_get_legacy_pwrlevels(dev); 858 else { 859 ret = devm_pm_opp_of_add_table(dev); 860 if (ret) 861 DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); 862 } 863 864 if (!ret) { 865 /* Find the fastest defined rate */ 866 opp = dev_pm_opp_find_freq_floor(dev, &freq); 867 if (!IS_ERR(opp)) { 868 gpu->fast_rate = freq; 869 dev_pm_opp_put(opp); 870 } 871 } 872 873 if (!gpu->fast_rate) { 874 dev_warn(dev, 875 "Could not find a clock rate. Using a reasonable default\n"); 876 /* Pick a suitably safe clock speed for any target */ 877 gpu->fast_rate = 200000000; 878 } 879 880 DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); 881 } 882 883 int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, 884 struct adreno_ocmem *adreno_ocmem) 885 { 886 struct ocmem_buf *ocmem_hdl; 887 struct ocmem *ocmem; 888 889 ocmem = of_get_ocmem(dev); 890 if (IS_ERR(ocmem)) { 891 if (PTR_ERR(ocmem) == -ENODEV) { 892 /* 893 * Return success since either the ocmem property was 894 * not specified in device tree, or ocmem support is 895 * not compiled into the kernel. 896 */ 897 return 0; 898 } 899 900 return PTR_ERR(ocmem); 901 } 902 903 ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); 904 if (IS_ERR(ocmem_hdl)) 905 return PTR_ERR(ocmem_hdl); 906 907 adreno_ocmem->ocmem = ocmem; 908 adreno_ocmem->base = ocmem_hdl->addr; 909 adreno_ocmem->hdl = ocmem_hdl; 910 adreno_gpu->gmem = ocmem_hdl->len; 911 912 return 0; 913 } 914 915 void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) 916 { 917 if (adreno_ocmem && adreno_ocmem->base) 918 ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, 919 adreno_ocmem->hdl); 920 } 921 922 int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, 923 struct adreno_gpu *adreno_gpu, 924 const struct adreno_gpu_funcs *funcs, int nr_rings) 925 { 926 struct device *dev = &pdev->dev; 927 struct adreno_platform_config *config = dev->platform_data; 928 struct msm_gpu_config adreno_gpu_config = { 0 }; 929 struct msm_gpu *gpu = &adreno_gpu->base; 930 931 adreno_gpu->funcs = funcs; 932 adreno_gpu->info = adreno_info(config->rev); 933 adreno_gpu->gmem = adreno_gpu->info->gmem; 934 adreno_gpu->revn = adreno_gpu->info->revn; 935 adreno_gpu->rev = config->rev; 936 937 adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; 938 939 adreno_gpu_config.nr_rings = nr_rings; 940 941 adreno_get_pwrlevels(dev, gpu); 942 943 pm_runtime_set_autosuspend_delay(dev, 944 adreno_gpu->info->inactive_period); 945 pm_runtime_use_autosuspend(dev); 946 pm_runtime_enable(dev); 947 948 return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, 949 adreno_gpu->info->name, &adreno_gpu_config); 950 } 951 952 void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) 953 { 954 struct msm_gpu *gpu = &adreno_gpu->base; 955 struct msm_drm_private *priv = gpu->dev->dev_private; 956 unsigned int i; 957 958 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) 959 release_firmware(adreno_gpu->fw[i]); 960 961 pm_runtime_disable(&priv->gpu_pdev->dev); 962 963 msm_gpu_cleanup(&adreno_gpu->base); 964 } 965