xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision f1288bdb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/soc/qcom/llcc-qcom.h>
14 
15 #define GPU_PAS_ID 13
16 
17 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
18 {
19 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
20 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
21 
22 	/* Check that the GMU is idle */
23 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
24 		return false;
25 
26 	/* Check tha the CX master is idle */
27 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
28 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
29 		return false;
30 
31 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
32 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
33 }
34 
35 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
36 {
37 	/* wait for CP to drain ringbuffer: */
38 	if (!adreno_idle(gpu, ring))
39 		return false;
40 
41 	if (spin_until(_a6xx_check_idle(gpu))) {
42 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
43 			gpu->name, __builtin_return_address(0),
44 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
45 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
46 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
47 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
48 		return false;
49 	}
50 
51 	return true;
52 }
53 
54 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
55 {
56 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
57 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
58 
59 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
60 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
61 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
62 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
63 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
64 	}
65 }
66 
67 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
68 {
69 	uint32_t wptr;
70 	unsigned long flags;
71 
72 	update_shadow_rptr(gpu, ring);
73 
74 	spin_lock_irqsave(&ring->preempt_lock, flags);
75 
76 	/* Copy the shadow to the actual register */
77 	ring->cur = ring->next;
78 
79 	/* Make sure to wrap wptr if we need to */
80 	wptr = get_wptr(ring);
81 
82 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
83 
84 	/* Make sure everything is posted before making a decision */
85 	mb();
86 
87 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
88 }
89 
90 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
91 		u64 iova)
92 {
93 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
94 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
95 		CP_REG_TO_MEM_0_CNT(2) |
96 		CP_REG_TO_MEM_0_64B);
97 	OUT_RING(ring, lower_32_bits(iova));
98 	OUT_RING(ring, upper_32_bits(iova));
99 }
100 
101 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
102 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
103 {
104 	bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
105 	phys_addr_t ttbr;
106 	u32 asid;
107 	u64 memptr = rbmemptr(ring, ttbr0);
108 
109 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
110 		return;
111 
112 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
113 		return;
114 
115 	if (!sysprof) {
116 		/* Turn off protected mode to write to special registers */
117 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
118 		OUT_RING(ring, 0);
119 
120 		OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
121 		OUT_RING(ring, 1);
122 	}
123 
124 	/* Execute the table update */
125 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
126 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
127 
128 	OUT_RING(ring,
129 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
130 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
131 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
132 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
133 
134 	/*
135 	 * Write the new TTBR0 to the memstore. This is good for debugging.
136 	 */
137 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
138 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
139 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
140 	OUT_RING(ring, lower_32_bits(ttbr));
141 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
142 
143 	/*
144 	 * And finally, trigger a uche flush to be sure there isn't anything
145 	 * lingering in that part of the GPU
146 	 */
147 
148 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
149 	OUT_RING(ring, 0x31);
150 
151 	if (!sysprof) {
152 		/*
153 		 * Wait for SRAM clear after the pgtable update, so the
154 		 * two can happen in parallel:
155 		 */
156 		OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
157 		OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
158 		OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
159 				REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
160 		OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
161 		OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
162 		OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
163 		OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
164 
165 		/* Re-enable protected mode: */
166 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
167 		OUT_RING(ring, 1);
168 	}
169 }
170 
171 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
172 {
173 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
174 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
175 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
176 	struct msm_ringbuffer *ring = submit->ring;
177 	unsigned int i, ibs = 0;
178 
179 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
180 
181 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
182 		rbmemptr_stats(ring, index, cpcycles_start));
183 
184 	/*
185 	 * For PM4 the GMU register offsets are calculated from the base of the
186 	 * GPU registers so we need to add 0x1a800 to the register value on A630
187 	 * to get the right value from PM4.
188 	 */
189 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
190 		rbmemptr_stats(ring, index, alwayson_start));
191 
192 	/* Invalidate CCU depth and color */
193 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
194 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
195 
196 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
197 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
198 
199 	/* Submit the commands */
200 	for (i = 0; i < submit->nr_cmds; i++) {
201 		switch (submit->cmd[i].type) {
202 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
203 			break;
204 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
205 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
206 				break;
207 			fallthrough;
208 		case MSM_SUBMIT_CMD_BUF:
209 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
210 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
211 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
212 			OUT_RING(ring, submit->cmd[i].size);
213 			ibs++;
214 			break;
215 		}
216 
217 		/*
218 		 * Periodically update shadow-wptr if needed, so that we
219 		 * can see partial progress of submits with large # of
220 		 * cmds.. otherwise we could needlessly stall waiting for
221 		 * ringbuffer state, simply due to looking at a shadow
222 		 * rptr value that has not been updated
223 		 */
224 		if ((ibs % 32) == 0)
225 			update_shadow_rptr(gpu, ring);
226 	}
227 
228 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
229 		rbmemptr_stats(ring, index, cpcycles_end));
230 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
231 		rbmemptr_stats(ring, index, alwayson_end));
232 
233 	/* Write the fence to the scratch register */
234 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
235 	OUT_RING(ring, submit->seqno);
236 
237 	/*
238 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
239 	 * timestamp is written to the memory and then triggers the interrupt
240 	 */
241 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
242 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
243 		CP_EVENT_WRITE_0_IRQ);
244 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
245 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
246 	OUT_RING(ring, submit->seqno);
247 
248 	trace_msm_gpu_submit_flush(submit,
249 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
250 			REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
251 
252 	a6xx_flush(gpu, ring);
253 }
254 
255 /* For a615 family (a615, a616, a618 and a619) */
256 const struct adreno_reglist a615_hwcg[] = {
257 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0,  0x02222222},
258 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
259 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
260 	{REG_A6XX_RBBM_CLOCK_HYST_SP0,  0x0000F3CF},
261 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0,  0x02222222},
262 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1,  0x02222222},
263 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
264 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
265 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
266 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
267 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
268 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
269 	{REG_A6XX_RBBM_CLOCK_HYST_TP0,  0x77777777},
270 	{REG_A6XX_RBBM_CLOCK_HYST_TP1,  0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
272 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
273 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
274 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
275 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
276 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
277 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
278 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
279 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
280 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
281 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
282 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
283 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
284 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
285 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE,  0x22222222},
286 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
287 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
288 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
289 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE,  0x00000004},
290 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
291 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
292 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
293 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
294 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
295 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
296 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
297 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
298 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
299 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
300 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
301 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
302 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
303 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
304 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
305 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
306 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
307 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
308 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
309 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
310 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
311 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
312 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
313 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
314 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
315 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
316 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
317 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
318 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
319 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
320 	{},
321 };
322 
323 const struct adreno_reglist a630_hwcg[] = {
324 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
325 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
326 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
327 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
328 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
329 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
330 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
331 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
332 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
333 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
334 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
335 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
336 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
337 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
338 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
339 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
340 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
344 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
346 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
347 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
348 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
349 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
350 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
351 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
352 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
353 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
354 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
355 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
356 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
357 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
358 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
359 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
360 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
