1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/soc/qcom/llcc-qcom.h> 14 15 #define GPU_PAS_ID 13 16 17 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 18 { 19 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 20 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 21 22 /* Check that the GMU is idle */ 23 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 24 return false; 25 26 /* Check tha the CX master is idle */ 27 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 28 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 29 return false; 30 31 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 32 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 33 } 34 35 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 36 { 37 /* wait for CP to drain ringbuffer: */ 38 if (!adreno_idle(gpu, ring)) 39 return false; 40 41 if (spin_until(_a6xx_check_idle(gpu))) { 42 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 43 gpu->name, __builtin_return_address(0), 44 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 45 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 46 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 47 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 48 return false; 49 } 50 51 return true; 52 } 53 54 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 55 { 56 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 57 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 58 59 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 60 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 61 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 62 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 63 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 64 } 65 } 66 67 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 68 { 69 uint32_t wptr; 70 unsigned long flags; 71 72 update_shadow_rptr(gpu, ring); 73 74 spin_lock_irqsave(&ring->preempt_lock, flags); 75 76 /* Copy the shadow to the actual register */ 77 ring->cur = ring->next; 78 79 /* Make sure to wrap wptr if we need to */ 80 wptr = get_wptr(ring); 81 82 spin_unlock_irqrestore(&ring->preempt_lock, flags); 83 84 /* Make sure everything is posted before making a decision */ 85 mb(); 86 87 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 88 } 89 90 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 91 u64 iova) 92 { 93 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 94 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 95 CP_REG_TO_MEM_0_CNT(2) | 96 CP_REG_TO_MEM_0_64B); 97 OUT_RING(ring, lower_32_bits(iova)); 98 OUT_RING(ring, upper_32_bits(iova)); 99 } 100 101 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 102 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 103 { 104 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; 105 phys_addr_t ttbr; 106 u32 asid; 107 u64 memptr = rbmemptr(ring, ttbr0); 108 109 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) 110 return; 111 112 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 113 return; 114 115 if (!sysprof) { 116 /* Turn off protected mode to write to special registers */ 117 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 118 OUT_RING(ring, 0); 119 120 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); 121 OUT_RING(ring, 1); 122 } 123 124 /* Execute the table update */ 125 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 126 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 127 128 OUT_RING(ring, 129 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 130 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 131 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 132 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 133 134 /* 135 * Write the new TTBR0 to the memstore. This is good for debugging. 136 */ 137 OUT_PKT7(ring, CP_MEM_WRITE, 4); 138 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 139 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 140 OUT_RING(ring, lower_32_bits(ttbr)); 141 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 142 143 /* 144 * And finally, trigger a uche flush to be sure there isn't anything 145 * lingering in that part of the GPU 146 */ 147 148 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 149 OUT_RING(ring, 0x31); 150 151 if (!sysprof) { 152 /* 153 * Wait for SRAM clear after the pgtable update, so the 154 * two can happen in parallel: 155 */ 156 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); 157 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); 158 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( 159 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); 160 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); 161 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); 162 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); 163 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); 164 165 /* Re-enable protected mode: */ 166 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 167 OUT_RING(ring, 1); 168 } 169 } 170 171 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 172 { 173 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 174 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 175 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 176 struct msm_ringbuffer *ring = submit->ring; 177 unsigned int i, ibs = 0; 178 179 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 180 181 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 182 rbmemptr_stats(ring, index, cpcycles_start)); 183 184 /* 185 * For PM4 the GMU register offsets are calculated from the base of the 186 * GPU registers so we need to add 0x1a800 to the register value on A630 187 * to get the right value from PM4. 188 */ 189 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 190 rbmemptr_stats(ring, index, alwayson_start)); 191 192 /* Invalidate CCU depth and color */ 193 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 194 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 195 196 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 197 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 198 199 /* Submit the commands */ 200 for (i = 0; i < submit->nr_cmds; i++) { 201 switch (submit->cmd[i].type) { 202 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 203 break; 204 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 205 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 206 break; 207 fallthrough; 208 case MSM_SUBMIT_CMD_BUF: 209 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 210 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 211 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 212 OUT_RING(ring, submit->cmd[i].size); 213 ibs++; 214 break; 215 } 216 217 /* 218 * Periodically update shadow-wptr if needed, so that we 219 * can see partial progress of submits with large # of 220 * cmds.. otherwise we could needlessly stall waiting for 221 * ringbuffer state, simply due to looking at a shadow 222 * rptr value that has not been updated 223 */ 224 if ((ibs % 32) == 0) 225 update_shadow_rptr(gpu, ring); 226 } 227 228 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 229 rbmemptr_stats(ring, index, cpcycles_end)); 230 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 231 rbmemptr_stats(ring, index, alwayson_end)); 232 233 /* Write the fence to the scratch register */ 234 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 235 OUT_RING(ring, submit->seqno); 236 237 /* 238 * Execute a CACHE_FLUSH_TS event. This will ensure that the 239 * timestamp is written to the memory and then triggers the interrupt 240 */ 241 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 242 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 243 CP_EVENT_WRITE_0_IRQ); 244 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 245 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 246 OUT_RING(ring, submit->seqno); 247 248 trace_msm_gpu_submit_flush(submit, 249 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 250 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI)); 251 252 a6xx_flush(gpu, ring); 253 } 254 255 const struct adreno_reglist a630_hwcg[] = { 256 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 257 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 258 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 259 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 260 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 261 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 262 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 263 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 264 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 265 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 