1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/pm_domain.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 62 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 65 } 66 } 67 68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 69 { 70 uint32_t wptr; 71 unsigned long flags; 72 73 update_shadow_rptr(gpu, ring); 74 75 spin_lock_irqsave(&ring->preempt_lock, flags); 76 77 /* Copy the shadow to the actual register */ 78 ring->cur = ring->next; 79 80 /* Make sure to wrap wptr if we need to */ 81 wptr = get_wptr(ring); 82 83 spin_unlock_irqrestore(&ring->preempt_lock, flags); 84 85 /* Make sure everything is posted before making a decision */ 86 mb(); 87 88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 89 } 90 91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 92 u64 iova) 93 { 94 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 96 CP_REG_TO_MEM_0_CNT(2) | 97 CP_REG_TO_MEM_0_64B); 98 OUT_RING(ring, lower_32_bits(iova)); 99 OUT_RING(ring, upper_32_bits(iova)); 100 } 101 102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 103 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 104 { 105 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; 106 phys_addr_t ttbr; 107 u32 asid; 108 u64 memptr = rbmemptr(ring, ttbr0); 109 110 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) 111 return; 112 113 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 114 return; 115 116 if (!sysprof) { 117 /* Turn off protected mode to write to special registers */ 118 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 119 OUT_RING(ring, 0); 120 121 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); 122 OUT_RING(ring, 1); 123 } 124 125 /* Execute the table update */ 126 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 127 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 128 129 OUT_RING(ring, 130 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 131 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 132 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 133 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 134 135 /* 136 * Write the new TTBR0 to the memstore. This is good for debugging. 137 */ 138 OUT_PKT7(ring, CP_MEM_WRITE, 4); 139 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 140 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 141 OUT_RING(ring, lower_32_bits(ttbr)); 142 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 143 144 /* 145 * And finally, trigger a uche flush to be sure there isn't anything 146 * lingering in that part of the GPU 147 */ 148 149 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 150 OUT_RING(ring, CACHE_INVALIDATE); 151 152 if (!sysprof) { 153 /* 154 * Wait for SRAM clear after the pgtable update, so the 155 * two can happen in parallel: 156 */ 157 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); 158 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); 159 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( 160 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); 161 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); 162 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); 163 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); 164 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); 165 166 /* Re-enable protected mode: */ 167 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 168 OUT_RING(ring, 1); 169 } 170 } 171 172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 173 { 174 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 175 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 176 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 177 struct msm_ringbuffer *ring = submit->ring; 178 unsigned int i, ibs = 0; 179 180 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 181 182 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 183 rbmemptr_stats(ring, index, cpcycles_start)); 184 185 /* 186 * For PM4 the GMU register offsets are calculated from the base of the 187 * GPU registers so we need to add 0x1a800 to the register value on A630 188 * to get the right value from PM4. 189 */ 190 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 191 rbmemptr_stats(ring, index, alwayson_start)); 192 193 /* Invalidate CCU depth and color */ 194 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 195 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 196 197 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 198 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 199 200 /* Submit the commands */ 201 for (i = 0; i < submit->nr_cmds; i++) { 202 switch (submit->cmd[i].type) { 203 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 204 break; 205 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 206 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 207 break; 208 fallthrough; 209 case MSM_SUBMIT_CMD_BUF: 210 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 211 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 212 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 213 OUT_RING(ring, submit->cmd[i].size); 214 ibs++; 215 break; 216 } 217 218 /* 219 * Periodically update shadow-wptr if needed, so that we 220 * can see partial progress of submits with large # of 221 * cmds.. otherwise we could needlessly stall waiting for 222 * ringbuffer state, simply due to looking at a shadow 223 * rptr value that has not been updated 224 */ 225 if ((ibs % 32) == 0) 226 update_shadow_rptr(gpu, ring); 227 } 228 229 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 230 rbmemptr_stats(ring, index, cpcycles_end)); 231 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 232 rbmemptr_stats(ring, index, alwayson_end)); 233 234 /* Write the fence to the scratch register */ 235 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 236 OUT_RING(ring, submit->seqno); 237 238 /* 239 * Execute a CACHE_FLUSH_TS event. This will ensure that the 240 * timestamp is written to the memory and then triggers the interrupt 241 */ 242 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 243 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 244 CP_EVENT_WRITE_0_IRQ); 245 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 246 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 247 OUT_RING(ring, submit->seqno); 248 249 trace_msm_gpu_submit_flush(submit, 250 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); 251 252 a6xx_flush(gpu, ring); 253 } 254 255 const struct adreno_reglist a612_hwcg[] = { 256 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 257 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 258 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081}, 259 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 260 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 261 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 262 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 263 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 264 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 265 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 266 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 267 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 268 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 269 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 270 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 271 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 272 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 273 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222}, 274 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 275 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 276 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022}, 277 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 278 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 279 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 280 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 281 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 282 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 283 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 284 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 285 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 286 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 287 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 288 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 289 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 290 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 291 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 292 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 293 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 294 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 295 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 296 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 297 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 298 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 299 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 300 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 301 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 302 {}, 303 }; 304 305 /* For a615 family (a615, a616, a618 and a619) */ 306 const struct adreno_reglist a615_hwcg[] = { 307 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 308 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 309 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 310 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 311 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 312 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 313 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 314 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 315 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 316 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 317 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 318 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 319 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 320 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 321 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 322 