1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * Copyright (c) 2014 The Linux Foundation. All rights reserved. 7 */ 8 9 #include <linux/ascii85.h> 10 #include <linux/interconnect.h> 11 #include <linux/qcom_scm.h> 12 #include <linux/kernel.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/mdt_loader.h> 17 #include <linux/nvmem-consumer.h> 18 #include <soc/qcom/ocmem.h> 19 #include "adreno_gpu.h" 20 #include "a6xx_gpu.h" 21 #include "msm_gem.h" 22 #include "msm_mmu.h" 23 24 static u64 address_space_size = 0; 25 MODULE_PARM_DESC(address_space_size, "Override for size of processes private GPU address space"); 26 module_param(address_space_size, ullong, 0600); 27 28 static bool zap_available = true; 29 30 static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, 31 u32 pasid) 32 { 33 struct device *dev = &gpu->pdev->dev; 34 const struct firmware *fw; 35 const char *signed_fwname = NULL; 36 struct device_node *np, *mem_np; 37 struct resource r; 38 phys_addr_t mem_phys; 39 ssize_t mem_size; 40 void *mem_region = NULL; 41 int ret; 42 43 if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { 44 zap_available = false; 45 return -EINVAL; 46 } 47 48 np = of_get_child_by_name(dev->of_node, "zap-shader"); 49 if (!np) { 50 zap_available = false; 51 return -ENODEV; 52 } 53 54 mem_np = of_parse_phandle(np, "memory-region", 0); 55 of_node_put(np); 56 if (!mem_np) { 57 zap_available = false; 58 return -EINVAL; 59 } 60 61 ret = of_address_to_resource(mem_np, 0, &r); 62 of_node_put(mem_np); 63 if (ret) 64 return ret; 65 66 mem_phys = r.start; 67 68 /* 69 * Check for a firmware-name property. This is the new scheme 70 * to handle firmware that may be signed with device specific 71 * keys, allowing us to have a different zap fw path for different 72 * devices. 73 * 74 * If the firmware-name property is found, we bypass the 75 * adreno_request_fw() mechanism, because we don't need to handle 76 * the /lib/firmware/qcom/... vs /lib/firmware/... case. 77 * 78 * If the firmware-name property is not found, for backwards 79 * compatibility we fall back to the fwname from the gpulist 80 * table. 81 */ 82 of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); 83 if (signed_fwname) { 84 fwname = signed_fwname; 85 ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); 86 if (ret) 87 fw = ERR_PTR(ret); 88 } else if (fwname) { 89 /* Request the MDT file from the default location: */ 90 fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); 91 } else { 92 /* 93 * For new targets, we require the firmware-name property, 94 * if a zap-shader is required, rather than falling back 95 * to a firmware name specified in gpulist. 96 * 97 * Because the firmware is signed with a (potentially) 98 * device specific key, having the name come from gpulist 99 * was a bad idea, and is only provided for backwards 100 * compatibility for older targets. 101 */ 102 return -ENODEV; 103 } 104 105 if (IS_ERR(fw)) { 106 DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); 107 return PTR_ERR(fw); 108 } 109 110 /* Figure out how much memory we need */ 111 mem_size = qcom_mdt_get_size(fw); 112 if (mem_size < 0) { 113 ret = mem_size; 114 goto out; 115 } 116 117 if (mem_size > resource_size(&r)) { 118 DRM_DEV_ERROR(dev, 119 "memory region is too small to load the MDT\n"); 120 ret = -E2BIG; 121 goto out; 122 } 123 124 /* Allocate memory for the firmware image */ 125 mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); 126 if (!mem_region) { 127 ret = -ENOMEM; 128 goto out; 129 } 130 131 /* 132 * Load the rest of the MDT 133 * 134 * Note that we could be dealing with two different paths, since 135 * with upstream linux-firmware it would be in a qcom/ subdir.. 