1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */ 3 4 #include <linux/completion.h> 5 #include <linux/circ_buf.h> 6 #include <linux/list.h> 7 8 #include "a6xx_gmu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #define HFI_MSG_ID(val) [val] = #val 12 13 static const char * const a6xx_hfi_msg_id[] = { 14 HFI_MSG_ID(HFI_H2F_MSG_INIT), 15 HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION), 16 HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE), 17 HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE), 18 HFI_MSG_ID(HFI_H2F_MSG_TEST), 19 }; 20 21 static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data, 22 u32 dwords) 23 { 24 struct a6xx_hfi_queue_header *header = queue->header; 25 u32 i, hdr, index = header->read_index; 26 27 if (header->read_index == header->write_index) { 28 header->rx_request = 1; 29 return 0; 30 } 31 32 hdr = queue->data[index]; 33 34 /* 35 * If we are to assume that the GMU firmware is in fact a rational actor 36 * and is programmed to not send us a larger response than we expect 37 * then we can also assume that if the header size is unexpectedly large 38 * that it is due to memory corruption and/or hardware failure. In this 39 * case the only reasonable course of action is to BUG() to help harden 40 * the failure. 41 */ 42 43 BUG_ON(HFI_HEADER_SIZE(hdr) > dwords); 44 45 for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) { 46 data[i] = queue->data[index]; 47 index = (index + 1) % header->size; 48 } 49 50 header->read_index = index; 51 return HFI_HEADER_SIZE(hdr); 52 } 53 54 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu, 55 struct a6xx_hfi_queue *queue, u32 *data, u32 dwords) 56 { 57 struct a6xx_hfi_queue_header *header = queue->header; 58 u32 i, space, index = header->write_index; 59 60 spin_lock(&queue->lock); 61 62 space = CIRC_SPACE(header->write_index, header->read_index, 63 header->size); 64 if (space < dwords) { 65 header->dropped++; 66 spin_unlock(&queue->lock); 67 return -ENOSPC; 68 } 69 70 for (i = 0; i < dwords; i++) { 71 queue->data[index] = data[i]; 72 index = (index + 1) % header->size; 73 } 74 75 header->write_index = index; 76 spin_unlock(&queue->lock); 77 78 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01); 79 return 0; 80 } 81 82 static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum, 83 u32 *payload, u32 payload_size) 84 { 85 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE]; 86 u32 val; 87 int ret; 88 89 /* Wait for a response */ 90 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val, 91 val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000); 92 93 if (ret) { 94 dev_err(gmu->dev, 95 "Message %s id %d timed out waiting for response\n", 96 a6xx_hfi_msg_id[id], seqnum); 97 return -ETIMEDOUT; 98 } 99 100 /* Clear the interrupt */ 101 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 102 A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ); 103 104 for (;;) { 105 struct a6xx_hfi_msg_response resp; 106 107 /* Get the next packet */ 108 ret = a6xx_hfi_queue_read(queue, (u32 *) &resp, 109 sizeof(resp) >> 2); 110 111 /* If the queue is empty our response never made it */ 112 if (!ret) { 113 dev_err(gmu->dev, 114 "The HFI response queue is unexpectedly empty\n"); 115 116 return -ENOENT; 117 } 118 119 if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) { 120 struct a6xx_hfi_msg_error *error = 121 (struct a6xx_hfi_msg_error *) &resp; 122 123 dev_err(gmu->dev, "GMU firmware error %d\n", 124 error->code); 125 continue; 126 } 127 128 if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) { 129 dev_err(gmu->dev, 130 "Unexpected message id %d on the response queue\n", 131 HFI_HEADER_SEQNUM(resp.ret_header)); 132 continue; 133 } 134 135 if (resp.error) { 136 dev_err(gmu->dev, 137 "Message %s id %d returned error %d\n", 138 a6xx_hfi_msg_id[id], seqnum, resp.error); 139 return -EINVAL; 140 } 141 142 /* All is well, copy over the buffer */ 143 if (payload && payload_size) 144 memcpy(payload, resp.payload, 145 min_t(u32, payload_size, sizeof(resp.payload))); 146 147 return 0; 148 } 149 } 150 151 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id, 152 void *data, u32 size, u32 *payload, u32 payload_size) 153 { 154 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE]; 155 int ret, dwords = size >> 2; 156 u32 seqnum; 157 158 seqnum = atomic_inc_return(&queue->seqnum) % 0xfff; 159 160 /* First dword of the message is the message header - fill it in */ 161 *((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) | 162 (dwords << 8) | id; 163 164 ret = a6xx_hfi_queue_write(gmu, queue, data, dwords); 165 if (ret) { 166 dev_err(gmu->dev, "Unable to send message %s id %d\n", 167 a6xx_hfi_msg_id[id], seqnum); 168 return ret; 169 } 170 171 return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size); 172 } 173 174 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state) 175 { 176 struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 }; 177 178 msg.dbg_buffer_addr = (u32) gmu->debug->iova; 179 msg.dbg_buffer_size = (u32) gmu->debug->size; 180 msg.boot_state = boot_state; 181 182 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg), 183 NULL, 0); 184 } 185 186 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version) 187 { 188 struct a6xx_hfi_msg_fw_version msg = { 0 }; 189 190 /* Currently supporting