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 323 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 324 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 325 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 326 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 327 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 328 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 329 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 330 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 331 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 332 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 333 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 334 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 335 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 336 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 337 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 338 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 339 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 340 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 341 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 342 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 343 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020}, 344 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 345 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 346 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 347 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 348 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00}, 349 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00}, 350 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00}, 351 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 352 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 353 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 354 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 355 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 356 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 357 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 358 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 359 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 360 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 361 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 362 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 363 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 364 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 365 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 366 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 367 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 368 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 369 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 370 {}, 371 }; 372 373 const struct adreno_reglist a630_hwcg[] = { 374 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 375 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 376 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 377 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 378 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 379 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 380 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 381 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 382 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 383 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 384 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 385 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 386 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 387 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 388 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 389 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 390 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 391 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 392 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 393 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 394 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 395 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 396 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 397 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 398 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 399 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 400 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 401 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 402 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 403 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 404 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 405 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 406 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 407 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 408 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 409 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 410 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 411 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 412 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 413 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 414 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 415 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 416 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 417 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 418 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 419 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 420 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 421 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 422 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 423 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 424 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 426 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 427 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 428 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 429 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 430 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 431 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 432 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 433 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 434 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 435 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 436 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 437 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 438 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 439 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 440 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 441 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 442 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 443 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 444 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 445 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 446 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 447 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 448 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 449 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 450 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 451 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 452 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 453 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 454 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 455 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 456 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 457 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 458 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 459 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 460 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 461 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 462 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 463 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 464 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 465 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 466 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 467 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 468 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 469 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 470 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 471 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 472 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 473 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 474 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 475 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 476 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 477 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 478 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 479 {}, 480 }; 481 482 const struct adreno_reglist a640_hwcg[] = { 483 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 484 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 485 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 486 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 487 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 488 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 489 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 490 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 491 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 492 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 493 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 494 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 495 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 496 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 497 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 498 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 499 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 500 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 501 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 502 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 503 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 504 