361 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
362 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
363 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
364 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
365 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
366 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
367 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
368 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
369 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
370 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
371 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
372 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
373 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
374 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
375 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
376 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
377 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
378 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
379 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
380 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
381 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
382 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
383 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
384 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
385 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
386 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
387 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
388 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
389 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
390 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
391 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
392 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
393 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
394 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
397 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
398 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
400 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
401 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
402 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
403 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
404 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
405 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
406 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
407 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
408 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
409 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
410 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
411 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
412 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
413 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
414 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
415 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
416 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
417 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
418 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
419 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
421 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
423 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
424 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
425 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
426 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
427 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
428 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
429 	{},
430 };
431 
432 const struct adreno_reglist a640_hwcg[] = {
433 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
434 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
435 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
436 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
437 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
438 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
439 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
440 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
441 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
442 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
443 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
444 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
445 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
446 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
447 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
448 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
449 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
450 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
451 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
452 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
453 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
454 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
455 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
456 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
457 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
458 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
459 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
460 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
461 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
462 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
463 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
464 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
465 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
466 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
467 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
468 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
469 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
470 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
471 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
472 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
473 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
474 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
475 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
476 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
477 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
478 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
479 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
480 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
481 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
482 	{},
483 };
484 
485 const struct adreno_reglist a650_hwcg[] = {
486 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
487 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
488 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
489 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
490 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
491 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
492 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
493 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
494 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
495 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
496 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
497 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
498 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
499 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
500 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
501 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
502 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
503 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
504 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
505 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
506 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
507 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
508 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
509 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
510 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
511 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
512 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
513 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
514 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
515 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
516 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
517 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
518 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
519 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
520 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
521 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
522 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
523 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
524 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
525 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
526 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
527 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
528 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
529 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
530 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
531 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
532 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
533 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
534 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
535 	{},
536 };
537 
538 const struct adreno_reglist a660_hwcg[] = {
539 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
540 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
541 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
542 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
543 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
544 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
545 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
546 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
547 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
548 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
549 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
550 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
551 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
552 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
553 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
554 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
555 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
556 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
557 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
558 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
559 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
560 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
561 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
562 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
563 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
564 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
565 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
566 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
567 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
568 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
569 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
570 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
571 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
572 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
573 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
574 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
575 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
576 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
577 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
578 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
579 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
580 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
581 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
582 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
583 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
584 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
585 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
586 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
587 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
588 	{},
589 };
590 
591 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
592 {
593 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
594 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
595 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
596 	const struct adreno_reglist *reg;
597 	unsigned int i;
598 	u32 val, clock_cntl_on;
599 
600 	if (!adreno_gpu->info->hwcg)
601 		return;
602 
603 	if (adreno_is_a630(adreno_gpu))
604 		clock_cntl_on = 0x8aa8aa02;
605 	else
606 		clock_cntl_on = 0x8aa8aa82;
607 
608 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
609 
610 	/* Don't re-program the registers if they are already correct */
611 	if ((!state && !val) || (state && (val == clock_cntl_on)))
612 		return;
613 
614 	/* Disable SP clock before programming HWCG registers */
615 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
616 
617 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
618 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
619 
620 	/* Enable SP clock */
621 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
622 
623 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
624 }
625 
626 /* For a615, a616, a618, a619, a630, a640 and a680 */
627 static const u32 a6xx_protect[] = {
628 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
629 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
630 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
631 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
632 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
633 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
634 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
635 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
636 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