version 1.1 */ 191 msg.supported_version = (1 << 28) | (1 << 16); 192 193 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg), 194 version, sizeof(*version)); 195 } 196 197 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu) 198 { 199 struct a6xx_hfi_msg_perf_table msg = { 0 }; 200 int i; 201 202 msg.num_gpu_levels = gmu->nr_gpu_freqs; 203 msg.num_gmu_levels = gmu->nr_gmu_freqs; 204 205 for (i = 0; i < gmu->nr_gpu_freqs; i++) { 206 msg.gx_votes[i].vote = gmu->gx_arc_votes[i]; 207 msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000; 208 } 209 210 for (i = 0; i < gmu->nr_gmu_freqs; i++) { 211 msg.cx_votes[i].vote = gmu->cx_arc_votes[i]; 212 msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000; 213 } 214 215 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg), 216 NULL, 0); 217 } 218 219 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu) 220 { 221 struct a6xx_hfi_msg_bw_table msg = { 0 }; 222 223 /* 224 * The sdm845 GMU doesn't do bus frequency scaling on its own but it 225 * does need at least one entry in the list because it might be accessed 226 * when the GMU is shutting down. Send a single "off" entry. 227 */ 228 229 msg.bw_level_num = 1; 230 231 msg.ddr_cmds_num = 3; 232 msg.ddr_wait_bitmask = 0x07; 233 234 msg.ddr_cmds_addrs[0] = 0x50000; 235 msg.ddr_cmds_addrs[1] = 0x5005c; 236 msg.ddr_cmds_addrs[2] = 0x5000c; 237 238 msg.ddr_cmds_data[0][0] = 0x40000000; 239 msg.ddr_cmds_data[0][1] = 0x40000000; 240 msg.ddr_cmds_data[0][2] = 0x40000000; 241 242 /* 243 * These are the CX (CNOC) votes. This is used but the values for the 244 * sdm845 GMU are known and fixed so we can hard code them. 245 */ 246 247 msg.cnoc_cmds_num = 3; 248 msg.cnoc_wait_bitmask = 0x05; 249 250 msg.cnoc_cmds_addrs[0] = 0x50034; 251 msg.cnoc_cmds_addrs[1] = 0x5007c; 252 msg.cnoc_cmds_addrs[2] = 0x5004c; 253 254 msg.cnoc_cmds_data[0][0] = 0x40000000; 255 msg.cnoc_cmds_data[0][1] = 0x00000000; 256 msg.cnoc_cmds_data[0][2] = 0x40000000; 257 258 msg.cnoc_cmds_data[1][0] = 0x60000001; 259 msg.cnoc_cmds_data[1][1] = 0x20000001; 260 msg.cnoc_cmds_data[1][2] = 0x60000001; 261 262 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg), 263 NULL, 0); 264 } 265 266 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu) 267 { 268 struct a6xx_hfi_msg_test msg = { 0 }; 269 270 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg), 271 NULL, 0); 272 } 273 274 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state) 275 { 276 int ret; 277 278 ret = a6xx_hfi_send_gmu_init(gmu, boot_state); 279 if (ret) 280 return ret; 281 282 ret = a6xx_hfi_get_fw_version(gmu, NULL); 283 if (ret) 284 return ret; 285 286 /* 287 * We have to get exchange version numbers per the sequence but at this 288 * point th kernel driver doesn't need to know the exact version of 289 * the GMU firmware 290 */ 291 292 ret = a6xx_hfi_send_perf_table(gmu); 293 if (ret) 294 return ret; 295 296 ret = a6xx_hfi_send_bw_table(gmu); 297 if (ret) 298 return ret; 299 300 /* 301 * Let the GMU know that there won't be any more HFI messages until next 302 * boot 303 */ 304 a6xx_hfi_send_test(gmu); 305 306 return 0; 307 } 308 309 void a6xx_hfi_stop(struct a6xx_gmu *gmu) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) { 314 struct a6xx_hfi_queue *queue = &gmu->queues[i]; 315 316 if (!queue->header) 317 continue; 318 319 if (queue->header->read_index != queue->header->write_index) 320 dev_err(gmu->dev, "HFI queue %d is not empty\n", i); 321 322 queue->header->read_index = 0; 323 queue->header->write_index = 0; 324 } 325 } 326 327 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue, 328 struct a6xx_hfi_queue_header *header, void *virt, u64 iova, 329 u32 id) 330 { 331 spin_lock_init(&queue->lock); 332 queue->header = header; 333 queue->data = virt; 334 atomic_set(&queue->seqnum, 0); 335 336 /* Set up the shared memory header */ 337 header->iova = iova; 338 header->type = 10 << 8 | id; 339 header->status = 1; 340 header->size = SZ_4K >> 2; 341 header->msg_size = 0; 342 header->dropped = 0; 343 header->rx_watermark = 1; 344 header->tx_watermark = 1; 345 header->rx_request = 1; 346 header->tx_request = 0; 347 header->read_index = 0; 348 header->write_index = 0; 349 } 350 351 void a6xx_hfi_init(struct a6xx_gmu *gmu) 352 { 353 struct a6xx_gmu_bo *hfi = gmu->hfi; 354 struct a6xx_hfi_queue_table_header *table = hfi->virt; 355 struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table); 356 u64 offset; 357 int table_size; 358 359 /* 360 * The table size is the size of the table header plus all of the queue 361 * headers 362 */ 363 table_size = sizeof(*table); 364 table_size += (ARRAY_SIZE(gmu->queues) * 365 sizeof(struct a6xx_hfi_queue_header)); 366 367 table->version = 0; 368 table->size = table_size; 369 /* First queue header is located immediately after the table header */ 370 table->qhdr0_offset = sizeof(*table) >> 2; 371 table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2; 372 table->num_queues = ARRAY_SIZE(gmu->queues); 373 table->active_queues = ARRAY_SIZE(gmu->queues); 374 375 /* Command queue */ 376 offset = SZ_4K; 377 a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset, 378 hfi->iova + offset, 0); 379 380 /* GMU response queue */ 381 offset += SZ_4K; 382 a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset, 383 hfi->iova + offset, 4); 384 } 385