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 505 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 506 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 507 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 508 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 509 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 510 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 511 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 512 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 513 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 514 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 515 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 516 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 517 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 518 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 519 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 520 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 521 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 522 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 523 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 524 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 525 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 526 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 527 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 528 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 529 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 530 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 531 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 532 {}, 533 }; 534 535 const struct adreno_reglist a650_hwcg[] = { 536 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 537 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 538 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 539 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 540 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 541 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 542 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 543 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 544 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 545 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 546 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 547 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 548 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 549 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 550 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 551 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 552 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 553 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 554 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 555 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 556 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 557 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 558 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 559 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 560 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 561 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 562 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 563 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 564 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 565 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 566 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 567 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 568 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 569 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 570 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 571 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 572 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 573 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 574 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 575 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 576 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 577 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 578 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 579 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 580 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 581 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 582 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 583 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 584 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 585 {}, 586 }; 587 588 const struct adreno_reglist a660_hwcg[] = { 589 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 590 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 591 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 592 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 593 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 594 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 595 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 596 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 597 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 598 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 599 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 600 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 601 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 602 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 603 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 604 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 605 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 606 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 607 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 608 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 609 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 610 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 611 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 612 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 613 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 614 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 615 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 616 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 617 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 618 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 619 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 620 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 621 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 622 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 623 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 624 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 625 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 626 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 627 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 628 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 629 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 630 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 631 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 632 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 633 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 634 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 635 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 636 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 637 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 638 {}, 639 }; 640 641 const struct adreno_reglist a690_hwcg[] = { 642 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 643 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 644 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 645 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 646 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 647 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 648 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 649 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 650 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 651 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 652 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 653 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 654 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 655 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 656 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 657 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 658 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 659 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 660 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 661 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 662 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 663 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 664 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 665 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 666 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 667 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 668 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 669 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 670 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 671 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 672 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 673 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 674 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 675 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 676 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 677 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 678 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 679 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 680 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 681 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 682 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 683 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 684 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 685 {REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82}, 686 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 687 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 