266 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 267 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 268 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 269 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 270 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 271 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 272 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 273 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 274 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 275 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 276 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 277 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 278 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 279 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 280 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 281 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 282 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 283 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 284 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 285 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 286 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 287 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 288 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 289 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 290 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 291 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 292 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 293 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 294 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 295 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 296 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 297 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 298 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 299 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 300 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 301 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 302 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 303 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 304 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 305 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 306 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 307 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 308 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 309 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 310 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 311 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 312 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 313 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 314 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 315 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 316 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 317 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 318 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 319 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 320 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 321 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 322 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 323 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 324 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 325 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 326 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 327 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 328 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 329 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 330 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 331 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 332 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 333 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 334 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 335 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 336 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 337 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 338 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 339 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 340 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 341 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 342 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 343 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 344 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 345 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 346 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 347 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 348 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 349 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 350 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 351 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 352 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 353 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 354 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 355 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 356 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 357 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 358 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 359 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 360 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 361 {}, 362 }; 363 364 const struct adreno_reglist a640_hwcg[] = { 365 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 366 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 367 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 368 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 369 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 370 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 371 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 372 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 373 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 374 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 375 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 376 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 377 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 378 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 379 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 380 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 381 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 382 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 383 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 384 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 385 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 386 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 387 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 388 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 389 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 390 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 391 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 392 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 393 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 394 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 395 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 396 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 397 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 398 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 399 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 400 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 401 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 403 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 404 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 405 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 406 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 407 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 408 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 409 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 410 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 411 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 412 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 413 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 414 {}, 415 }; 416 417 const struct adreno_reglist a650_hwcg[] = { 418 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 419 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 421 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 422 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 