136 * adreno_request_fw() handles this, but qcom_mdt_load() does 137 * not. But since we've already gotten through adreno_request_fw() 138 * we know which of the two cases it is: 139 */ 140 if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { 141 ret = qcom_mdt_load(dev, fw, fwname, pasid, 142 mem_region, mem_phys, mem_size, NULL); 143 } else { 144 char *newname; 145 146 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 147 148 ret = qcom_mdt_load(dev, fw, newname, pasid, 149 mem_region, mem_phys, mem_size, NULL); 150 kfree(newname); 151 } 152 if (ret) 153 goto out; 154 155 /* Send the image to the secure world */ 156 ret = qcom_scm_pas_auth_and_reset(pasid); 157 158 /* 159 * If the scm call returns -EOPNOTSUPP we assume that this target 160 * doesn't need/support the zap shader so quietly fail 161 */ 162 if (ret == -EOPNOTSUPP) 163 zap_available = false; 164 else if (ret) 165 DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); 166 167 out: 168 if (mem_region) 169 memunmap(mem_region); 170 171 release_firmware(fw); 172 173 return ret; 174 } 175 176 int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) 177 { 178 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 179 struct platform_device *pdev = gpu->pdev; 180 181 /* Short cut if we determine the zap shader isn't available/needed */ 182 if (!zap_available) 183 return -ENODEV; 184 185 /* We need SCM to be able to load the firmware */ 186 if (!qcom_scm_is_available()) { 187 DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); 188 return -EPROBE_DEFER; 189 } 190 191 return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); 192 } 193 194 struct msm_gem_address_space * 195 adreno_create_address_space(struct msm_gpu *gpu, 196 struct platform_device *pdev) 197 { 198 return adreno_iommu_create_address_space(gpu, pdev, 0); 199 } 200 201 struct msm_gem_address_space * 202 adreno_iommu_create_address_space(struct msm_gpu *gpu, 203 struct platform_device *pdev, 204 unsigned long quirks) 205 { 206 struct iommu_domain_geometry *geometry; 207 struct msm_mmu *mmu; 208 struct msm_gem_address_space *aspace; 209 u64 start, size; 210 211 mmu = msm_iommu_new(&pdev->dev, quirks); 212 if (IS_ERR_OR_NULL(mmu)) 213 return ERR_CAST(mmu); 214 215 geometry = msm_iommu_get_geometry(mmu); 216 if (IS_ERR(geometry)) 217 return ERR_CAST(geometry); 218 219 /* 220 * Use the aperture start or SZ_16M, whichever is greater. This will 221 * ensure that we align with the allocated pagetable range while still 222 * allowing room in the lower 32 bits for GMEM and whatnot 223 */ 224 start = max_t(u64, SZ_16M, geometry->aperture_start); 225 size = geometry->aperture_end - start + 1; 226 227 aspace = msm_gem_address_space_create(mmu, "gpu", 228 start & GENMASK_ULL(48, 0), size); 229 230 if (IS_ERR(aspace) && !IS_ERR(mmu)) 231 mmu->funcs->destroy(mmu); 232 233 return aspace; 234 } 235 236 u64 adreno_private_address_space_size(struct msm_gpu *gpu) 237 { 238 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 239 240 if (address_space_size) 241 return address_space_size; 242 243 if (adreno_gpu->info->address_space_size) 244 return adreno_gpu->info->address_space_size; 245 246 return SZ_4G; 247 } 248 249 int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx, 250 uint32_t param, uint64_t *value, uint32_t *len) 251 { 252 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 253 254 /* No pointer params yet */ 255 if (*len != 0) 256 return -EINVAL; 257 258 switch (param) { 259 case MSM_PARAM_GPU_ID: 260 *value = adreno_gpu->info->revn; 261 return 0; 262 case MSM_PARAM_GMEM_SIZE: 263 *value = adreno_gpu->gmem; 264 return 0; 265 case MSM_PARAM_GMEM_BASE: 266 *value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0; 267 return 0; 268 case MSM_PARAM_CHIP_ID: 269 *value = (uint64_t)adreno_gpu->rev.patchid | 270 ((uint64_t)adreno_gpu->rev.minor << 8) | 271 ((uint64_t)adreno_gpu->rev.major << 16) | 272 ((uint64_t)adreno_gpu->rev.core << 24); 273 if (!adreno_gpu->info->revn) 274 *value |= ((uint64_t) adreno_gpu->speedbin) << 32; 275 return 0; 276 case MSM_PARAM_MAX_FREQ: 277 *value = adreno_gpu->base.fast_rate; 278 return 0; 279 case MSM_PARAM_TIMESTAMP: 280 if (adreno_gpu->funcs->get_timestamp) { 281 int ret; 282 283 pm_runtime_get_sync(&gpu->pdev->dev); 284 ret = adreno_gpu->funcs->get_timestamp(gpu, value); 285 pm_runtime_put_autosuspend(&gpu->pdev->dev); 286 287 return ret; 288 } 289 return -EINVAL; 290 case MSM_PARAM_PRIORITIES: 291 *value = gpu->nr_rings * NR_SCHED_PRIORITIES; 292 return 0; 293 case MSM_PARAM_PP_PGTABLE: 294 *value = 0; 295 return 0; 296 case MSM_PARAM_FAULTS: 297 if (ctx->aspace) 298 *value = gpu->global_faults + ctx->aspace->faults; 299 else 300 *value = gpu->global_faults; 301 return 0; 302 case MSM_PARAM_SUSPENDS: 303 *value = gpu->suspend_count; 304 return 0; 305 case MSM_PARAM_VA_START: 306 if (ctx->aspace == gpu->aspace) 307 return -EINVAL; 308 *value = ctx->aspace->va_start; 309 return 0; 310 case MSM_PARAM_VA_SIZE: 311 if (ctx->aspace == gpu->aspace) 312 return -EINVAL; 313 *value = ctx->aspace->va_size; 314 return 0; 315 default: 316 DBG("%s: invalid param: %u", gpu->name, param); 317 return -EINVAL; 318 } 319 } 320 321 int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx, 322 uint32_t param, uint64_t value, uint32_t len) 323 { 324 switch (param) { 325 case MSM_PARAM_COMM: 326 case MSM_PARAM_CMDLINE: 327 /* kstrdup_quotable_cmdline() limits to PAGE_SIZE, so 328 * that should be a reasonable upper bound 329 */ 330 if (len > PAGE_SIZE) 331 return -EINVAL; 332 break; 333 default: 334 if (len != 0) 335 return -EINVAL; 336 } 337 338 switch (param) { 339 case MSM_PARAM_COMM: 340 case MSM_PARAM_CMDLINE: { 341 char *str, **paramp; 342 343 str = kmalloc(len + 1, GFP_KERNEL); 344 if (!str) 345 return -ENOMEM; 346 347 if (copy_from_user(str, u64_to_user_ptr(value), len)) { 348 kfree(str); 349 return -EFAULT; 350 } 351 352 /* Ensure string is null terminated: */ 353 str[len] = '\0'; 354 355 mutex_lock(&gpu->lock); 356 357 if (param == MSM_PARAM_COMM) { 358 paramp = &ctx->comm; 359 } else { 360 paramp = &ctx->cmdline; 361 } 362 363 kfree(*paramp); 364 *paramp = str; 365 366 mutex_unlock(&gpu->lock); 367 368 return 0; 369 } 370 case MSM_PARAM_SYSPROF: 371 if (!capable(CAP_SYS_ADMIN)) 372 return -EPERM; 373 return msm_file_private_set_sysprof(ctx, gpu, value); 374 default: 375 DBG("%s: invalid param: %u", gpu->name, param); 376 return -EINVAL; 377 } 378 } 379 380 const struct firmware * 381 adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) 382 { 383 struct drm_device *drm = adreno_gpu->base.dev; 384 const struct firmware *fw = NULL; 385 char *newname; 386 int ret; 387 388 newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); 389 if (!newname) 390 return ERR_PTR(-ENOMEM); 391 392 /* 393 * Try first to load from qcom/$fwfile using a direct load (to avoid 394 * a potential timeout waiting for usermode helper) 395 */ 396 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 397 (adreno_gpu->fwloc == FW_LOCATION_NEW)) { 398 399 ret = request_firmware_direct(&fw, newname, drm->dev); 400 if (!ret) { 401 DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", 402 newname); 403 adreno_gpu->fwloc = FW_LOCATION_NEW; 404 goto out; 405 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 406 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 407 newname, ret); 408 fw = ERR_PTR(ret); 409 goto out; 410 } 411 } 412 413 /* 414 * Then try the legacy location without qcom/ prefix 415 */ 416 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 417 (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { 418 