688 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 689 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 690 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 691 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 692 {REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200}, 693 {REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111}, 694 {REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555}, 695 {} 696 }; 697 698 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 699 { 700 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 701 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 702 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 703 const struct adreno_reglist *reg; 704 unsigned int i; 705 u32 val, clock_cntl_on; 706 707 if (!adreno_gpu->info->hwcg) 708 return; 709 710 if (adreno_is_a630(adreno_gpu)) 711 clock_cntl_on = 0x8aa8aa02; 712 else if (adreno_is_a610(adreno_gpu)) 713 clock_cntl_on = 0xaaa8aa82; 714 else 715 clock_cntl_on = 0x8aa8aa82; 716 717 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 718 719 /* Don't re-program the registers if they are already correct */ 720 if ((!state && !val) || (state && (val == clock_cntl_on))) 721 return; 722 723 /* Disable SP clock before programming HWCG registers */ 724 if (!adreno_is_a610(adreno_gpu)) 725 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 726 727 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 728 gpu_write(gpu, reg->offset, state ? reg->value : 0); 729 730 /* Enable SP clock */ 731 if (!adreno_is_a610(adreno_gpu)) 732 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 733 734 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 735 } 736 737 /* For a615, a616, a618, a619, a630, a640 and a680 */ 738 static const u32 a6xx_protect[] = { 739 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 740 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 741 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 742 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 743 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 744 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 745 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 746 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 747 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 748 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 749 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 750 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 751 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 752 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 753 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 754 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 755 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 756 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 757 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 758 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 759 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 760 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 761 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 762 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 763 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 764 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 765 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 766 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 767 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 768 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 769 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 770 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 771 }; 772 773 /* These are for a620 and a650 */ 774 static const u32 a650_protect[] = { 775 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 776 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 777 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 778 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 779 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 780 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 781 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 782 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 783 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 784 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 785 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 786 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 787 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 788 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 789 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 790 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 791 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 792 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 793 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 794 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 795 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 796 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 797 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 798 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 799 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 800 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 801 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 802 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 803 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 804 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 805 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 806 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 807 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 808 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 809 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 810 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 811 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 812 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 813 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 814 }; 815 816 /* These are for a635 and a660 */ 817 static const u32 a660_protect[] = { 818 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 819 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 820 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 821 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 822 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 823 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 824 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 825 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 826 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 827 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 828 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 829 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 830 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 831 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 832 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 833 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 834 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 835 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 836 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 837 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 838 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 839 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 840 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 841 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 842 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 843 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 844 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 845 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 846 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 847 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 848 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 849 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 850 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 851 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 852 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 853 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 854 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 855 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 856 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 857 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 858 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 859 }; 860 861 /* These are for a690 */ 862 static const u32 a690_protect[] = { 863 A6XX_PROTECT_RDONLY(0x00000, 0x004ff), 864 A6XX_PROTECT_RDONLY(0x00501, 0x00001), 865 A6XX_PROTECT_RDONLY(0x0050b, 0x002f4), 866 A6XX_PROTECT_NORDWR(0x0050e, 0x00000), 867 A6XX_PROTECT_NORDWR(0x00510, 0x00000), 868 A6XX_PROTECT_NORDWR(0x00534, 0x00000), 869 A6XX_PROTECT_NORDWR(0x00800, 0x00082), 870 A6XX_PROTECT_NORDWR(0x008a0, 0x00008), 871 A6XX_PROTECT_NORDWR(0x008ab, 0x00024), 872 A6XX_PROTECT_RDONLY(0x008de, 0x000ae), 873 A6XX_PROTECT_NORDWR(0x00900, 0x0004d), 874 A6XX_PROTECT_NORDWR(0x0098d, 0x00272), 875 A6XX_PROTECT_NORDWR(0x00e00, 0x00001), 876 A6XX_PROTECT_NORDWR(0x00e03, 0x0000c), 877 A6XX_PROTECT_NORDWR(0x03c00, 0x000c3), 878 A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff), 879 A6XX_PROTECT_NORDWR(0x08630, 0x001cf), 880 A6XX_PROTECT_NORDWR(0x08e00, 0x00000), 881 A6XX_PROTECT_NORDWR(0x08e08, 0x00007), 882 A6XX_PROTECT_NORDWR(0x08e50, 0x0001f), 883 A6XX_PROTECT_NORDWR(0x08e80, 0x0027f), 884 A6XX_PROTECT_NORDWR(0x09624, 0x001db), 885 A6XX_PROTECT_NORDWR(0x09e60, 0x00011), 886 A6XX_PROTECT_NORDWR(0x09e78, 0x00187), 887 A6XX_PROTECT_NORDWR(0x0a630, 0x001cf), 888 A6XX_PROTECT_NORDWR(0x0ae02, 0x00000), 889 A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f), 890 A6XX_PROTECT_NORDWR(0x0b604, 0x00000), 891 A6XX_PROTECT_NORDWR(0x0b608, 0x00006), 892 A6XX_PROTECT_NORDWR(0x0be02, 0x00001), 893 A6XX_PROTECT_NORDWR(0x0be20, 0x0015f), 894 A6XX_PROTECT_NORDWR(0x0d000, 0x005ff), 895 A6XX_PROTECT_NORDWR(0x0f000, 0x00bff), 896 A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff), 897 A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */ 898 }; 899 900 