423 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 424 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 425 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 426 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 427 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 428 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 429 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 430 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 431 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 432 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 433 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 434 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 435 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 436 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 437 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 438 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 439 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 440 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 441 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 442 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 443 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 444 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 445 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 446 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 447 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 448 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 449 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 450 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 451 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 452 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 453 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 454 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 455 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 456 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 457 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 458 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 459 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 460 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 461 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 462 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 463 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 464 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 465 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 466 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 467 {}, 468 }; 469 470 const struct adreno_reglist a660_hwcg[] = { 471 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 472 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 473 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 474 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 475 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 476 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 477 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 478 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 479 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 480 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 481 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 482 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 483 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 484 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 485 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 486 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 487 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 488 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 489 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 490 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 491 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 492 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 493 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 494 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 495 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 496 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 497 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 498 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 499 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 500 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 501 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 502 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 503 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 504 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 505 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 506 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 507 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 508 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 509 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 510 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 511 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 512 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 513 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 514 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 515 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 516 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 517 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 518 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 519 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 520 {}, 521 }; 522 523 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 524 { 525 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 526 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 527 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 528 const struct adreno_reglist *reg; 529 unsigned int i; 530 u32 val, clock_cntl_on; 531 532 if (!adreno_gpu->info->hwcg) 533 return; 534 535 if (adreno_is_a630(adreno_gpu)) 536 clock_cntl_on = 0x8aa8aa02; 537 else 538 clock_cntl_on = 0x8aa8aa82; 539 540 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 541 542 /* Don't re-program the registers if they are already correct */ 543 if ((!state && !val) || (state && (val == clock_cntl_on))) 544 return; 545 546 /* Disable SP clock before programming HWCG registers */ 547 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 548 549 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 550 gpu_write(gpu, reg->offset, state ? reg->value : 0); 551 552 /* Enable SP clock */ 553 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 554 555 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 556 } 557 558 /* For a615, a616, a618, A619, a630, a640 and a680 */ 559 static const u32 a6xx_protect[] = { 560 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 561 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 562 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 563 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 564 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 565 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 566 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 567 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 568 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 569 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 570 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 571 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 572 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 573 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 574 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 575 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 576 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 577 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 578 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 579 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 580 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 581 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 582 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 583 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 584 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 585 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 586 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 587 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 588 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 589 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 590 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 591 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 592 }; 593 594 /* These are for a620 and a650 */ 595 static const u32 a650_protect[] = { 596 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 597 