637 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
638 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
639 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
640 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
641 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
642 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
643 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
644 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
645 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
646 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
647 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
648 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
649 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
650 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
651 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
652 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
653 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
654 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
655 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
656 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
657 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
658 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
659 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
660 };
661 
662 /* These are for a620 and a650 */
663 static const u32 a650_protect[] = {
664 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
665 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
666 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
667 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
668 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
669 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
670 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
671 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
672 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
673 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
674 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
675 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
676 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
677 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
678 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
679 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
680 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
681 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
682 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
683 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
684 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
685 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
686 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
687 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
688 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
689 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
690 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
691 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
692 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
693 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
694 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
695 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
696 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
697 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
698 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
699 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
700 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
701 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
702 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
703 };
704 
705 /* These are for a635 and a660 */
706 static const u32 a660_protect[] = {
707 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
708 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
709 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
710 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
711 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
712 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
713 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
714 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
715 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
716 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
717 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
718 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
719 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
720 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
721 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
722 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
723 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
724 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
725 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
726 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
727 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
728 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
729 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
730 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
731 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
732 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
733 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
734 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
735 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
736 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
737 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
738 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
739 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
740 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
741 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
742 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
743 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
744 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
745 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
746 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
747 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
748 };
749 
750 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
751 {
752 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
753 	const u32 *regs = a6xx_protect;
754 	unsigned i, count, count_max;
755 
756 	if (adreno_is_a650(adreno_gpu)) {
757 		regs = a650_protect;
758 		count = ARRAY_SIZE(a650_protect);
759 		count_max = 48;
760 		BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
761 	} else if (adreno_is_a660_family(adreno_gpu)) {
762 		regs = a660_protect;
763 		count = ARRAY_SIZE(a660_protect);
764 		count_max = 48;
765 		BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
766 	} else {
767 		regs = a6xx_protect;
768 		count = ARRAY_SIZE(a6xx_protect);
769 		count_max = 32;
770 		BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
771 	}
772 
773 	/*
774 	 * Enable access protection to privileged registers, fault on an access
775 	 * protect violation and select the last span to protect from the start
776 	 * address all the way to the end of the register address space
777 	 */
778 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
779 
780 	for (i = 0; i < count - 1; i++)
781 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
782 	/* last CP_PROTECT to have "infinite" length on the last entry */
783 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
784 }
785 
786 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
787 {
788 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
789 	u32 lower_bit = 2;
790 	u32 amsbc = 0;
791 	u32 rgb565_predicator = 0;
792 	u32 uavflagprd_inv = 0;
793 
794 	/* a618 is using the hw default values */
795 	if (adreno_is_a618(adreno_gpu))
796 		return;
797 
798 	if (adreno_is_a640_family(adreno_gpu))
799 		amsbc = 1;
800 
801 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
802 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
803 		lower_bit = 3;
804 		amsbc = 1;
805 		rgb565_predicator = 1;
806 		uavflagprd_inv = 2;
807 	}
808 
809 	if (adreno_is_7c3(adreno_gpu)) {
810 		lower_bit = 1;
811 		amsbc = 1;
812 		rgb565_predicator = 1;
813 		uavflagprd_inv = 2;
814 	}
815 
816 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
817 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
818 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
819 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
820 		uavflagprd_inv << 4 | lower_bit << 1);
821 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
822 }
823 
824 static int a6xx_cp_init(struct msm_gpu *gpu)
825 {
826 	struct msm_ringbuffer *ring = gpu->rb[0];
827 
828 	OUT_PKT7(ring, CP_ME_INIT, 8);
829 
830 	OUT_RING(ring, 0x0000002f);
831 
832 	/* Enable multiple hardware contexts */
833 	OUT_RING(ring, 0x00000003);
834 
835 	/* Enable error detection */
836 	OUT_RING(ring, 0x20000000);
837 
838 	/* Don't enable header dump */
839 	OUT_RING(ring, 0x00000000);
840 	OUT_RING(ring, 0x00000000);
841 
842 	/* No workarounds enabled */
843 	OUT_RING(ring, 0x00000000);
844 
845 	/* Pad rest of the cmds with 0's */
846 	OUT_RING(ring, 0x00000000);
847 	OUT_RING(ring, 0x00000000);
848 
849 	a6xx_flush(gpu, ring);
850 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
851 }
852 
853 /*
854  * Check that the microcode version is new enough to include several key
855  * security fixes. Return true if the ucode is safe.
856  */
857 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
858 		struct drm_gem_object *obj)
859 {
860 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
861 	struct msm_gpu *gpu = &adreno_gpu->base;
862 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
863 	u32 *buf = msm_gem_get_vaddr(obj);
864 	bool ret = false;
865 
866 	if (IS_ERR(buf))
867 		return false;
868 
869 	/*
870 	 * Targets up to a640 (a618, a630 and a640) need to check for a
871 	 * microcode version that is patched to support the whereami opcode or
872 	 * one that is new enough to include it by default.
873 	 *
874 	 * a650 tier targets don't need whereami but still need to be
875 	 * equal to or newer than 0.95 for other security fixes
876 	 *
877 	 * a660 targets have all the critical security fixes from the start
878 	 */
879 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
880 		/*
881 		 * If the lowest nibble is 0xa that is an indication that this
882 		 * microcode has been patched. The actual version is in dword
883 		 * [3] but we only care about the patchlevel which is the lowest
884 		 * nibble of dword [3]
885 		 *
886 		 * Otherwise check that the firmware is greater than or equal
887 		 * to 1.90 which was the first version that had this fix built
888 		 * in
889 		 */
890 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
891 			(buf[0] & 0xfff) >= 0x190) {
892 			a6xx_gpu->has_whereami = true;
893 			ret = true;
894 			goto out;
895 		}
896 
897 		DRM_DEV_ERROR(&gpu->pdev->dev,
898 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
899 			buf[0] & 0xfff, 0x190);
900 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
901 		if ((buf[0] & 0xfff) >= 0x095) {
902 			ret = true;
903 			goto out;
904 		}
905 
906 		DRM_DEV_ERROR(&gpu->pdev->dev,
907 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
908 			buf[0] & 0xfff, 0x095);
909 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
910 		ret = true;
911 	} else {
912 		DRM_DEV_ERROR(&gpu->pdev->dev,
913 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
914 	}
915 out:
916 	msm_gem_put_vaddr(obj);
917 	return ret;
918 }
919 
920 static int a6xx_ucode_init(struct msm_gpu *gpu)
921 {
922 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
923 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
924 
925 	if (!a6xx_gpu->sqe_bo) {
926 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
927 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
928 
929 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
930 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
931 
932 			a6xx_gpu->sqe_bo = NULL;
933 			DRM_DEV_ERROR(&gpu->pdev->dev,
934 				"Could not allocate SQE ucode: %d\n", ret);
935 
936 			return ret;
937 		}
938 
939 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
940 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
941 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
942 			drm_gem_object_put(a6xx_gpu->sqe_bo);
943 
944 			a6xx_gpu->sqe_bo = NULL;
945 			return -EPERM;
946 		}
947 	}
948 
949 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
950 		REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
951 
952 	return 0;
953 }
954 
955 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
956 {
957 	static bool loaded;
958 	int ret;
959 
960 	if (loaded)
961 		return 0;
962 
963 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
964 
965 	loaded = !ret;
966 	return ret;
967 }
968 
969 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
970 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
971 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
972 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
973 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
974 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
975 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
976 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
977 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
978 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
979 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
980 
981 static int hw_init(struct msm_gpu *gpu)
982 {
983 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
984 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
985 	int ret;
986 
987 	/* Make sure the GMU keeps the GPU on while we set it up */
988 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
989 
990 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
991 
992 	/*
993 	 * Disable the trusted memory range - we don't actually supported secure
994 	 * memory rendering at this point in time and we don't want to block off
995 	 * part of the virtual memory space.