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 901 { 902 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 903 const u32 *regs = a6xx_protect; 904 unsigned i, count, count_max; 905 906 if (adreno_is_a650(adreno_gpu)) { 907 regs = a650_protect; 908 count = ARRAY_SIZE(a650_protect); 909 count_max = 48; 910 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 911 } else if (adreno_is_a690(adreno_gpu)) { 912 regs = a690_protect; 913 count = ARRAY_SIZE(a690_protect); 914 count_max = 48; 915 BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48); 916 } else if (adreno_is_a660_family(adreno_gpu)) { 917 regs = a660_protect; 918 count = ARRAY_SIZE(a660_protect); 919 count_max = 48; 920 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); 921 } else { 922 regs = a6xx_protect; 923 count = ARRAY_SIZE(a6xx_protect); 924 count_max = 32; 925 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 926 } 927 928 /* 929 * Enable access protection to privileged registers, fault on an access 930 * protect violation and select the last span to protect from the start 931 * address all the way to the end of the register address space 932 */ 933 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 934 A6XX_CP_PROTECT_CNTL_ACCESS_PROT_EN | 935 A6XX_CP_PROTECT_CNTL_ACCESS_FAULT_ON_VIOL_EN | 936 A6XX_CP_PROTECT_CNTL_LAST_SPAN_INF_RANGE); 937 938 for (i = 0; i < count - 1; i++) { 939 /* Intentionally skip writing to some registers */ 940 if (regs[i]) 941 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 942 } 943 /* last CP_PROTECT to have "infinite" length on the last entry */ 944 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 945 } 946 947 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 948 { 949 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 950 /* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */ 951 u32 rgb565_predicator = 0; 952 /* Unknown, introduced with A650 family */ 953 u32 uavflagprd_inv = 0; 954 /* Whether the minimum access length is 64 bits */ 955 u32 min_acc_len = 0; 956 /* Entirely magic, per-GPU-gen value */ 957 u32 ubwc_mode = 0; 958 /* 959 * The Highest Bank Bit value represents the bit of the highest DDR bank. 960 * We then subtract 13 from it (13 is the minimum value allowed by hw) and 961 * write the lowest two bits of the remaining value as hbb_lo and the 962 * one above it as hbb_hi to the hardware. This should ideally use DRAM 963 * type detection. 964 */ 965 u32 hbb_hi = 0; 966 u32 hbb_lo = 2; 967 /* Unknown, introduced with A640/680 */ 968 u32 amsbc = 0; 969 970 if (adreno_is_a610(adreno_gpu)) { 971 /* HBB = 14 */ 972 hbb_lo = 1; 973 min_acc_len = 1; 974 ubwc_mode = 1; 975 } 976 977 /* a618 is using the hw default values */ 978 if (adreno_is_a618(adreno_gpu)) 979 return; 980 981 if (adreno_is_a619_holi(adreno_gpu)) 982 hbb_lo = 0; 983 984 if (adreno_is_a640_family(adreno_gpu)) 985 amsbc = 1; 986 987 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { 988 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 989 hbb_lo = 3; 990 amsbc = 1; 991 rgb565_predicator = 1; 992 uavflagprd_inv = 2; 993 } 994 995 if (adreno_is_a690(adreno_gpu)) { 996 hbb_lo = 2; 997 amsbc = 1; 998 rgb565_predicator = 1; 999 uavflagprd_inv = 2; 1000 } 1001 1002 if (adreno_is_7c3(adreno_gpu)) { 1003 hbb_lo = 1; 1004 amsbc = 1; 1005 rgb565_predicator = 1; 1006 uavflagprd_inv = 2; 1007 } 1008 1009 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 1010 rgb565_predicator << 11 | hbb_hi << 10 | amsbc << 4 | 1011 min_acc_len << 3 | hbb_lo << 1 | ubwc_mode); 1012 1013 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 | 1014 min_acc_len << 3 | hbb_lo << 1 | ubwc_mode); 1015 1016 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 | 1017 uavflagprd_inv << 4 | min_acc_len << 3 | 1018 hbb_lo << 1 | ubwc_mode); 1019 1020 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, min_acc_len << 23 | hbb_lo << 21); 1021 } 1022 1023 static int a6xx_cp_init(struct msm_gpu *gpu) 1024 { 1025 struct msm_ringbuffer *ring = gpu->rb[0]; 1026 1027 OUT_PKT7(ring, CP_ME_INIT, 8); 1028 1029 OUT_RING(ring, 0x0000002f); 1030 1031 /* Enable multiple hardware contexts */ 1032 OUT_RING(ring, 0x00000003); 1033 1034 /* Enable error detection */ 1035 OUT_RING(ring, 0x20000000); 1036 1037 /* Don't enable header dump */ 1038 OUT_RING(ring, 0x00000000); 1039 OUT_RING(ring, 0x00000000); 1040 1041 /* No workarounds enabled */ 1042 OUT_RING(ring, 0x00000000); 1043 1044 /* Pad rest of the cmds with 0's */ 1045 OUT_RING(ring, 0x00000000); 1046 OUT_RING(ring, 0x00000000); 1047 1048 a6xx_flush(gpu, ring); 1049 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 1050 } 1051 1052 /* 1053 * Check that the microcode version is new enough to include several key 1054 * security fixes. Return true if the ucode is safe. 1055 */ 1056 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 1057 struct drm_gem_object *obj) 1058 { 1059 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1060 struct msm_gpu *gpu = &adreno_gpu->base; 1061 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 1062 u32 *buf = msm_gem_get_vaddr(obj); 1063 bool ret = false; 1064 1065 if (IS_ERR(buf)) 1066 return false; 1067 1068 /* 1069 * Targets up to a640 (a618, a630 and a640) need to check for a 1070 * microcode version that is patched to support the whereami opcode or 1071 * one that is new enough to include it by default. 1072 * 1073 * a650 tier targets don't need whereami but still need to be 1074 * equal to or newer than 0.95 for other security fixes 1075 * 1076 * a660 targets have all the critical security fixes from the start 1077 */ 1078 if (!strcmp(sqe_name, "a630_sqe.fw")) { 1079 /* 1080 * If the lowest nibble is 0xa that is an indication that this 1081 * microcode has been patched. The actual version is in dword 1082 * [3] but we only care about the patchlevel which is the lowest 1083 * nibble of dword [3] 1084 * 1085 * Otherwise check that the firmware is greater than or equal 1086 * to 1.90 which was the first version that had this fix built 1087 * in 1088 */ 1089 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 1090 (buf[0] & 0xfff) >= 0x190) { 1091 a6xx_gpu->has_whereami = true; 1092 ret = true; 1093 goto out; 1094 } 1095 1096 DRM_DEV_ERROR(&gpu->pdev->dev, 1097 "a630 SQE ucode is too old. Have version %x need at least %x\n", 1098 buf[0] & 0xfff, 0x190); 1099 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 1100 if ((buf[0] & 0xfff) >= 0x095) { 1101 ret = true; 1102 goto out; 1103 } 1104 1105 DRM_DEV_ERROR(&gpu->pdev->dev, 1106 "a650 SQE ucode is too old. Have version %x need at least %x\n", 1107 buf[0] & 0xfff, 0x095); 1108 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 1109 ret = true; 1110 } else { 1111 DRM_DEV_ERROR(&gpu->pdev->dev, 1112 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 1113 } 1114 out: 1115 msm_gem_put_vaddr(obj); 1116 return ret; 1117 } 1118 1119 static int a6xx_ucode_load(struct msm_gpu *gpu) 1120 { 1121 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1122 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1123 1124 if (!a6xx_gpu->sqe_bo) { 1125 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 1126 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 1127 1128 if (IS_ERR(a6xx_gpu->sqe_bo)) { 1129 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 1130 1131 a6xx_gpu->sqe_bo = NULL; 1132 DRM_DEV_ERROR(&gpu->pdev->dev, 1133 "Could not allocate SQE ucode: %d\n", ret); 1134 1135 return ret; 1136 } 1137 1138 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 1139 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 1140 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1141 drm_gem_object_put(a6xx_gpu->sqe_bo); 1142 1143 a6xx_gpu->sqe_bo = NULL; 1144 return -EPERM; 1145 } 1146 } 1147 1148 /* 1149 * Expanded APRIV and targets that support WHERE_AM_I both need a 1150 * privileged buffer to store the RPTR shadow 1151 */ 1152 if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) && 1153 !a6xx_gpu->shadow_bo) { 1154 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1155 sizeof(u32) * gpu->nr_rings, 1156 MSM_BO_WC | MSM_BO_MAP_PRIV, 1157 gpu->aspace, &a6xx_gpu->shadow_bo, 1158 &a6xx_gpu->shadow_iova); 1159 1160 if (IS_ERR(a6xx_gpu->shadow)) 1161 return PTR_ERR(a6xx_gpu->shadow); 1162 1163 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); 1164 } 1165 1166 return 0; 1167 } 1168 1169 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 1170 { 1171 static bool loaded; 1172 int ret; 1173 1174 if (loaded) 1175 return 0; 1176 1177 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 1178 1179 loaded = !ret; 1180 return ret; 1181 } 1182 1183 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 1184 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 1185 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 1186 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 1187 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 1188 A6XX_RBBM_INT_0_MASK_CP_RB | \ 1189 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 1190 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 1191 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 1192 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 1193 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 1194 1195 static int hw_init(struct msm_gpu *gpu) 1196 { 1197 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1198 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1199 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1200 int ret; 1201 1202 if (!adreno_has_gmu_wrapper(adreno_gpu)) { 1203 /* Make sure the GMU keeps the GPU on while we set it up */ 1204 ret = a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1205 if (ret) 1206 return ret; 1207 } 1208 1209 /* Clear GBIF halt in case GX domain was not collapsed */ 1210 if (adreno_is_a619_holi(adreno_gpu)) { 1211 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1212 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0); 1213 /* Let's make extra sure that the GPU can access the memory.. */ 1214 mb(); 1215 } else if (a6xx_has_gbif(adreno_gpu)) { 1216 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1217 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0); 1218 /* Let's make extra sure that the GPU can access the memory.. */ 1219 mb(); 1220 } 1221 1222 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 1223 1224 if (adreno_is_a619_holi(adreno_gpu)) 1225 a6xx_sptprac_enable(gmu); 1226 1227 /* 1228 * Disable the trusted memory range - we don't actually supported secure 1229 * memory rendering at this point in time and we don't want to block off 1230 * part of the virtual memory space. 