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 598 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 599 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 600 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 601 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 602 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 603 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 604 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 605 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 606 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 607 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 608 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 609 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 610 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 611 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 612 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 613 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 614 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 615 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 616 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 617 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 618 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 619 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 620 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 621 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 622 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 623 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 624 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 625 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 626 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 627 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 628 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 629 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 630 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 631 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 632 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 633 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 634 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 635 }; 636 637 /* These are for a635 and a660 */ 638 static const u32 a660_protect[] = { 639 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 640 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 641 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 642 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 643 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 644 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 645 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 646 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 647 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 648 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 649 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 650 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 651 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 652 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 653 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 654 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 655 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 656 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 657 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 658 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 659 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 660 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 661 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 662 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 663 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 664 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 665 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 666 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 667 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 668 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 669 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 670 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 671 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 672 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 673 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 674 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 675 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 676 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 677 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 678 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 679 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 680 }; 681 682 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 683 { 684 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 685 const u32 *regs = a6xx_protect; 686 unsigned i, count, count_max; 687 688 if (adreno_is_a650(adreno_gpu)) { 689 regs = a650_protect; 690 count = ARRAY_SIZE(a650_protect); 691 count_max = 48; 692 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 693 } else if (adreno_is_a660_family(adreno_gpu)) { 694 regs = a660_protect; 695 count = ARRAY_SIZE(a660_protect); 696 count_max = 48; 697 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); 698 } else { 699 regs = a6xx_protect; 700 count = ARRAY_SIZE(a6xx_protect); 701 count_max = 32; 702 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 703 } 704 705 /* 706 * Enable access protection to privileged registers, fault on an access 707 * protect violation and select the last span to protect from the start 708 * address all the way to the end of the register address space 709 */ 710 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3)); 711 712 for (i = 0; i < count - 1; i++) 713 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 714 /* last CP_PROTECT to have "infinite" length on the last entry */ 715 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 716 } 717 718 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 719 { 720 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 721 u32 lower_bit = 2; 722 u32 amsbc = 0; 723 u32 rgb565_predicator = 0; 724 u32 uavflagprd_inv = 0; 725 726 /* a618 is using the hw default values */ 727 if (adreno_is_a618(adreno_gpu)) 728 return; 729 730 if (adreno_is_a640_family(adreno_gpu)) 731 amsbc = 1; 732 733 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { 734 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 735 lower_bit = 3; 736 amsbc = 1; 737 rgb565_predicator = 1; 738 uavflagprd_inv = 2; 739 } 740 741 if (adreno_is_7c3(adreno_gpu)) { 742 lower_bit = 1; 743 amsbc = 1; 744 rgb565_predicator = 1; 745 uavflagprd_inv = 2; 746 } 747 748 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 749 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1); 750 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1); 751 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 752 uavflagprd_inv << 4 | lower_bit << 1); 753 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21); 754 } 755 756 static int a6xx_cp_init(struct msm_gpu *gpu) 757 { 758 struct msm_ringbuffer *ring = gpu->rb[0]; 759 760 OUT_PKT7(ring, CP_ME_INIT, 8); 761 762 OUT_RING(ring, 0x0000002f); 763 764 /* Enable multiple hardware contexts */ 765 OUT_RING(ring, 0x00000003); 766 767 /* Enable error detection */ 768 OUT_RING(ring, 0x20000000); 769 770 /* Don't enable header dump */ 771 OUT_RING(ring, 0x00000000); 772 OUT_RING(ring, 0x00000000); 773 774 /* No workarounds enabled */ 775 OUT_RING(ring, 0x00000000); 776 777 /* Pad rest of the cmds with 0's */ 778 OUT_RING(ring, 0x00000000); 779 OUT_RING(ring, 0x00000000); 780 781 a6xx_flush(gpu, ring); 782 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 783 } 784 785 /* 786 * Check that the microcode version is new enough to include several key 787 * security fixes. Return true if the ucode is safe. 788 */ 789 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 790 struct drm_gem_object *obj) 791 { 792 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 793 struct msm_gpu *gpu = &adreno_gpu->base; 794 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 795 u32 *buf = msm_gem_get_vaddr(obj); 796 bool ret = false; 797 798 if (IS_ERR(buf)) 799 return false; 800 801 /* 802 * Targets up to a640 (a618, a630 and a640) need to check for a 803 * microcode version that is patched to support the whereami opcode or 804 * one that is new enough to include it by default. 