996 	 */
997 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
998 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
999 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1000 
1001 	/* Turn on 64 bit addressing for all blocks */
1002 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1003 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1004 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1005 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1006 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1007 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1008 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1009 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1010 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1011 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1012 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1013 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1014 
1015 	/* enable hardware clockgating */
1016 	a6xx_set_hwcg(gpu, true);
1017 
1018 	/* VBIF/GBIF start*/
1019 	if (adreno_is_a640_family(adreno_gpu) ||
1020 	    adreno_is_a650_family(adreno_gpu)) {
1021 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1022 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1023 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1024 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1025 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1026 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
1027 	} else {
1028 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1029 	}
1030 
1031 	if (adreno_is_a630(adreno_gpu))
1032 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1033 
1034 	/* Make all blocks contribute to the GPU BUSY perf counter */
1035 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1036 
1037 	/* Disable L2 bypass in the UCHE */
1038 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
1039 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
1040 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
1041 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
1042 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
1043 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
1044 
1045 	if (!adreno_is_a650_family(adreno_gpu)) {
1046 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1047 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
1048 			REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
1049 
1050 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
1051 			REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
1052 			0x00100000 + adreno_gpu->gmem - 1);
1053 	}
1054 
1055 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1056 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1057 
1058 	if (adreno_is_a640_family(adreno_gpu) ||
1059 	    adreno_is_a650_family(adreno_gpu))
1060 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1061 	else
1062 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1063 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1064 
1065 	if (adreno_is_a660_family(adreno_gpu))
1066 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1067 
1068 	/* Setting the mem pool size */
1069 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1070 
1071 	/* Setting the primFifo thresholds default values,
1072 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1073 	*/
1074 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1075 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1076 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1077 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1078 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1079 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1080 	else
1081 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1082 
1083 	/* Set the AHB default slave response to "ERROR" */
1084 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1085 
1086 	/* Turn on performance counters */
1087 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1088 
1089 	/* Select CP0 to always count cycles */
1090 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1091 
1092 	a6xx_set_ubwc_config(gpu);
1093 
1094 	/* Enable fault detection */
1095 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
1096 		(1 << 30) | 0x1fffff);
1097 
1098 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1099 
1100 	/* Set weights for bicubic filtering */
1101 	if (adreno_is_a650_family(adreno_gpu)) {
1102 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1103 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1104 			0x3fe05ff4);
1105 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1106 			0x3fa0ebee);
1107 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1108 			0x3f5193ed);
1109 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1110 			0x3f0243f0);
1111 	}
1112 
1113 	/* Protect registers from the CP */
1114 	a6xx_set_cp_protect(gpu);
1115 
1116 	if (adreno_is_a660_family(adreno_gpu)) {
1117 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1118 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1119 	}
1120 
1121 	/* Set dualQ + disable afull for A660 GPU */
1122 	if (adreno_is_a660(adreno_gpu))
1123 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1124 
1125 	/* Enable expanded apriv for targets that support it */
1126 	if (gpu->hw_apriv) {
1127 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1128 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1129 	}
1130 
1131 	/* Enable interrupts */
1132 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1133 
1134 	ret = adreno_hw_init(gpu);
1135 	if (ret)
1136 		goto out;
1137 
1138 	ret = a6xx_ucode_init(gpu);
1139 	if (ret)
1140 		goto out;
1141 
1142 	/* Set the ringbuffer address */
1143 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1144 		gpu->rb[0]->iova);
1145 
1146 	/* Targets that support extended APRIV can use the RPTR shadow from
1147 	 * hardware but all the other ones need to disable the feature. Targets
1148 	 * that support the WHERE_AM_I opcode can use that instead
1149 	 */
1150 	if (adreno_gpu->base.hw_apriv)
1151 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1152 	else
1153 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1154 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1155 
1156 	/*
1157 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1158 	 * privileged buffer to store the RPTR shadow
1159 	 */
1160 
1161 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1162 		if (!a6xx_gpu->shadow_bo) {
1163 			a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1164 				sizeof(u32) * gpu->nr_rings,
1165 				MSM_BO_WC | MSM_BO_MAP_PRIV,
1166 				gpu->aspace, &a6xx_gpu->shadow_bo,
1167 				&a6xx_gpu->shadow_iova);
1168 
1169 			if (IS_ERR(a6xx_gpu->shadow))
1170 				return PTR_ERR(a6xx_gpu->shadow);
1171 
1172 			msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1173 		}
1174 
1175 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1176 			REG_A6XX_CP_RB_RPTR_ADDR_HI,
1177 			shadowptr(a6xx_gpu, gpu->rb[0]));
1178 	}
1179 
1180 	/* Always come up on rb 0 */
1181 	a6xx_gpu->cur_ring = gpu->rb[0];
1182 
1183 	gpu->cur_ctx_seqno = 0;
1184 
1185 	/* Enable the SQE_to start the CP engine */
1186 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1187 
1188 	ret = a6xx_cp_init(gpu);
1189 	if (ret)
1190 		goto out;
1191 
1192 	/*
1193 	 * Try to load a zap shader into the secure world. If successful
1194 	 * we can use the CP to switch out of secure mode. If not then we
1195 	 * have no resource but to try to switch ourselves out manually. If we
1196 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1197 	 * be blocked and a permissions violation will soon follow.