419 ret = request_firmware_direct(&fw, fwname, drm->dev); 420 if (!ret) { 421 DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", 422 newname); 423 adreno_gpu->fwloc = FW_LOCATION_LEGACY; 424 goto out; 425 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 426 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 427 fwname, ret); 428 fw = ERR_PTR(ret); 429 goto out; 430 } 431 } 432 433 /* 434 * Finally fall back to request_firmware() for cases where the 435 * usermode helper is needed (I think mainly android) 436 */ 437 if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || 438 (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { 439 440 ret = request_firmware(&fw, newname, drm->dev); 441 if (!ret) { 442 DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", 443 newname); 444 adreno_gpu->fwloc = FW_LOCATION_HELPER; 445 goto out; 446 } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { 447 DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", 448 newname, ret); 449 fw = ERR_PTR(ret); 450 goto out; 451 } 452 } 453 454 DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); 455 fw = ERR_PTR(-ENOENT); 456 out: 457 kfree(newname); 458 return fw; 459 } 460 461 int adreno_load_fw(struct adreno_gpu *adreno_gpu) 462 { 463 int i; 464 465 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { 466 const struct firmware *fw; 467 468 if (!adreno_gpu->info->fw[i]) 469 continue; 470 471 /* Skip if the firmware has already been loaded */ 472 if (adreno_gpu->fw[i]) 473 continue; 474 475 fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); 476 if (IS_ERR(fw)) 477 return PTR_ERR(fw); 478 479 adreno_gpu->fw[i] = fw; 480 } 481 482 return 0; 483 } 484 485 struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, 486 const struct firmware *fw, u64 *iova) 487 { 488 struct drm_gem_object *bo; 489 void *ptr; 490 491 ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4, 492 MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); 493 494 if (IS_ERR(ptr)) 495 return ERR_CAST(ptr); 496 497 memcpy(ptr, &fw->data[4], fw->size - 4); 498 499 msm_gem_put_vaddr(bo); 500 501 return bo; 502 } 503 504 int adreno_hw_init(struct msm_gpu *gpu) 505 { 506 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 507 int ret, i; 508 509 VERB("%s", gpu->name); 510 511 ret = adreno_load_fw(adreno_gpu); 512 if (ret) 513 return ret; 514 515 for (i = 0; i < gpu->nr_rings; i++) { 516 struct msm_ringbuffer *ring = gpu->rb[i]; 517 518 if (!ring) 519 continue; 520 521 ring->cur = ring->start; 522 ring->next = ring->start; 523 ring->memptrs->rptr = 0; 524 525 /* Detect and clean up an impossible fence, ie. if GPU managed 526 * to scribble something invalid, we don't want that to confuse 527 * us into mistakingly believing that submits have completed. 528 */ 529 if (fence_before(ring->fctx->last_fence, ring->memptrs->fence)) { 530 ring->memptrs->fence = ring->fctx->last_fence; 531 } 532 } 533 534 return 0; 535 } 536 537 /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ 538 static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, 539 struct msm_ringbuffer *ring) 540 { 541 struct msm_gpu *gpu = &adreno_gpu->base; 542 543 return gpu->funcs->get_rptr(gpu, ring); 544 } 545 546 struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) 547 { 548 return gpu->rb[0]; 549 } 550 551 void adreno_recover(struct msm_gpu *gpu) 552 { 553 struct drm_device *dev = gpu->dev; 554 int ret; 555 556 // XXX pm-runtime?? we *need* the device to be off after this 557 // so maybe continuing to call ->pm_suspend/resume() is better? 