805 * 806 * a650 tier targets don't need whereami but still need to be 807 * equal to or newer than 0.95 for other security fixes 808 * 809 * a660 targets have all the critical security fixes from the start 810 */ 811 if (!strcmp(sqe_name, "a630_sqe.fw")) { 812 /* 813 * If the lowest nibble is 0xa that is an indication that this 814 * microcode has been patched. The actual version is in dword 815 * [3] but we only care about the patchlevel which is the lowest 816 * nibble of dword [3] 817 * 818 * Otherwise check that the firmware is greater than or equal 819 * to 1.90 which was the first version that had this fix built 820 * in 821 */ 822 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 823 (buf[0] & 0xfff) >= 0x190) { 824 a6xx_gpu->has_whereami = true; 825 ret = true; 826 goto out; 827 } 828 829 DRM_DEV_ERROR(&gpu->pdev->dev, 830 "a630 SQE ucode is too old. Have version %x need at least %x\n", 831 buf[0] & 0xfff, 0x190); 832 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 833 if ((buf[0] & 0xfff) >= 0x095) { 834 ret = true; 835 goto out; 836 } 837 838 DRM_DEV_ERROR(&gpu->pdev->dev, 839 "a650 SQE ucode is too old. Have version %x need at least %x\n", 840 buf[0] & 0xfff, 0x095); 841 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 842 ret = true; 843 } else { 844 DRM_DEV_ERROR(&gpu->pdev->dev, 845 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 846 } 847 out: 848 msm_gem_put_vaddr(obj); 849 return ret; 850 } 851 852 static int a6xx_ucode_init(struct msm_gpu *gpu) 853 { 854 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 855 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 856 857 if (!a6xx_gpu->sqe_bo) { 858 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 859 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 860 861 if (IS_ERR(a6xx_gpu->sqe_bo)) { 862 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 863 864 a6xx_gpu->sqe_bo = NULL; 865 DRM_DEV_ERROR(&gpu->pdev->dev, 866 "Could not allocate SQE ucode: %d\n", ret); 867 868 return ret; 869 } 870 871 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 872 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 873 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 874 drm_gem_object_put(a6xx_gpu->sqe_bo); 875 876 a6xx_gpu->sqe_bo = NULL; 877 return -EPERM; 878 } 879 } 880 881 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, 882 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova); 883 884 return 0; 885 } 886 887 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 888 { 889 static bool loaded; 890 int ret; 891 892 if (loaded) 893 return 0; 894 895 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 896 897 loaded = !ret; 898 return ret; 899 } 900 901 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 902 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 903 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 904 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 905 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 906 A6XX_RBBM_INT_0_MASK_CP_RB | \ 907 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 908 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 909 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 910 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 911 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 912 913 static int hw_init(struct msm_gpu *gpu) 914 { 915 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 916 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 917 int ret; 918 919 /* Make sure the GMU keeps the GPU on while we set it up */ 920 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 921 922 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 923 924 /* 925 * Disable the trusted memory range - we don't actually supported secure 926 * memory rendering at this point in time and we don't want to block off 927 * part of the virtual memory space. 928 */ 929 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 930 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 931 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 932 933 /* Turn on 64 bit addressing for all blocks */ 934 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 935 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 936 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 937 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 938 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 939 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 940 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 941 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 942 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 943 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 944 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 945 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 946 947 /* enable hardware clockgating */ 948 a6xx_set_hwcg(gpu, true); 949 950 /* VBIF/GBIF start*/ 951 if (adreno_is_a640_family(adreno_gpu) || 952 adreno_is_a650_family(adreno_gpu)) { 953 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 954 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 955 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 956 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 957 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 958 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 959 } else { 960 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 961 } 962 963 if (adreno_is_a630(adreno_gpu)) 964 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 965 966 /* Make all blocks contribute to the GPU BUSY perf counter */ 967 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 968 969 /* Disable L2 bypass in the UCHE */ 970 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 971 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 972 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 973 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 974 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 975 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 976 977 if (!adreno_is_a650_family(adreno_gpu)) { 978 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 979 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 980 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 981 982 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 983 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 984 0x00100000 + adreno_gpu->gmem - 1); 985 } 986 987 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 988 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 989 990 if (adreno_is_a640_family(adreno_gpu) || 991 adreno_is_a650_family(adreno_gpu)) 992 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 993 else 994 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 995 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 996 997 if (adreno_is_a660_family(adreno_gpu)) 998 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 999 1000 /* Setting the mem pool size */ 1001 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 1002 1003 /* Setting the primFifo thresholds default values, 1004 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 1005 */ 1006 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1007 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1008 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 1009 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 1010 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1011 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1012 else 1013 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 1014 1015 /* Set the AHB default slave response to "ERROR" */ 1016 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 1017 1018 /* Turn on performance counters */ 1019 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 1020 1021 /* Select CP0 to always count cycles */ 1022 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 1023 1024 a6xx_set_ubwc_config(gpu); 1025 1026 /* Enable fault detection */ 1027 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 1028 (1 << 30) | 0x1fffff); 1029 1030 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 1031 1032 /* Set weights for bicubic filtering */ 1033 if (adreno_is_a650_family(adreno_gpu)) { 1034 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1035 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1036 0x3fe05ff4); 1037 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1038 0x3fa0ebee); 1039 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1040 0x3f5193ed); 1041 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1042 0x3f0243f0); 1043 } 1044 1045 /* Protect registers from the CP */ 1046 a6xx_set_cp_protect(gpu); 1047 1048 if (adreno_is_a660_family(adreno_gpu)) { 1049 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1050 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1051 } 1052 1053 /* Set dualQ + disable afull for A660 GPU */ 1054 if (adreno_is_a660(adreno_gpu)) 1055 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1056 1057 /* Enable expanded apriv for targets that support it */ 1058 if (gpu->hw_apriv) { 1059 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1060 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 1061 } 1062 1063 /* Enable interrupts */ 1064 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 1065 1066 ret = adreno_hw_init(gpu); 1067 if (ret) 1068 goto out; 1069 1070 ret = a6xx_ucode_init(gpu); 1071 if (ret) 1072 goto out; 1073 1074 /* Set the ringbuffer address */ 1075 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI, 1076 gpu->rb[0]->iova); 1077 1078 /* Targets that support extended APRIV can use the RPTR shadow from 1079 * hardware but all the other ones need to disable the feature. Targets 1080 * that support the WHERE_AM_I opcode can use that instead 1081 */ 1082 if (adreno_gpu->base.hw_apriv) 1083 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1084 else 1085 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1086 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1087 1088 /* 1089 * Expanded APRIV and targets that support WHERE_AM_I both need a 1090 * privileged buffer to store the RPTR shadow 1091 */ 1092 1093 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) { 1094 if (!a6xx_gpu->shadow_bo) { 1095 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1096 sizeof(u32) * gpu->nr_rings, 1097 MSM_BO_WC | MSM_BO_MAP_PRIV, 1098 gpu->aspace, &a6xx_gpu->shadow_bo, 1099 &a6xx_gpu->shadow_iova); 1100 1101 if (IS_ERR(a6xx_gpu->shadow)) 1102 return PTR_ERR(a6xx_gpu->shadow); 1103 1104 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); 1105 } 1106 1107 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO, 1108 REG_A6XX_CP_RB_RPTR_ADDR_HI, 1109 shadowptr(a6xx_gpu, gpu->rb[0])); 1110 } 1111 1112 /* Always come up on rb 0 */ 1113 a6xx_gpu->cur_ring = gpu->rb[0]; 1114 1115 gpu->cur_ctx_seqno = 0; 1116 1117 /* Enable the SQE_to start the CP engine */ 1118 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1119 1120 ret = a6xx_cp_init(gpu); 1121 if (ret) 1122 goto out; 1123 1124 /* 1125 * Try to load a zap shader into the secure world. If successful 1126 * we can use the CP to switch out of secure mode. If not then we 1127 * have no resource but to try to switch ourselves out manually. If we 1128 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1129 * be blocked and a permissions violation will soon follow. 1130 */ 1131 ret = a6xx_zap_shader_init(gpu); 1132 if (!ret) { 1133 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1134 OUT_RING(gpu->rb[0], 0x00000000); 1135 1136 a6xx_flush(gpu, gpu->rb[0]); 1137 if (!a6xx_idle(gpu, gpu->rb[0])) 1138 return -EINVAL; 1139 } else if (ret == -ENODEV) { 1140 /* 1141 * This device does not use zap shader (but print a warning 1142 * just in case someone got their dt wrong.. hopefully they 1143 * have a debug UART to realize the error of their ways... 1144 * if you mess this up you are about to crash horribly) 1145 */ 1146 dev_warn_once(gpu->dev->dev, 1147 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1148 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1149 ret = 0; 1150 } else { 1151 return ret; 1152 } 1153 1154 out: 1155 /* 1156 * Tell the GMU that we are done touching the GPU and it can start power 1157 * management 1158 */ 1159 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1160 1161 if (a6xx_gpu->gmu.legacy) { 1162 /* Take the GMU out of its special boot mode */ 1163 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1164 } 1165 1166 return ret; 1167 } 1168 1169 static int a6xx_hw_init(struct msm_gpu *gpu) 1170 { 1171 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1172 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1173 int ret; 1174 1175 mutex_lock(&a6xx_gpu->gmu.lock); 1176 ret = hw_init(gpu); 1177 mutex_unlock(&a6xx_gpu->gmu.lock); 1178 1179 return ret; 1180 } 1181 1182 static void a6xx_dump(struct msm_gpu *gpu) 1183 { 1184 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1185 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1186 adreno_dump(gpu); 1187 } 1188 1189 #define VBIF_RESET_ACK_TIMEOUT 100 1190 #define VBIF_RESET_ACK_MASK 0x00f0 1191 1192 static void a6xx_recover(struct msm_gpu *gpu) 1193 { 1194 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1195 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1196 int i; 1197 1198 adreno_dump_info(gpu); 1199 1200 for (i = 0; i < 8; i++) 1201 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1202 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1203 1204 if (hang_debug) 1205 a6xx_dump(gpu); 1206 1207 /* 1208 * Turn off keep alive that might have been enabled by the hang 1209 * interrupt 1210 */ 1211 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 1212 1213 gpu->funcs->pm_suspend(gpu); 1214 gpu->funcs->pm_resume(gpu); 1215 1216 msm_gpu_hw_init(gpu); 1217 } 1218 1219 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 1220 { 1221 static const char *uche_clients[7] = { 1222 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 1223 }; 1224 u32 val; 1225 1226 if (mid < 1 || mid > 3) 1227 return "UNKNOWN"; 1228 1229 /* 1230 * The source of the data depends on the mid ID read from FSYNR1. 1231 * and the client ID read from the UCHE block 1232 */ 1233 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 1234 1235 /* mid = 3 is most precise and refers to only one block per client */ 1236 if (mid == 3) 1237 return uche_clients[val & 7]; 1238 1239 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 1240 if (mid == 2) 1241 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 1242 1243 /* For mid=1 just return "UCHE" as a catchall for everything else */ 1244 return "UCHE"; 1245 } 1246 1247 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 1248 { 1249 if (id == 0) 1250 return "CP"; 1251 else if (id == 4) 1252 return "CCU"; 1253 else if (id == 6) 1254 return "CDP Prefetch"; 1255 1256 return a6xx_uche_fault_block(gpu, id); 1257 } 1258 1259 #define ARM_SMMU_FSR_TF BIT(1) 1260 #define ARM_SMMU_FSR_PF BIT(3) 1261 #define ARM_SMMU_FSR_EF BIT(4) 1262 1263 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1264 { 1265 struct msm_gpu *gpu = arg; 1266 struct adreno_smmu_fault_info *info = data; 1267 const char *type = "UNKNOWN"; 1268 const char *block; 1269 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate); 1270 1271 /* 1272 * If we aren't going to be resuming later from fault_worker, then do 1273 * it now. 1274 */ 1275 if (!do_devcoredump) { 1276 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu); 1277 } 1278 1279 /* 1280 * Print a default message if we couldn't get the data from the 1281 * adreno-smmu-priv 1282 */ 1283 if (!info) { 1284 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n", 1285 iova, flags, 1286 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1287 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1288 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1289 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1290 1291 return 0; 1292 } 1293 1294 if (info->fsr & ARM_SMMU_FSR_TF) 1295 type = "TRANSLATION"; 1296 else if (info->fsr & ARM_SMMU_FSR_PF) 1297 type = "PERMISSION"; 1298 else if (info->fsr & ARM_SMMU_FSR_EF) 1299 type = "EXTERNAL"; 1300 1301 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 1302 1303 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n", 1304 info->ttbr0, iova, 1305 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ", 1306 type, block, 1307 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1308 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1309 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1310 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1311 1312 if (do_devcoredump) { 1313 /* Turn off the hangcheck timer to keep it from bothering us */ 1314 del_timer(&gpu->hangcheck_timer); 1315 1316 gpu->fault_info.ttbr0 = info->ttbr0; 1317 gpu->fault_info.iova = iova; 1318 gpu->fault_info.flags = flags; 1319 gpu->fault_info.type = type; 1320 gpu->fault_info.block = block; 1321 1322 kthread_queue_work(gpu->worker, &gpu->fault_work); 1323 } 1324 1325 return 0; 1326 } 1327 1328 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 1329 { 1330 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 1331 1332 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 1333 u32 val; 1334 1335 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 1336 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 1337 dev_err_ratelimited(&gpu->pdev->dev, 1338 "CP | opcode error | possible opcode=0x%8.8X\n", 1339 val); 1340 } 1341 1342 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 1343 