1198 	 */
1199 	ret = a6xx_zap_shader_init(gpu);
1200 	if (!ret) {
1201 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1202 		OUT_RING(gpu->rb[0], 0x00000000);
1203 
1204 		a6xx_flush(gpu, gpu->rb[0]);
1205 		if (!a6xx_idle(gpu, gpu->rb[0]))
1206 			return -EINVAL;
1207 	} else if (ret == -ENODEV) {
1208 		/*
1209 		 * This device does not use zap shader (but print a warning
1210 		 * just in case someone got their dt wrong.. hopefully they
1211 		 * have a debug UART to realize the error of their ways...
1212 		 * if you mess this up you are about to crash horribly)
1213 		 */
1214 		dev_warn_once(gpu->dev->dev,
1215 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1216 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1217 		ret = 0;
1218 	} else {
1219 		return ret;
1220 	}
1221 
1222 out:
1223 	/*
1224 	 * Tell the GMU that we are done touching the GPU and it can start power
1225 	 * management
1226 	 */
1227 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1228 
1229 	if (a6xx_gpu->gmu.legacy) {
1230 		/* Take the GMU out of its special boot mode */
1231 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 static int a6xx_hw_init(struct msm_gpu *gpu)
1238 {
1239 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1240 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1241 	int ret;
1242 
1243 	mutex_lock(&a6xx_gpu->gmu.lock);
1244 	ret = hw_init(gpu);
1245 	mutex_unlock(&a6xx_gpu->gmu.lock);
1246 
1247 	return ret;
1248 }
1249 
1250 static void a6xx_dump(struct msm_gpu *gpu)
1251 {
1252 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1253 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1254 	adreno_dump(gpu);
1255 }
1256 
1257 #define VBIF_RESET_ACK_TIMEOUT	100
1258 #define VBIF_RESET_ACK_MASK	0x00f0
1259 
1260 static void a6xx_recover(struct msm_gpu *gpu)
1261 {
1262 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1263 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1264 	int i;
1265 
1266 	adreno_dump_info(gpu);
1267 
1268 	for (i = 0; i < 8; i++)
1269 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1270 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1271 
1272 	if (hang_debug)
1273 		a6xx_dump(gpu);
1274 
1275 	/*
1276 	 * Turn off keep alive that might have been enabled by the hang
1277 	 * interrupt
1278 	 */
1279 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1280 
1281 	gpu->funcs->pm_suspend(gpu);
1282 	gpu->funcs->pm_resume(gpu);
1283 
1284 	msm_gpu_hw_init(gpu);
1285 }
1286 
1287 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1288 {
1289 	static const char *uche_clients[7] = {
1290 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1291 	};
1292 	u32 val;
1293 
1294 	if (mid < 1 || mid > 3)
1295 		return "UNKNOWN";
1296 
1297 	/*
1298 	 * The source of the data depends on the mid ID read from FSYNR1.
1299 	 * and the client ID read from the UCHE block
1300 	 */
1301 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1302 
1303 	/* mid = 3 is most precise and refers to only one block per client */
1304 	if (mid == 3)
1305 		return uche_clients[val & 7];
1306 
1307 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1308 	if (mid == 2)
1309 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1310 
1311 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1312 	return "UCHE";
1313 }
1314 
1315 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1316 {
1317 	if (id == 0)
1318 		return "CP";
1319 	else if (id == 4)
1320 		return "CCU";
1321 	else if (id == 6)
1322 		return "CDP Prefetch";
1323 
1324 	return a6xx_uche_fault_block(gpu, id);
1325 }
1326 
1327 #define ARM_SMMU_FSR_TF                 BIT(1)
1328 #define ARM_SMMU_FSR_PF			BIT(3)
1329 #define ARM_SMMU_FSR_EF			BIT(4)
1330 
1331 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1332 {
1333 	struct msm_gpu *gpu = arg;
1334 	struct adreno_smmu_fault_info *info = data;
1335 	const char *type = "UNKNOWN";
1336 	const char *block;
1337 	bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1338 
1339 	/*
1340 	 * If we aren't going to be resuming later from fault_worker, then do
1341 	 * it now.