1231 */ 1232 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000); 1233 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 1234 1235 /* Turn on 64 bit addressing for all blocks */ 1236 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 1237 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 1238 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 1239 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 1240 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 1241 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 1242 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 1243 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 1244 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 1245 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 1246 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 1247 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 1248 1249 /* enable hardware clockgating */ 1250 a6xx_set_hwcg(gpu, true); 1251 1252 /* VBIF/GBIF start*/ 1253 if (adreno_is_a610(adreno_gpu) || 1254 adreno_is_a640_family(adreno_gpu) || 1255 adreno_is_a650_family(adreno_gpu)) { 1256 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 1257 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 1258 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 1259 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 1260 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 1261 } else { 1262 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 1263 } 1264 1265 if (adreno_is_a630(adreno_gpu)) 1266 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 1267 1268 /* Make all blocks contribute to the GPU BUSY perf counter */ 1269 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 1270 1271 /* Disable L2 bypass in the UCHE */ 1272 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu); 1273 gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); 1274 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); 1275 1276 if (!adreno_is_a650_family(adreno_gpu)) { 1277 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 1278 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, 0x00100000); 1279 1280 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX, 1281 0x00100000 + adreno_gpu->info->gmem - 1); 1282 } 1283 1284 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 1285 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 1286 1287 if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { 1288 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 1289 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1290 } else if (adreno_is_a610(adreno_gpu)) { 1291 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060); 1292 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16); 1293 } else { 1294 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 1295 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1296 } 1297 1298 if (adreno_is_a660_family(adreno_gpu)) 1299 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 1300 1301 /* Setting the mem pool size */ 1302 if (adreno_is_a610(adreno_gpu)) { 1303 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48); 1304 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47); 1305 } else 1306 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 1307 1308 /* Setting the primFifo thresholds default values, 1309 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 1310 */ 1311 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu) || adreno_is_a690(adreno_gpu)) 1312 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1313 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 1314 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 1315 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1316 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1317 else if (adreno_is_a619(adreno_gpu)) 1318 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000); 1319 else if (adreno_is_a610(adreno_gpu)) 1320 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000); 1321 else 1322 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 1323 1324 /* Set the AHB default slave response to "ERROR" */ 1325 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 1326 1327 /* Turn on performance counters */ 1328 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 1329 1330 /* Select CP0 to always count cycles */ 1331 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 1332 1333 a6xx_set_ubwc_config(gpu); 1334 1335 /* Enable fault detection */ 1336 if (adreno_is_a619(adreno_gpu)) 1337 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff); 1338 else if (adreno_is_a610(adreno_gpu)) 1339 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff); 1340 else 1341 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff); 1342 1343 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 1344 1345 /* Set weights for bicubic filtering */ 1346 if (adreno_is_a650_family(adreno_gpu)) { 1347 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1348 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1349 0x3fe05ff4); 1350 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1351 0x3fa0ebee); 1352 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1353 0x3f5193ed); 1354 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1355 0x3f0243f0); 1356 } 1357 1358 /* Set up the CX GMU counter 0 to count busy ticks */ 1359 gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000); 1360 1361 /* Enable the power counter */ 1362 gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5)); 1363 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1); 1364 1365 /* Protect registers from the CP */ 1366 a6xx_set_cp_protect(gpu); 1367 1368 if (adreno_is_a660_family(adreno_gpu)) { 1369 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1370 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1371 } 1372 1373 /* Set dualQ + disable afull for A660 GPU */ 1374 if (adreno_is_a660(adreno_gpu)) 1375 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1376 1377 /* Enable expanded apriv for targets that support it */ 1378 if (gpu->hw_apriv) { 1379 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1380 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 1381 } 1382 1383 /* Enable interrupts */ 1384 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 1385 1386 ret = adreno_hw_init(gpu); 1387 if (ret) 1388 goto out; 1389 1390 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova); 1391 1392 /* Set the ringbuffer address */ 1393 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova); 1394 1395 /* Targets that support extended APRIV can use the RPTR shadow from 1396 * hardware but all the other ones need to disable the feature. Targets 1397 * that support the WHERE_AM_I opcode can use that instead 1398 */ 1399 if (adreno_gpu->base.hw_apriv) 1400 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1401 else 1402 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1403 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1404 1405 /* Configure the RPTR shadow if needed: */ 1406 if (a6xx_gpu->shadow_bo) { 1407 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR, 1408 shadowptr(a6xx_gpu, gpu->rb[0])); 1409 } 1410 1411 /* Always come up on rb 0 */ 1412 a6xx_gpu->cur_ring = gpu->rb[0]; 1413 1414 gpu->cur_ctx_seqno = 0; 1415 1416 /* Enable the SQE_to start the CP engine */ 1417 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1418 1419 ret = a6xx_cp_init(gpu); 1420 if (ret) 1421 goto out; 1422 1423 /* 1424 * Try to load a zap shader into the secure world. If successful 1425 * we can use the CP to switch out of secure mode. If not then we 1426 * have no resource but to try to switch ourselves out manually. If we 1427 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1428 * be blocked and a permissions violation will soon follow. 1429 */ 1430 ret = a6xx_zap_shader_init(gpu); 1431 if (!ret) { 1432 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1433 OUT_RING(gpu->rb[0], 0x00000000); 1434 1435 a6xx_flush(gpu, gpu->rb[0]); 1436 if (!a6xx_idle(gpu, gpu->rb[0])) 1437 return -EINVAL; 1438 } else if (ret == -ENODEV) { 1439 /* 1440 * This device does not use zap shader (but print a warning 1441 * just in case someone got their dt wrong.. hopefully they 1442 * have a debug UART to realize the error of their ways... 1443 * if you mess this up you are about to crash horribly) 1444 */ 1445 dev_warn_once(gpu->dev->dev, 1446 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1447 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1448 ret = 0; 1449 } else { 1450 return ret; 1451 } 1452 1453 out: 1454 if (adreno_has_gmu_wrapper(adreno_gpu)) 1455 return ret; 1456 /* 1457 * Tell the GMU that we are done touching the GPU and it can start power 1458 * management 1459 */ 1460 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1461 1462 if (a6xx_gpu->gmu.legacy) { 1463 /* Take the GMU out of its special boot mode */ 1464 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1465 } 1466 1467 return ret; 1468 } 1469 1470 static int a6xx_hw_init(struct msm_gpu *gpu) 1471 { 1472 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1473 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1474 int ret; 1475 1476 mutex_lock(&a6xx_gpu->gmu.lock); 1477 ret = hw_init(gpu); 1478 mutex_unlock(&a6xx_gpu->gmu.lock); 1479 1480 return ret; 1481 } 1482 1483 static void a6xx_dump(struct msm_gpu *gpu) 1484 { 1485 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1486 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1487 adreno_dump(gpu); 1488 } 1489 1490 static void a6xx_recover(struct msm_gpu *gpu) 1491 { 1492 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1493 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1494 