dev_err_ratelimited(&gpu->pdev->dev, 1344 "CP ucode error interrupt\n"); 1345 1346 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 1347 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 1348 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 1349 1350 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1351 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1352 1353 dev_err_ratelimited(&gpu->pdev->dev, 1354 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1355 val & (1 << 20) ? "READ" : "WRITE", 1356 (val & 0x3ffff), val); 1357 } 1358 1359 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1360 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1361 1362 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1363 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1364 1365 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1366 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1367 1368 } 1369 1370 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1371 { 1372 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1373 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1374 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1375 1376 /* 1377 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1378 * but the fault handler will trigger the devcore dump, and we want 1379 * to otherwise resume normally rather than killing the submit, so 1380 * just bail. 1381 */ 1382 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 1383 return; 1384 1385 /* 1386 * Force the GPU to stay on until after we finish 1387 * collecting information 1388 */ 1389 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1390 1391 DRM_DEV_ERROR(&gpu->pdev->dev, 1392 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1393 ring ? ring->id : -1, ring ? ring->seqno : 0, 1394 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1395 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1396 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1397 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 1398 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1399 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 1400 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1401 1402 /* Turn off the hangcheck timer to keep it from bothering us */ 1403 del_timer(&gpu->hangcheck_timer); 1404 1405 kthread_queue_work(gpu->worker, &gpu->recover_work); 1406 } 1407 1408 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1409 { 1410 struct msm_drm_private *priv = gpu->dev->dev_private; 1411 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1412 1413 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1414 1415 if (priv->disable_err_irq) 1416 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; 1417 1418 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1419 a6xx_fault_detect_irq(gpu); 1420 1421 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1422 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1423 1424 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1425 a6xx_cp_hw_err_irq(gpu); 1426 1427 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1428 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1429 1430 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1431 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1432 1433 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1434 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1435 1436 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1437 msm_gpu_retire(gpu); 1438 1439 return IRQ_HANDLED; 1440 } 1441 1442 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) 1443 { 1444 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); 1445 } 1446 1447 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) 1448 { 1449 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); 1450 } 1451 1452 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1453 { 1454 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1455 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1456 } 1457 1458 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1459 { 1460 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1461 struct msm_gpu *gpu = &adreno_gpu->base; 1462 u32 cntl1_regval = 0; 1463 1464 if (IS_ERR(a6xx_gpu->llc_mmio)) 1465 return; 1466 1467 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1468 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1469 1470 gpu_scid &= 0x1f; 1471 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1472 (gpu_scid << 15) | (gpu_scid << 20); 1473 1474 /* On A660, the SCID programming for UCHE traffic is done in 1475 * A6XX_GBIF_SCACHE_CNTL0[14:10] 1476 */ 1477 if (adreno_is_a660_family(adreno_gpu)) 1478 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 1479 (1 << 8), (gpu_scid << 10) | (1 << 8)); 1480 } 1481 1482 /* 1483 * For targets with a MMU500, activate the slice but don't program the 1484 * register. The XBL will take care of that. 1485 */ 1486 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1487 if (!a6xx_gpu->have_mmu500) { 1488 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1489 1490 gpuhtw_scid &= 0x1f; 1491 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1492 } 1493 } 1494 1495 if (!cntl1_regval) 1496 return; 1497 1498 /* 1499 * Program the slice IDs for the various GPU blocks and GPU MMU 1500 * pagetables 1501 */ 1502 if (!a6xx_gpu->have_mmu500) { 1503 a6xx_llc_write(a6xx_gpu, 1504 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1505 1506 /* 1507 * Program cacheability overrides to not allocate cache 1508 * lines on a write miss 1509 */ 1510 a6xx_llc_rmw(a6xx_gpu, 1511 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1512 return; 1513 } 1514 1515 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 1516 } 1517 1518 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1519 { 1520 llcc_slice_putd(a6xx_gpu->llc_slice); 1521 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1522 } 1523 1524 static void a6xx_llc_slices_init(struct platform_device *pdev, 1525 struct a6xx_gpu *a6xx_gpu) 1526 { 1527 struct device_node *phandle; 1528 1529 /* 1530 * There is a different programming path for targets with an mmu500 1531 * attached, so detect if that is the case 1532 */ 1533 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1534 a6xx_gpu->have_mmu500 = (phandle && 1535 of_device_is_compatible(phandle, "arm,mmu-500")); 1536 of_node_put(phandle); 1537 1538 if (a6xx_gpu->have_mmu500) 1539 a6xx_gpu->llc_mmio = NULL; 1540 else 1541 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); 1542 1543 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1544 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1545 1546 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1547 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1548 } 1549 1550 static int a6xx_pm_resume(struct msm_gpu *gpu) 1551 { 1552 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1553 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1554 int ret; 1555 1556 gpu->needs_hw_init = true; 1557 1558 trace_msm_gpu_resume(0); 1559 1560 mutex_lock(&a6xx_gpu->gmu.lock); 1561 ret = a6xx_gmu_resume(a6xx_gpu); 1562 mutex_unlock(&a6xx_gpu->gmu.lock); 1563 if (ret) 1564 return ret; 1565 1566 msm_devfreq_resume(gpu); 1567 1568 a6xx_llc_activate(a6xx_gpu); 1569 1570 return 0; 1571 } 1572 1573 static int a6xx_pm_suspend(struct msm_gpu *gpu) 1574 { 1575 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1576 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1577 int i, ret; 1578 1579 trace_msm_gpu_suspend(0); 1580 1581 a6xx_llc_deactivate(a6xx_gpu); 1582 1583 msm_devfreq_suspend(gpu); 1584 1585 mutex_lock(&a6xx_gpu->gmu.lock); 1586 ret = a6xx_gmu_stop(a6xx_gpu); 1587 mutex_unlock(&a6xx_gpu->gmu.lock); 1588 if (ret) 1589 return ret; 1590 1591 if (a6xx_gpu->shadow_bo) 1592 for (i = 0; i < gpu->nr_rings; i++) 1593 a6xx_gpu->shadow[i] = 0; 1594 1595 gpu->suspend_count++; 1596 1597 return 0; 1598 } 1599 1600 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1601 { 1602 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1603 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1604 1605 mutex_lock(&a6xx_gpu->gmu.lock); 1606 1607 /* Force the GPU power on so we can read this register */ 1608 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1609 1610 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 1611 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI); 1612 1613 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1614 1615 mutex_unlock(&a6xx_gpu->gmu.lock); 1616 1617 return 0; 1618 } 1619 1620 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 1621 { 1622 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1623 