1342 	 */
1343 	if (!do_devcoredump) {
1344 		gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1345 	}
1346 
1347 	/*
1348 	 * Print a default message if we couldn't get the data from the
1349 	 * adreno-smmu-priv
1350 	 */
1351 	if (!info) {
1352 		pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1353 			iova, flags,
1354 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1355 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1356 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1357 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1358 
1359 		return 0;
1360 	}
1361 
1362 	if (info->fsr & ARM_SMMU_FSR_TF)
1363 		type = "TRANSLATION";
1364 	else if (info->fsr & ARM_SMMU_FSR_PF)
1365 		type = "PERMISSION";
1366 	else if (info->fsr & ARM_SMMU_FSR_EF)
1367 		type = "EXTERNAL";
1368 
1369 	block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1370 
1371 	pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1372 			info->ttbr0, iova,
1373 			flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1374 			type, block,
1375 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1376 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1377 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1378 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1379 
1380 	if (do_devcoredump) {
1381 		/* Turn off the hangcheck timer to keep it from bothering us */
1382 		del_timer(&gpu->hangcheck_timer);
1383 
1384 		gpu->fault_info.ttbr0 = info->ttbr0;
1385 		gpu->fault_info.iova  = iova;
1386 		gpu->fault_info.flags = flags;
1387 		gpu->fault_info.type  = type;
1388 		gpu->fault_info.block = block;
1389 
1390 		kthread_queue_work(gpu->worker, &gpu->fault_work);
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1397 {
1398 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1399 
1400 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1401 		u32 val;
1402 
1403 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1404 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1405 		dev_err_ratelimited(&gpu->pdev->dev,
1406 			"CP | opcode error | possible opcode=0x%8.8X\n",
1407 			val);
1408 	}
1409 
1410 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1411 		dev_err_ratelimited(&gpu->pdev->dev,
1412 			"CP ucode error interrupt\n");
1413 
1414 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1415 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1416 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1417 
1418 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1419 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1420 
1421 		dev_err_ratelimited(&gpu->pdev->dev,
1422 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1423 			val & (1 << 20) ? "READ" : "WRITE",
1424 			(val & 0x3ffff), val);
1425 	}
1426 
1427 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1428 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1429 
1430 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1431 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1432 
1433 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1434 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1435 
1436 }
1437 
1438 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1439 {
1440 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1441 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1442 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1443 
1444 	/*
1445 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1446 	 * but the fault handler will trigger the devcore dump, and we want
1447 	 * to otherwise resume normally rather than killing the submit, so
1448 	 * just bail.
1449 	 */
1450 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1451 		return;
1452 
1453 	/*
1454 	 * Force the GPU to stay on until after we finish
1455 	 * collecting information
1456 	 */
1457 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1458 
1459 	DRM_DEV_ERROR(&gpu->pdev->dev,
1460 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1461 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1462 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1463 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1464 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1465 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1466 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1467 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1468 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1469 
1470 	/* Turn off the hangcheck timer to keep it from bothering us */
1471 	del_timer(&gpu->hangcheck_timer);
1472 
1473 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1474 }
1475 
1476 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1477 {
1478 	struct msm_drm_private *priv = gpu->dev->dev_private;
1479 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1480 
1481 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1482 
1483 	if (priv->disable_err_irq)
1484 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1485 
1486 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1487 		a6xx_fault_detect_irq(gpu);
1488 
1489 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1490 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1491 
1492 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1493 		a6xx_cp_hw_err_irq(gpu);
1494 
1495 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1496 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1497 
1498 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1499 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1500 
1501 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1502 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1503 
1504 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1505 		msm_gpu_retire(gpu);
1506 
1507 	return IRQ_HANDLED;
1508 }
1509 
1510 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1511 {
1512 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1513 }
1514 
1515 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1516 {
1517 	msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1518 }
1519 
1520 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1521 {
1522 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1523 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1524 }
1525 
1526 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1527 {
1528 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1529 	struct msm_gpu *gpu = &adreno_gpu->base;
1530 	u32 cntl1_regval = 0;
1531 
1532 	if (IS_ERR(a6xx_gpu->llc_mmio))
1533 		return;
1534 
1535 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1536 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1537 
1538 		gpu_scid &= 0x1f;
1539 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1540 			       (gpu_scid << 15) | (gpu_scid << 20);