558 559 gpu->funcs->pm_suspend(gpu); 560 gpu->funcs->pm_resume(gpu); 561 562 ret = msm_gpu_hw_init(gpu); 563 if (ret) { 564 DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); 565 /* hmm, oh well? */ 566 } 567 } 568 569 void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg) 570 { 571 uint32_t wptr; 572 573 /* Copy the shadow to the actual register */ 574 ring->cur = ring->next; 575 576 /* 577 * Mask wptr value that we calculate to fit in the HW range. This is 578 * to account for the possibility that the last command fit exactly into 579 * the ringbuffer and rb->next hasn't wrapped to zero yet 580 */ 581 wptr = get_wptr(ring); 582 583 /* ensure writes to ringbuffer have hit system memory: */ 584 mb(); 585 586 gpu_write(gpu, reg, wptr); 587 } 588 589 bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 590 { 591 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 592 uint32_t wptr = get_wptr(ring); 593 594 /* wait for CP to drain ringbuffer: */ 595 if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) 596 return true; 597 598 /* TODO maybe we need to reset GPU here to recover from hang? */ 599 DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", 600 gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); 601 602 return false; 603 } 604 605 int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) 606 { 607 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 608 int i, count = 0; 609 610 WARN_ON(!mutex_is_locked(&gpu->lock)); 611 612 kref_init(&state->ref); 613 614 ktime_get_real_ts64(&state->time); 615 616 for (i = 0; i < gpu->nr_rings; i++) { 617 int size = 0, j; 618 619 state->ring[i].fence = gpu->rb[i]->memptrs->fence; 620 state->ring[i].iova = gpu->rb[i]->iova; 621 state->ring[i].seqno = gpu->rb[i]->fctx->last_fence; 622 state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); 623 state->ring[i].wptr = get_wptr(gpu->rb[i]); 624 625 /* Copy at least 'wptr' dwords of the data */ 626 size = state->ring[i].wptr; 627 628 /* After wptr find the last non zero dword to save space */ 629 for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) 630 if (gpu->rb[i]->start[j]) 631 size = j + 1; 632 633 if (size) { 634 state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); 635 if (state->ring[i].data) { 636 memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); 637 state->ring[i].data_size = size << 2; 638 } 639 } 640 } 641 642 /* Some targets prefer to collect their own registers */ 643 if (!adreno_gpu->registers) 644 return 0; 645 646 /* Count the number of registers */ 647 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) 648 count += adreno_gpu->registers[i + 1] - 649 adreno_gpu->registers[i] + 1; 650 651 state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); 652 if (state->registers) { 653 int pos = 0; 654 655 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 656 u32 start = adreno_gpu->registers[i]; 657 u32 end = adreno_gpu->registers[i + 1]; 658 u32 addr; 659 660 for (addr = start; addr <= end; addr++) { 661 state->registers[pos++] = addr; 662 state->registers[pos++] = gpu_read(gpu, addr); 663 } 664 } 665 666 state->nr_registers = count; 667 } 668 669 return 0; 670 } 671 672 void adreno_gpu_state_destroy(struct msm_gpu_state *state) 673 { 674 int i; 675 676 for (i = 0; i < ARRAY_SIZE(state->ring); i++) 677 kvfree(state->ring[i].data); 678 679 for (i = 0; state->bos && i < state->nr_bos; i++) 680 kvfree(state->bos[i].data); 681 682 kfree(state->bos); 683 kfree(state->comm); 684 kfree(state->cmd); 685 kfree(state->registers); 686 } 687 688 static void adreno_gpu_state_kref_destroy(struct kref *kref) 689 { 690 struct msm_gpu_state *state = container_of(kref, 691 struct msm_gpu_state, ref); 692 693 adreno_gpu_state_destroy(state); 694 kfree(state); 695 } 696 697 int adreno_gpu_state_put(struct msm_gpu_state *state) 698 { 699 if (IS_ERR_OR_NULL(state)) 700 return 1; 701 702 return kref_put(&state->ref, adreno_gpu_state_kref_destroy); 703 } 704 705 