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1624 1625 return a6xx_gpu->cur_ring; 1626 } 1627 1628 static void a6xx_destroy(struct msm_gpu *gpu) 1629 { 1630 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1631 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1632 1633 if (a6xx_gpu->sqe_bo) { 1634 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1635 drm_gem_object_put(a6xx_gpu->sqe_bo); 1636 } 1637 1638 if (a6xx_gpu->shadow_bo) { 1639 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 1640 drm_gem_object_put(a6xx_gpu->shadow_bo); 1641 } 1642 1643 a6xx_llc_slices_destroy(a6xx_gpu); 1644 1645 a6xx_gmu_remove(a6xx_gpu); 1646 1647 adreno_gpu_cleanup(adreno_gpu); 1648 1649 kfree(a6xx_gpu); 1650 } 1651 1652 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 1653 { 1654 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1655 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1656 u64 busy_cycles, busy_time; 1657 1658 1659 /* Only read the gpu busy if the hardware is already active */ 1660 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0) 1661 return 0; 1662 1663 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 1664 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 1665 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 1666 1667 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 1668 do_div(busy_time, 192); 1669 1670 gpu->devfreq.busy_cycles = busy_cycles; 1671 1672 pm_runtime_put(a6xx_gpu->gmu.dev); 1673 1674 if (WARN_ON(busy_time > ~0LU)) 1675 return ~0LU; 1676 1677 return (unsigned long)busy_time; 1678 } 1679 1680 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp) 1681 { 1682 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1683 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1684 1685 mutex_lock(&a6xx_gpu->gmu.lock); 1686 a6xx_gmu_set_freq(gpu, opp); 1687 mutex_unlock(&a6xx_gpu->gmu.lock); 1688 } 1689 1690 static struct msm_gem_address_space * 1691 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 1692 { 1693 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1694 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1695 struct iommu_domain *iommu; 1696 struct msm_mmu *mmu; 1697 struct msm_gem_address_space *aspace; 1698 u64 start, size; 1699 1700 iommu = iommu_domain_alloc(&platform_bus_type); 1701 if (!iommu) 1702 return NULL; 1703 1704 /* 1705 * This allows GPU to set the bus attributes required to use system 1706 * cache on behalf of the iommu page table walker. 1707 */ 1708 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1709 adreno_set_llc_attributes(iommu); 1710 1711 mmu = msm_iommu_new(&pdev->dev, iommu); 1712 if (IS_ERR(mmu)) { 1713 iommu_domain_free(iommu); 1714 return ERR_CAST(mmu); 1715 } 1716 1717 /* 1718 * Use the aperture start or SZ_16M, whichever is greater. This will 1719 * ensure that we align with the allocated pagetable range while still 1720 * allowing room in the lower 32 bits for GMEM and whatnot 1721 */ 1722 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 1723 size = iommu->geometry.aperture_end - start + 1; 1724 1725 aspace = msm_gem_address_space_create(mmu, "gpu", 1726 start & GENMASK_ULL(48, 0), size); 1727 1728 if (IS_ERR(aspace) && !IS_ERR(mmu)) 1729 mmu->funcs->destroy(mmu); 1730 1731 return aspace; 1732 } 1733 1734 static struct msm_gem_address_space * 1735 a6xx_create_private_address_space(struct msm_gpu *gpu) 1736 { 1737 struct msm_mmu *mmu; 1738 1739 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 1740 1741 if (IS_ERR(mmu)) 1742 return ERR_CAST(mmu); 1743 1744 return msm_gem_address_space_create(mmu, 1745 "gpu", 0x100000000ULL, SZ_4G); 1746 } 1747 1748 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1749 { 1750 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1751 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1752 1753 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1754 return a6xx_gpu->shadow[ring->id]; 1755 1756 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 1757 } 1758 1759 static u32 a618_get_speed_bin(u32 fuse) 1760 { 1761 if (fuse == 0) 1762 return 0; 1763 else if (fuse == 169) 1764 return 1; 1765 else if (fuse == 174) 1766 return 2; 1767 1768 return UINT_MAX; 1769 } 1770 1771 static u32 adreno_7c3_get_speed_bin(u32 fuse) 1772 { 1773 if (fuse == 0) 1774 return 0; 1775 else if (fuse == 117) 1776 return 0; 1777 else if (fuse == 190) 1778 return 1; 1779 1780 return UINT_MAX; 1781 } 1782 1783 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse) 1784 { 1785 u32 val = UINT_MAX; 1786 1787 if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev)) 1788 val = a618_get_speed_bin(fuse); 1789 1790 if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev)) 1791 val = adreno_7c3_get_speed_bin(fuse); 1792 1793 if (val == UINT_MAX) { 1794 DRM_DEV_ERROR(dev, 1795 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware", 1796 fuse); 1797 return UINT_MAX; 1798 } 1799 1800 return (1 << val); 1801 } 1802 1803 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev) 1804 { 1805 u32 supp_hw = UINT_MAX; 1806 u32 speedbin; 1807 int ret; 1808 1809 ret = adreno_read_speedbin(dev, &speedbin); 1810 /* 1811 * -ENOENT means that the platform doesn't support speedbin which is 1812 * fine 1813 */ 1814 if (ret == -ENOENT) { 1815 return 0; 1816 } else if (ret) { 1817 DRM_DEV_ERROR(dev, 1818 "failed to read speed-bin (%d). Some OPPs may not be supported by hardware", 1819 ret); 1820 goto done; 1821 } 1822 1823 supp_hw = fuse_to_supp_hw(dev, rev, speedbin); 1824 1825 done: 1826 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 1827 if (ret) 1828 return ret; 1829 1830 return 0; 1831 } 1832 1833 static const struct adreno_gpu_funcs funcs = { 1834 .base = { 1835 .get_param = adreno_get_param, 1836 .set_param = adreno_set_param, 1837 .hw_init = a6xx_hw_init, 1838 .pm_suspend = a6xx_pm_suspend, 1839 .pm_resume = a6xx_pm_resume, 1840 .recover = a6xx_recover, 1841 .submit = a6xx_submit, 1842 .active_ring = a6xx_active_ring, 1843 .irq = a6xx_irq, 1844 .destroy = a6xx_destroy, 1845 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1846 .show = a6xx_show, 1847 #endif 1848 .gpu_busy = a6xx_gpu_busy, 1849 .gpu_get_freq = a6xx_gmu_get_freq, 1850 .gpu_set_freq = a6xx_gpu_set_freq, 1851 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1852 .gpu_state_get = a6xx_gpu_state_get, 1853 .gpu_state_put = a6xx_gpu_state_put, 1854 #endif 1855 .create_address_space = a6xx_create_address_space, 1856 .create_private_address_space = a6xx_create_private_address_space, 1857 .get_rptr = a6xx_get_rptr, 1858 }, 1859 .get_timestamp = a6xx_get_timestamp, 1860 }; 1861 1862 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 1863 { 1864 struct msm_drm_private *priv = dev->dev_private; 1865 struct platform_device *pdev = priv->gpu_pdev; 1866 struct adreno_platform_config *config = pdev->dev.platform_data; 1867 const struct adreno_info *info; 1868 struct device_node *node; 1869 struct a6xx_gpu *a6xx_gpu; 1870 struct adreno_gpu *adreno_gpu; 1871 struct msm_gpu *gpu; 1872 int ret; 1873 1874 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 1875 if (!a6xx_gpu) 1876 return ERR_PTR(-ENOMEM); 1877 1878 adreno_gpu = &a6xx_gpu->base; 1879 gpu = &adreno_gpu->base; 1880 1881 adreno_gpu->registers = NULL; 1882 1883 /* 1884 * We need to know the platform type before calling into adreno_gpu_init 1885 * so that the hw_apriv flag can be correctly set. Snoop into the info 1886 * and grab the revision number 1887 */ 1888 info = adreno_info(config->rev); 1889 1890 if (info && (info->revn == 650 || info->revn == 660 || 1891 adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev))) 1892 adreno_gpu->base.hw_apriv = true; 1893 1894 /* 1895 * For now only clamp to idle freq for devices where this is known not 1896 * to cause power supply issues: 1897 */ 1898 if (info && (info->revn == 618)) 1899 gpu->clamp_to_idle = true; 1900 1901 a6xx_llc_slices_init(pdev, a6xx_gpu); 1902 1903 ret = a6xx_set_supported_hw(&pdev->dev, config->rev); 1904 if (ret) { 1905 a6xx_destroy(&(a6xx_gpu->base.base)); 1906 return ERR_PTR(ret); 1907 } 1908 1909 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 1910 if (ret) { 1911 a6xx_destroy(&(a6xx_gpu->base.base)); 1912 return ERR_PTR(ret); 1913 } 1914 1915 /* Check if there is a GMU phandle and set it up */ 1916 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 1917 1918 /* FIXME: How do we gracefully handle this? */ 1919 BUG_ON(!node); 1920 1921 ret = a6xx_gmu_init(a6xx_gpu, node); 1922 if (ret) { 1923 a6xx_destroy(&(a6xx_gpu->base.base)); 1924 return ERR_PTR(ret); 1925 } 1926 1927 if (gpu->aspace) 1928 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 1929 a6xx_fault_handler); 1930 1931 return gpu; 1932 } 1933