1541 
1542 		/* On A660, the SCID programming for UCHE traffic is done in
1543 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1544 		 */
1545 		if (adreno_is_a660_family(adreno_gpu))
1546 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1547 				(1 << 8), (gpu_scid << 10) | (1 << 8));
1548 	}
1549 
1550 	/*
1551 	 * For targets with a MMU500, activate the slice but don't program the
1552 	 * register.  The XBL will take care of that.
1553 	 */
1554 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1555 		if (!a6xx_gpu->have_mmu500) {
1556 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1557 
1558 			gpuhtw_scid &= 0x1f;
1559 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1560 		}
1561 	}
1562 
1563 	if (!cntl1_regval)
1564 		return;
1565 
1566 	/*
1567 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1568 	 * pagetables
1569 	 */
1570 	if (!a6xx_gpu->have_mmu500) {
1571 		a6xx_llc_write(a6xx_gpu,
1572 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1573 
1574 		/*
1575 		 * Program cacheability overrides to not allocate cache
1576 		 * lines on a write miss
1577 		 */
1578 		a6xx_llc_rmw(a6xx_gpu,
1579 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1580 		return;
1581 	}
1582 
1583 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1584 }
1585 
1586 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1587 {
1588 	llcc_slice_putd(a6xx_gpu->llc_slice);
1589 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1590 }
1591 
1592 static void a6xx_llc_slices_init(struct platform_device *pdev,
1593 		struct a6xx_gpu *a6xx_gpu)
1594 {
1595 	struct device_node *phandle;
1596 
1597 	/*
1598 	 * There is a different programming path for targets with an mmu500
1599 	 * attached, so detect if that is the case
1600 	 */
1601 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1602 	a6xx_gpu->have_mmu500 = (phandle &&
1603 		of_device_is_compatible(phandle, "arm,mmu-500"));
1604 	of_node_put(phandle);
1605 
1606 	if (a6xx_gpu->have_mmu500)
1607 		a6xx_gpu->llc_mmio = NULL;
1608 	else
1609 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1610 
1611 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1612 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1613 
1614 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1615 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1616 }
1617 
1618 static int a6xx_pm_resume(struct msm_gpu *gpu)
1619 {
1620 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1621 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1622 	int ret;
1623 
1624 	gpu->needs_hw_init = true;
1625 
1626 	trace_msm_gpu_resume(0);
1627 
1628 	mutex_lock(&a6xx_gpu->gmu.lock);
1629 	ret = a6xx_gmu_resume(a6xx_gpu);
1630 	mutex_unlock(&a6xx_gpu->gmu.lock);
1631 	if (ret)
1632 		return ret;
1633 
1634 	msm_devfreq_resume(gpu);
1635 
1636 	a6xx_llc_activate(a6xx_gpu);
1637 
1638 	return 0;
1639 }
1640 
1641 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1642 {
1643 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1644 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1645 	int i, ret;
1646 
1647 	trace_msm_gpu_suspend(0);
1648 
1649 	a6xx_llc_deactivate(a6xx_gpu);
1650 
1651 	msm_devfreq_suspend(gpu);
1652 
1653 	mutex_lock(&a6xx_gpu->gmu.lock);
1654 	ret = a6xx_gmu_stop(a6xx_gpu);
1655 	mutex_unlock(&a6xx_gpu->gmu.lock);
1656 	if (ret)
1657 		return ret;
1658 
1659 	if (a6xx_gpu->shadow_bo)
1660 		for (i = 0; i < gpu->nr_rings; i++)
1661 			a6xx_gpu->shadow[i] = 0;
1662 
1663 	gpu->suspend_count++;
1664 
1665 	return 0;
1666 }
1667 
1668 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1669 {
1670 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1671 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1672 
1673 	mutex_lock(&a6xx_gpu->gmu.lock);
1674 
1675 	/* Force the GPU power on so we can read this register */
1676 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1677 
1678 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1679 			    REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1680 
1681 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1682 
1683 	mutex_unlock(&a6xx_gpu->gmu.lock);
1684 
1685 	return 0;
1686 }
1687 
1688 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1689 {
1690 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1691 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1692 
1693 	return a6xx_gpu->cur_ring;
1694 }
1695 
1696 static void a6xx_destroy(struct msm_gpu *gpu)
1697 {
1698 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1699 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1700 
1701 	if (a6xx_gpu->sqe_bo) {
1702 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1703 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1704 	}
1705 
1706 	if (a6xx_gpu->shadow_bo) {
1707 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1708 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1709 	}
1710 
1711 	a6xx_llc_slices_destroy(a6xx_gpu);
1712 
1713 	a6xx_gmu_remove(a6xx_gpu);
1714 
1715 	adreno_gpu_cleanup(adreno_gpu);
1716 
1717 	kfree(a6xx_gpu);
1718 }
1719 
1720 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1721 {
1722 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1723 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1724 	u64 busy_cycles;
1725 
1726 	/* 19.2MHz */
1727 	*out_sample_rate = 19200000;
1728 
1729 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1730 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1731 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1732 
1733 	return busy_cycles;
1734 }
1735 
1736 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
1737 			      bool suspended)
1738 {
1739 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1740 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1741 
1742 	mutex_lock(&a6xx_gpu->gmu.lock);
1743 	a6xx_gmu_set_freq(gpu, opp, suspended);
1744 	mutex_unlock(&a6xx_gpu->gmu.lock);
1745 }
1746 
1747 static struct msm_gem_address_space *
1748 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1749 {
1750 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1751 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1752 	struct iommu_domain *iommu;
1753 	struct msm_mmu *mmu;
1754 	struct msm_gem_address_space *aspace;
1755 	u64 start, size;
1756 
1757 	iommu = iommu_domain_alloc(&platform_bus_type);
1758 	if (!iommu)
1759 		return NULL;
1760 
1761 	/*
1762 	 * This allows GPU to set the bus attributes required to use system
1763 	 * cache on behalf of the iommu page table walker.
1764 	 */
1765 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1766 		adreno_set_llc_attributes(iommu);
1767 
1768 	mmu = msm_iommu_new(&pdev->dev, iommu);