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 706 707 static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) 708 { 709 void *buf; 710 size_t buf_itr = 0, buffer_size; 711 char out[ASCII85_BUFSZ]; 712 long l; 713 int i; 714 715 if (!src || !len) 716 return NULL; 717 718 l = ascii85_encode_len(len); 719 720 /* 721 * Ascii85 outputs either a 5 byte string or a 1 byte string. So we 722 * account for the worst case of 5 bytes per dword plus the 1 for '\0' 723 */ 724 buffer_size = (l * 5) + 1; 725 726 buf = kvmalloc(buffer_size, GFP_KERNEL); 727 if (!buf) 728 return NULL; 729 730 for (i = 0; i < l; i++) 731 buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s", 732 ascii85_encode(src[i], out)); 733 734 return buf; 735 } 736 737 /* len is expected to be in bytes 738 * 739 * WARNING: *ptr should be allocated with kvmalloc or friends. It can be free'd 740 * with kvfree() and replaced with a newly kvmalloc'd buffer on the first call 741 * when the unencoded raw data is encoded 742 */ 743 void adreno_show_object(struct drm_printer *p, void **ptr, int len, 744 bool *encoded) 745 { 746 if (!*ptr || !len) 747 return; 748 749 if (!*encoded) { 750 long datalen, i; 751 u32 *buf = *ptr; 752 753 /* 754 * Only dump the non-zero part of the buffer - rarely will 755 * any data completely fill the entire allocated size of 756 * the buffer. 757 */ 758 for (datalen = 0, i = 0; i < len >> 2; i++) 759 if (buf[i]) 760 datalen = ((i + 1) << 2); 761 762 /* 763 * If we reach here, then the originally captured binary buffer 764 * will be replaced with the ascii85 encoded string 765 */ 766 *ptr = adreno_gpu_ascii85_encode(buf, datalen); 767 768 kvfree(buf); 769 770 *encoded = true; 771 } 772 773 if (!*ptr) 774 return; 775 776 drm_puts(p, " data: !!ascii85 |\n"); 777 drm_puts(p, " "); 778 779 drm_puts(p, *ptr); 780 781 drm_puts(p, "\n"); 782 } 783 784 void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, 785 struct drm_printer *p) 786 { 787 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 788 int i; 789 790 if (IS_ERR_OR_NULL(state)) 791 return; 792 793 drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", 794 adreno_gpu->info->revn, adreno_gpu->rev.core, 795 adreno_gpu->rev.major, adreno_gpu->rev.minor, 796 adreno_gpu->rev.patchid); 797 /* 798 * If this is state collected due to iova fault, so fault related info 799 * 800 * TTBR0 would not be zero, so this is a good way to distinguish 801 */ 802 if (state->fault_info.ttbr0) { 803 const struct msm_gpu_fault_info *info = &state->fault_info; 804 805 drm_puts(p, "fault-info:\n"); 806 drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0); 807 drm_printf(p, " - iova=%.16lx\n", info->iova); 808 drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ"); 809 drm_printf(p, " - type=%s\n", info->type); 810 drm_printf(p, " - source=%s\n", info->block); 811 } 812 813 drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); 814 815 drm_puts(p, "ringbuffer:\n"); 816 817 for (i = 0; i < gpu->nr_rings; i++) { 818 drm_printf(p, " - id: %d\n", i); 819 drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); 820 drm_printf(p, " last-fence: %u\n", state->ring[i].seqno); 821 drm_printf(p, " retired-fence: %u\n", state->ring[i].fence); 822 drm_printf(p, " rptr: %u\n", state->ring[i].rptr); 823 drm_printf(p, " wptr: %u\n", state->ring[i].wptr); 824 drm_printf(p, " size: %u\n", MSM_GPU_RINGBUFFER_SZ); 825 826 adreno_show_object(p, &state->ring[i].data, 827 state->ring[i].data_size, &state->ring[i].encoded); 828 } 829 830 if (state->bos) { 831 drm_puts(p, "bos:\n"); 832 833 for (i = 0; i < state->nr_bos; i++) { 834 drm_printf(p, " - iova: 0x%016llx\n", 835 state->bos[i].iova); 836 drm_printf(p, " size: %zd\n", state->bos[i].size); 837 drm_printf(p, " name: %-32s\n", state->bos[i].name); 