1769 	if (IS_ERR(mmu)) {
1770 		iommu_domain_free(iommu);
1771 		return ERR_CAST(mmu);
1772 	}
1773 
1774 	/*
1775 	 * Use the aperture start or SZ_16M, whichever is greater. This will
1776 	 * ensure that we align with the allocated pagetable range while still
1777 	 * allowing room in the lower 32 bits for GMEM and whatnot
1778 	 */
1779 	start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1780 	size = iommu->geometry.aperture_end - start + 1;
1781 
1782 	aspace = msm_gem_address_space_create(mmu, "gpu",
1783 		start & GENMASK_ULL(48, 0), size);
1784 
1785 	if (IS_ERR(aspace) && !IS_ERR(mmu))
1786 		mmu->funcs->destroy(mmu);
1787 
1788 	return aspace;
1789 }
1790 
1791 static struct msm_gem_address_space *
1792 a6xx_create_private_address_space(struct msm_gpu *gpu)
1793 {
1794 	struct msm_mmu *mmu;
1795 
1796 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1797 
1798 	if (IS_ERR(mmu))
1799 		return ERR_CAST(mmu);
1800 
1801 	return msm_gem_address_space_create(mmu,
1802 		"gpu", 0x100000000ULL,
1803 		adreno_private_address_space_size(gpu));
1804 }
1805 
1806 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1807 {
1808 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1809 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1810 
1811 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1812 		return a6xx_gpu->shadow[ring->id];
1813 
1814 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1815 }
1816 
1817 static u32 a618_get_speed_bin(u32 fuse)
1818 {
1819 	if (fuse == 0)
1820 		return 0;
1821 	else if (fuse == 169)
1822 		return 1;
1823 	else if (fuse == 174)
1824 		return 2;
1825 
1826 	return UINT_MAX;
1827 }
1828 
1829 static u32 a619_get_speed_bin(u32 fuse)
1830 {
1831 	if (fuse == 0)
1832 		return 0;
1833 	else if (fuse == 120)
1834 		return 4;
1835 	else if (fuse == 138)
1836 		return 3;
1837 	else if (fuse == 169)
1838 		return 2;
1839 	else if (fuse == 180)
1840 		return 1;
1841 
1842 	return UINT_MAX;
1843 }
1844 
1845 static u32 adreno_7c3_get_speed_bin(u32 fuse)
1846 {
1847 	if (fuse == 0)
1848 		return 0;
1849 	else if (fuse == 117)
1850 		return 0;
1851 	else if (fuse == 190)
1852 		return 1;
1853 
1854 	return UINT_MAX;
1855 }
1856 
1857 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1858 {
1859 	u32 val = UINT_MAX;
1860 
1861 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1862 		val = a618_get_speed_bin(fuse);
1863 
1864 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 9, ANY_ID), rev))
1865 		val = a619_get_speed_bin(fuse);
1866 
1867 	if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev))
1868 		val = adreno_7c3_get_speed_bin(fuse);
1869 
1870 	if (val == UINT_MAX) {
1871 		DRM_DEV_ERROR(dev,
1872 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1873 			fuse);
1874 		return UINT_MAX;
1875 	}
1876 
1877 	return (1 << val);
1878 }
1879 
1880 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1881 {
1882 	u32 supp_hw = UINT_MAX;
1883 	u32 speedbin;
1884 	int ret;
1885 
1886 	ret = adreno_read_speedbin(dev, &speedbin);
1887 	/*
1888 	 * -ENOENT means that the platform doesn't support speedbin which is
1889 	 * fine
1890 	 */
1891 	if (ret == -ENOENT) {
1892 		return 0;
1893 	} else if (ret) {
1894 		DRM_DEV_ERROR(dev,
1895 			      "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1896 			      ret);
1897 		goto done;
1898 	}
1899 
1900 	supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1901 
1902 done:
1903 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1904 	if (ret)
1905 		return ret;
1906 
1907 	return 0;
1908 }
1909 
1910 static const struct adreno_gpu_funcs funcs = {
1911 	.base = {
1912 		.get_param = adreno_get_param,
1913 		.set_param = adreno_set_param,
1914 		.hw_init = a6xx_hw_init,
1915 		.pm_suspend = a6xx_pm_suspend,
1916 		.pm_resume = a6xx_pm_resume,
1917 		.recover = a6xx_recover,
1918 		.submit = a6xx_submit,
1919 		.active_ring = a6xx_active_ring,
1920 		.irq = a6xx_irq,
1921 		.destroy = a6xx_destroy,
1922 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1923 		.show = a6xx_show,
1924 #endif
1925 		.gpu_busy = a6xx_gpu_busy,
1926 		.gpu_get_freq = a6xx_gmu_get_freq,
1927 		.gpu_set_freq = a6xx_gpu_set_freq,
1928 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1929 		.gpu_state_get = a6xx_gpu_state_get,
1930 		.gpu_state_put = a6xx_gpu_state_put,
1931 #endif
1932 		.create_address_space = a6xx_create_address_space,
1933 		.create_private_address_space = a6xx_create_private_address_space,
1934 		.get_rptr = a6xx_get_rptr,
1935 	},
1936 	.get_timestamp = a6xx_get_timestamp,
1937 };
1938 
1939 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1940 {
1941 	struct msm_drm_private *priv = dev->dev_private;
1942 	struct platform_device *pdev = priv->gpu_pdev;
1943 	struct adreno_platform_config *config = pdev->dev.platform_data;
1944 	const struct adreno_info *info;
1945 	struct device_node *node;
1946 	struct a6xx_gpu *a6xx_gpu;
1947 	struct adreno_gpu *adreno_gpu;
1948 	struct msm_gpu *gpu;
1949 	int ret;
1950 
1951 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1952 	if (!a6xx_gpu)
1953 		return ERR_PTR(-ENOMEM);
1954 
1955 	adreno_gpu = &a6xx_gpu->base;
1956 	gpu = &adreno_gpu->base;
1957 
1958 	adreno_gpu->registers = NULL;
1959 
1960 	/*
1961 	 * We need to know the platform type before calling into adreno_gpu_init
1962 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
1963 	 * and grab the revision number
1964 	 */
1965 	info = adreno_info(config->rev);
1966 
1967 	if (info && (info->revn == 650 || info->revn == 660 ||
1968 			adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1969 		adreno_gpu->base.hw_apriv = true;
1970 
1971 	/*
1972 	 * For now only clamp to idle freq for devices where this is known not
1973 	 * to cause power supply issues:
1974 	 */
1975 	if (info && (info->revn == 618))
1976 		gpu->clamp_to_idle = true;
1977 
1978 	a6xx_llc_slices_init(pdev, a6xx_gpu);
1979 
1980 	ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
1981 	if (ret) {
1982 		a6xx_destroy(&(a6xx_gpu->base.base));
1983 		return ERR_PTR(ret);
1984 	}
1985 
1986 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1987 	if (ret) {
1988 		a6xx_destroy(&(a6xx_gpu->base.base));
1989 		return ERR_PTR(ret);
1990 	}
1991 
1992 	/* Check if there is a GMU phandle and set it up */
1993 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1994 
1995 	/* FIXME: How do we gracefully handle this? */
1996 	BUG_ON(!node);
1997 
1998 	ret = a6xx_gmu_init(a6xx_gpu, node);
1999 	of_node_put(node);
2000 	if (ret) {
2001 		a6xx_destroy(&(a6xx_gpu->base.base));
2002 		return ERR_PTR(ret);
2003 	}
2004 
2005 	if (gpu->aspace)
2006 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
2007 				a6xx_fault_handler);
2008 
2009 	return gpu;
2010 }
2011