838 839 adreno_show_object(p, &state->bos[i].data, 840 state->bos[i].size, &state->bos[i].encoded); 841 } 842 } 843 844 if (state->nr_registers) { 845 drm_puts(p, "registers:\n"); 846 847 for (i = 0; i < state->nr_registers; i++) { 848 drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", 849 state->registers[i * 2] << 2, 850 state->registers[(i * 2) + 1]); 851 } 852 } 853 } 854 #endif 855 856 /* Dump common gpu status and scratch registers on any hang, to make 857 * the hangcheck logs more useful. The scratch registers seem always 858 * safe to read when GPU has hung (unlike some other regs, depending 859 * on how the GPU hung), and they are useful to match up to cmdstream 860 * dumps when debugging hangs: 861 */ 862 void adreno_dump_info(struct msm_gpu *gpu) 863 { 864 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 865 int i; 866 867 printk("revision: %d (%d.%d.%d.%d)\n", 868 adreno_gpu->info->revn, adreno_gpu->rev.core, 869 adreno_gpu->rev.major, adreno_gpu->rev.minor, 870 adreno_gpu->rev.patchid); 871 872 for (i = 0; i < gpu->nr_rings; i++) { 873 struct msm_ringbuffer *ring = gpu->rb[i]; 874 875 printk("rb %d: fence: %d/%d\n", i, 876 ring->memptrs->fence, 877 ring->fctx->last_fence); 878 879 printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); 880 printk("rb wptr: %d\n", get_wptr(ring)); 881 } 882 } 883 884 /* would be nice to not have to duplicate the _show() stuff with printk(): */ 885 void adreno_dump(struct msm_gpu *gpu) 886 { 887 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 888 int i; 889 890 if (!adreno_gpu->registers) 891 return; 892 893 /* dump these out in a form that can be parsed by demsm: */ 894 printk("IO:region %s 00000000 00020000\n", gpu->name); 895 for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { 896 uint32_t start = adreno_gpu->registers[i]; 897 uint32_t end = adreno_gpu->registers[i+1]; 898 uint32_t addr; 899 900 for (addr = start; addr <= end; addr++) { 901 uint32_t val = gpu_read(gpu, addr); 902 printk("IO:R %08x %08x\n", addr<<2, val); 903 } 904 } 905 } 906 907 static uint32_t ring_freewords(struct msm_ringbuffer *ring) 908 { 909 struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); 910 uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; 911 /* Use ring->next to calculate free size */ 912 uint32_t wptr = ring->next - ring->start; 913 uint32_t rptr = get_rptr(adreno_gpu, ring); 914 return (rptr + (size - 1) - wptr) % size; 915 } 916 917 void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) 918 { 919 if (spin_until(ring_freewords(ring) >= ndwords)) 920 DRM_DEV_ERROR(ring->gpu->dev->dev, 921 "timeout waiting for space in ringbuffer %d\n", 922 ring->id); 923 } 924 925 /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ 926 static int adreno_get_legacy_pwrlevels(struct device *dev) 927 { 928 struct device_node *child, *node; 929 int ret; 930 931 node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); 932 if (!node) { 933 DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); 934 return -ENXIO; 935 } 936 937 for_each_child_of_node(node, child) { 938 unsigned int val; 939 940 ret = of_property_read_u32(child, "qcom,gpu-freq", &val); 941 if (ret) 942 continue; 943 944 /* 945 * Skip the intentionally bogus clock value found at the bottom 946 * of most legacy frequency tables 947 */ 948 if (val != 27000000) 949 dev_pm_opp_add(dev, val, 0); 950 } 951 952 of_node_put(node); 953 954 return 0; 955 } 956 957 static void adreno_get_pwrlevels(struct device *dev, 958 struct msm_gpu *gpu) 959 { 960 unsigned long freq = ULONG_MAX; 961 struct dev_pm_opp *opp; 962 int ret; 963 964 gpu->fast_rate = 0; 965 966 /* You down with OPP? */ 967 if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) 968 ret = adreno_get_legacy_pwrlevels(dev); 969 else { 970 ret = devm_pm_opp_of_add_table(dev); 971 if (ret) 972 DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); 973 } 974 975 if (!ret) { 976 /* Find the fastest defined rate */ 977 opp = dev_pm_opp_find_freq_floor(dev, &freq); 978 if (!IS_ERR(opp)) { 979 gpu->fast_rate = freq; 980 dev_pm_opp_put(opp); 981 } 982 } 983 984 if (!gpu->fast_rate) { 985 dev_warn(dev, 986 "Could not find a clock rate. Using a reasonable default\n"); 987 /* Pick a suitably safe clock speed for any target */ 988 gpu->fast_rate = 200000000; 989 } 990 991 DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); 992 } 993 994 int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, 995 struct adreno_ocmem *adreno_ocmem) 996 { 997 struct ocmem_buf *ocmem_hdl; 998 struct ocmem *ocmem; 999 1000 ocmem = of_get_ocmem(dev); 1001 if (IS_ERR(ocmem)) { 1002 if (PTR_ERR(ocmem) == -ENODEV) { 1003 /* 1004 * Return success since either the ocmem property was 1005 * not specified in device tree, or ocmem support is 1006 * not compiled into the kernel. 1007 */ 1008 return 0; 1009 } 1010 1011 return PTR_ERR(ocmem); 1012 } 1013 1014 ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); 1015 if (IS_ERR(ocmem_hdl)) 1016 return PTR_ERR(ocmem_hdl); 1017 1018 adreno_ocmem->ocmem = ocmem; 1019 adreno_ocmem->base = ocmem_hdl->addr; 1020 adreno_ocmem->hdl = ocmem_hdl; 1021 adreno_gpu->gmem = ocmem_hdl->len; 1022 1023 return 0; 1024 } 1025 1026 void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) 1027 { 1028 if (adreno_ocmem && adreno_ocmem->base) 1029 ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, 1030 adreno_ocmem->hdl); 1031 } 1032 1033 int adreno_read_speedbin(struct device *dev, u32 *speedbin) 1034 { 1035 return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin); 1036 } 1037 1038 int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, 1039 struct adreno_gpu *adreno_gpu, 1040 const struct adreno_gpu_funcs *funcs, int nr_rings) 1041 { 1042 struct device *dev = &pdev->dev; 1043 struct adreno_platform_config *config = dev->platform_data; 1044 struct msm_gpu_config adreno_gpu_config = { 0 }; 1045 struct msm_gpu *gpu = &adreno_gpu->base; 1046 struct adreno_rev *rev = &config->rev; 1047 const char *gpu_name; 1048 u32 speedbin; 1049 1050 adreno_gpu->funcs = funcs; 1051 adreno_gpu->info = adreno_info(config->rev); 1052 adreno_gpu->gmem = adreno_gpu->info->gmem; 1053 adreno_gpu->revn = adreno_gpu->info->revn; 1054 adreno_gpu->rev = *rev; 1055 1056 if (adreno_read_speedbin(dev, &speedbin) || !speedbin) 1057 speedbin = 0xffff; 1058 adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin); 1059 1060 gpu_name = adreno_gpu->info->name; 1061 if (!gpu_name) { 1062 gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d", 1063 rev->core, rev->major, rev->minor, 1064 rev->patchid); 1065 if (!gpu_name) 1066 return -ENOMEM; 1067 } 1068 1069 adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; 1070 1071 adreno_gpu_config.nr_rings = nr_rings; 1072 1073 adreno_get_pwrlevels(dev, gpu); 1074 1075 pm_runtime_set_autosuspend_delay(dev, 1076 adreno_gpu->info->inactive_period); 1077 pm_runtime_use_autosuspend(dev); 1078 1079 return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, 1080 gpu_name, &adreno_gpu_config); 1081 } 1082 1083 void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) 1084 { 1085 struct msm_gpu *gpu = &adreno_gpu->base; 1086 struct msm_drm_private *priv = gpu->dev ? gpu->dev->dev_private : NULL; 1087 unsigned int i; 1088 1089 for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) 1090 release_firmware(adreno_gpu->fw[i]); 1091 1092 if (priv && pm_runtime_enabled(&priv->gpu_pdev->dev)) 1093 pm_runtime_disable(&priv->gpu_pdev->dev); 1094 1095 msm_gpu_cleanup(&adreno_gpu->base); 1096 } 1097