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1495 int i, active_submits; 1496 1497 adreno_dump_info(gpu); 1498 1499 for (i = 0; i < 8; i++) 1500 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1501 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1502 1503 if (hang_debug) 1504 a6xx_dump(gpu); 1505 1506 /* 1507 * To handle recovery specific sequences during the rpm suspend we are 1508 * about to trigger 1509 */ 1510 a6xx_gpu->hung = true; 1511 1512 /* Halt SQE first */ 1513 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3); 1514 1515 pm_runtime_dont_use_autosuspend(&gpu->pdev->dev); 1516 1517 /* active_submit won't change until we make a submission */ 1518 mutex_lock(&gpu->active_lock); 1519 active_submits = gpu->active_submits; 1520 1521 /* 1522 * Temporarily clear active_submits count to silence a WARN() in the 1523 * runtime suspend cb 1524 */ 1525 gpu->active_submits = 0; 1526 1527 if (adreno_has_gmu_wrapper(adreno_gpu)) { 1528 /* Drain the outstanding traffic on memory buses */ 1529 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 1530 1531 /* Reset the GPU to a clean state */ 1532 a6xx_gpu_sw_reset(gpu, true); 1533 a6xx_gpu_sw_reset(gpu, false); 1534 } 1535 1536 reinit_completion(&gmu->pd_gate); 1537 dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb); 1538 dev_pm_genpd_synced_poweroff(gmu->cxpd); 1539 1540 /* Drop the rpm refcount from active submits */ 1541 if (active_submits) 1542 pm_runtime_put(&gpu->pdev->dev); 1543 1544 /* And the final one from recover worker */ 1545 pm_runtime_put_sync(&gpu->pdev->dev); 1546 1547 if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000))) 1548 DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n"); 1549 1550 dev_pm_genpd_remove_notifier(gmu->cxpd); 1551 1552 pm_runtime_use_autosuspend(&gpu->pdev->dev); 1553 1554 if (active_submits) 1555 pm_runtime_get(&gpu->pdev->dev); 1556 1557 pm_runtime_get_sync(&gpu->pdev->dev); 1558 1559 gpu->active_submits = active_submits; 1560 mutex_unlock(&gpu->active_lock); 1561 1562 msm_gpu_hw_init(gpu); 1563 a6xx_gpu->hung = false; 1564 } 1565 1566 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 1567 { 1568 static const char *uche_clients[7] = { 1569 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 1570 }; 1571 u32 val; 1572 1573 if (mid < 1 || mid > 3) 1574 return "UNKNOWN"; 1575 1576 /* 1577 * The source of the data depends on the mid ID read from FSYNR1. 1578 * and the client ID read from the UCHE block 1579 */ 1580 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 1581 1582 /* mid = 3 is most precise and refers to only one block per client */ 1583 if (mid == 3) 1584 return uche_clients[val & 7]; 1585 1586 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 1587 if (mid == 2) 1588 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 1589 1590 /* For mid=1 just return "UCHE" as a catchall for everything else */ 1591 return "UCHE"; 1592 } 1593 1594 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 1595 { 1596 if (id == 0) 1597 return "CP"; 1598 else if (id == 4) 1599 return "CCU"; 1600 else if (id == 6) 1601 return "CDP Prefetch"; 1602 1603 return a6xx_uche_fault_block(gpu, id); 1604 } 1605 1606 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1607 { 1608 struct msm_gpu *gpu = arg; 1609 struct adreno_smmu_fault_info *info = data; 1610 const char *block = "unknown"; 1611 1612 u32 scratch[] = { 1613 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1614 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1615 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1616 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)), 1617 }; 1618 1619 if (info) 1620 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 1621 1622 return adreno_fault_handler(gpu, iova, flags, info, block, scratch); 1623 } 1624 1625 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 1626 { 1627 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 1628 1629 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 1630 u32 val; 1631 1632 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 1633 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 1634 dev_err_ratelimited(&gpu->pdev->dev, 1635 "CP | opcode error | possible opcode=0x%8.8X\n", 1636 val); 1637 } 1638 1639 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 1640 dev_err_ratelimited(&gpu->pdev->dev, 1641 "CP ucode error interrupt\n"); 1642 1643 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 1644 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 1645 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 1646 1647 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1648 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1649 1650 dev_err_ratelimited(&gpu->pdev->dev, 1651 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1652 val & (1 << 20) ? "READ" : "WRITE", 1653 (val & 0x3ffff), val); 1654 } 1655 1656 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1657 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1658 1659 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1660 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1661 1662 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1663 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1664 1665 } 1666 1667 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1668 { 1669 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1670 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1671 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1672 1673 /* 1674 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1675 * but the fault handler will trigger the devcore dump, and we want 1676 * to otherwise resume normally rather than killing the submit, so 1677 * just bail. 1678 */ 1679 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 1680 return; 1681 1682 /* 1683 * Force the GPU to stay on until after we finish 1684 * collecting information 1685 */ 1686 if (!adreno_has_gmu_wrapper(adreno_gpu)) 1687 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1688 1689 DRM_DEV_ERROR(&gpu->pdev->dev, 1690 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1691 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, 1692 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1693 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1694 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1695 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 1696 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1697 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 1698 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1699 1700 /* Turn off the hangcheck timer to keep it from bothering us */ 1701 del_timer(&gpu->hangcheck_timer); 1702 1703 kthread_queue_work(gpu->worker, &gpu->recover_work); 1704 } 1705 1706 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1707 { 1708 struct msm_drm_private *priv = gpu->dev->dev_private; 1709 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1710 1711 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1712 1713 if (priv->disable_err_irq) 1714 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; 1715 1716 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1717 a6xx_fault_detect_irq(gpu); 1718 1719 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1720 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1721 1722 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1723 a6xx_cp_hw_err_irq(gpu); 1724 1725 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1726 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1727 1728 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1729 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1730 1731 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1732 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1733 1734 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1735 msm_gpu_retire(gpu); 1736 1737 return IRQ_HANDLED; 1738 } 1739 1740 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1741 { 1742 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1743 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1744 } 1745 1746 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1747 { 1748 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1749 struct msm_gpu *gpu = &adreno_gpu->base; 1750 u32 cntl1_regval = 0; 1751 1752 if (IS_ERR(a6xx_gpu->llc_mmio)) 1753 return; 1754 1755 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1756 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1757 1758 gpu_scid &= 0x1f; 1759 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1760 (gpu_scid << 15) | (gpu_scid << 20); 1761 1762 /* On A660, the SCID programming for UCHE traffic is done in 1763 * A6XX_GBIF_SCACHE_CNTL0[14:10] 1764 */ 1765 if (adreno_is_a660_family(adreno_gpu)) 1766 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 1767 (1 << 8), (gpu_scid << 10) | (1 << 8)); 1768 } 1769 1770 /* 1771 * For targets with a MMU500, activate the slice but don't program the 1772 * register. The XBL will take care of that. 1773 */ 1774 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1775 if (!a6xx_gpu->have_mmu500) { 1776 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1777 1778 gpuhtw_scid &= 0x1f; 1779 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1780 } 1781 } 1782 1783 if (!cntl1_regval) 1784 return; 1785 1786 /* 1787 * Program the slice IDs for the various GPU blocks and GPU MMU 1788 * pagetables 1789 */ 1790 if (!a6xx_gpu->have_mmu500) { 1791 a6xx_llc_write(a6xx_gpu, 1792 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1793 1794 /* 1795 * Program cacheability overrides to not allocate cache 1796 * lines on a write miss 1797 */ 1798 a6xx_llc_rmw(a6xx_gpu, 1799 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1800 return; 1801 } 1802 1803 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 1804 } 1805 1806 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1807 { 1808 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 1809 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 1810 return; 1811 1812 llcc_slice_putd(a6xx_gpu->llc_slice); 1813 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1814 } 1815 1816 static void a6xx_llc_slices_init(struct platform_device *pdev, 1817 struct a6xx_gpu *a6xx_gpu) 1818 { 1819 struct device_node *phandle; 1820 1821 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 1822 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 1823 return; 1824 1825 /* 1826 * There is a different programming path for targets with an mmu500 1827 * attached, so detect if that is the case 1828 */ 1829 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1830 a6xx_gpu->have_mmu500 = (phandle && 1831 of_device_is_compatible(phandle, "arm,mmu-500")); 1832 of_node_put(phandle); 1833 1834 if (a6xx_gpu->have_mmu500) 1835 a6xx_gpu->llc_mmio = NULL; 1836 else 1837 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); 1838 1839 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1840 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1841 1842 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1843 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1844 } 1845 1846 #define GBIF_CLIENT_HALT_MASK BIT(0) 1847 #define GBIF_ARB_HALT_MASK BIT(1) 1848 #define VBIF_XIN_HALT_CTRL0_MASK GENMASK(3, 0) 1849 #define VBIF_RESET_ACK_MASK 0xF0 1850 #define GPR0_GBIF_HALT_REQUEST 0x1E0 1851 1852 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off) 1853 { 1854 struct msm_gpu *gpu = &adreno_gpu->base; 1855 1856 if (adreno_is_a619_holi(adreno_gpu)) { 1857 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST); 1858 spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) & 1859 (VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK); 1860 } else if (!a6xx_has_gbif(adreno_gpu)) { 1861 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK); 1862 spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & 1863 (VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK); 1864 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0); 1865 1866 return; 1867 } 1868 1869 if (gx_off) { 1870 /* Halt the gx side of GBIF */ 1871 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1); 1872 spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1); 1873 } 1874 1875 /* Halt new client requests on GBIF */ 1876 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK); 1877 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 1878 (GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK); 1879 1880 /* Halt all AXI requests on GBIF */ 1881 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK); 1882 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 1883 (GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK); 1884 1885 /* The GBIF halt needs to be explicitly cleared */ 1886 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0); 1887 } 1888 1889 void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert) 1890 { 1891 /* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */ 1892 if (adreno_is_a610(to_adreno_gpu(gpu))) 1893 return; 1894 1895 gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert); 1896 /* Perform a bogus read and add a brief delay to ensure ordering. */ 1897 gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD); 1898 udelay(1); 1899 1900 /* The reset line needs to be asserted for at least 100 us */ 1901 if (assert) 1902 udelay(100); 1903 } 1904 1905 static int a6xx_gmu_pm_resume(struct msm_gpu *gpu) 1906 { 1907 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1908 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1909 int ret; 1910 1911 gpu->needs_hw_init = true; 1912 1913 trace_msm_gpu_resume(0); 1914 1915 mutex_lock(&a6xx_gpu->gmu.lock); 1916 ret = a6xx_gmu_resume(a6xx_gpu); 1917 mutex_unlock(&a6xx_gpu->gmu.lock); 1918 if (ret) 1919 return ret; 1920 1921 msm_devfreq_resume(gpu); 1922 1923 a6xx_llc_activate(a6xx_gpu); 1924 1925 return ret; 1926 } 1927 1928 static int a6xx_pm_resume(struct msm_gpu *gpu) 1929 { 1930 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1931 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1932 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1933 unsigned long freq = gpu->fast_rate; 1934 struct dev_pm_opp *opp; 1935 int ret; 1936 1937 gpu->needs_hw_init = true; 1938 1939 trace_msm_gpu_resume(0); 1940 1941 mutex_lock(&a6xx_gpu->gmu.lock); 1942 1943 opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq); 1944 if (IS_ERR(opp)) { 1945 ret = PTR_ERR(opp); 1946 goto err_set_opp; 1947 } 1948 dev_pm_opp_put(opp); 1949 1950 /* Set the core clock and bus bw, having VDD scaling in mind */ 1951 dev_pm_opp_set_opp(&gpu->pdev->dev, opp); 1952 1953 pm_runtime_resume_and_get(gmu->dev); 1954 pm_runtime_resume_and_get(gmu->gxpd); 1955 1956 ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks); 1957 if (ret) 1958 goto err_bulk_clk; 1959 1960 if (adreno_is_a619_holi(adreno_gpu)) 1961 a6xx_sptprac_enable(gmu); 1962 1963 /* If anything goes south, tear the GPU down piece by piece.. */ 1964 if (ret) { 1965 err_bulk_clk: 1966 pm_runtime_put(gmu->gxpd); 1967 pm_runtime_put(gmu->dev); 1968 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 1969 } 1970 err_set_opp: 1971 mutex_unlock(&a6xx_gpu->gmu.lock); 1972 1973 if (!ret) 1974 msm_devfreq_resume(gpu); 1975 1976 return ret; 1977 } 1978 1979 static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu) 1980 { 1981 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1982 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1983 int i, ret; 1984 1985 trace_msm_gpu_suspend(0); 1986 1987 a6xx_llc_deactivate(a6xx_gpu); 1988 1989 msm_devfreq_suspend(gpu); 1990 1991 mutex_lock(&a6xx_gpu->gmu.lock); 1992 ret = a6xx_gmu_stop(a6xx_gpu); 1993 mutex_unlock(&a6xx_gpu->gmu.lock); 1994 if (ret) 1995 return ret; 1996 1997 if (a6xx_gpu->shadow_bo) 1998 for (i = 0; i < gpu->nr_rings; i++) 1999 a6xx_gpu->shadow[i] = 0; 2000 2001 gpu->suspend_count++; 2002 2003 return 0; 2004 } 2005 2006 static int a6xx_pm_suspend(struct msm_gpu *gpu) 2007 { 2008 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2009 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2010 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2011 int i; 2012 2013 trace_msm_gpu_suspend(0); 2014 2015 msm_devfreq_suspend(gpu); 2016 2017 mutex_lock(&a6xx_gpu->gmu.lock); 2018 2019 /* Drain the outstanding traffic on memory buses */ 2020 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 2021 2022 if (adreno_is_a619_holi(adreno_gpu)) 2023 a6xx_sptprac_disable(gmu); 2024 2025 clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks); 2026 2027 pm_runtime_put_sync(gmu->gxpd); 2028 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 2029 pm_runtime_put_sync(gmu->dev); 2030 2031 mutex_unlock(&a6xx_gpu->gmu.lock); 2032 2033 if (a6xx_gpu->shadow_bo) 2034 for (i = 0; i < gpu->nr_rings; i++) 2035 a6xx_gpu->shadow[i] = 0; 2036 2037 gpu->suspend_count++; 2038 2039 return 0; 2040 } 2041 2042 static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2043 { 2044 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2045 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2046 2047 mutex_lock(&a6xx_gpu->gmu.lock); 2048 2049 /* Force the GPU power on so we can read this register */ 2050 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2051 2052 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2053 2054 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2055 2056 mutex_unlock(&a6xx_gpu->gmu.lock); 2057 2058 return 0; 2059 } 2060 2061 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2062 { 2063 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2064 return 0; 2065 } 2066 2067 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 2068 { 2069 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2070 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2071 2072 return a6xx_gpu->cur_ring; 2073 } 2074 2075 static void a6xx_destroy(struct msm_gpu *gpu) 2076 { 2077 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2078 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2079 2080 if (a6xx_gpu->sqe_bo) { 2081 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 2082 drm_gem_object_put(a6xx_gpu->sqe_bo); 2083 } 2084 2085 if (a6xx_gpu->shadow_bo) { 2086 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 2087 drm_gem_object_put(a6xx_gpu->shadow_bo); 2088 } 2089 2090 a6xx_llc_slices_destroy(a6xx_gpu); 2091 2092 a6xx_gmu_remove(a6xx_gpu); 2093 2094 adreno_gpu_cleanup(adreno_gpu); 2095 2096 kfree(a6xx_gpu); 2097 } 2098 2099 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) 2100 { 2101 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2102 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2103 u64 busy_cycles; 2104 2105 /* 19.2MHz */ 2106 *out_sample_rate = 19200000; 2107 2108 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 2109 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 2110 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 2111 2112 return busy_cycles; 2113 } 2114 2115 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, 2116 bool suspended) 2117 { 2118 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2119 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2120 2121 mutex_lock(&a6xx_gpu->gmu.lock); 2122 a6xx_gmu_set_freq(gpu, opp, suspended); 2123 mutex_unlock(&a6xx_gpu->gmu.lock); 2124 } 2125 2126 static struct msm_gem_address_space * 2127 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 2128 { 2129 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2130 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2131 unsigned long quirks = 0; 2132 2133 /* 2134 * This allows GPU to set the bus attributes required to use system 2135 * cache on behalf of the iommu page table walker. 2136 */ 2137 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) && 2138 !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY)) 2139 quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA; 2140 2141 return adreno_iommu_create_address_space(gpu, pdev, quirks); 2142 } 2143 2144 static struct msm_gem_address_space * 2145 a6xx_create_private_address_space(struct msm_gpu *gpu) 2146 { 2147 struct msm_mmu *mmu; 2148 2149 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 2150 2151 if (IS_ERR(mmu)) 2152 return ERR_CAST(mmu); 2153 2154 return msm_gem_address_space_create(mmu, 2155 "gpu", 0x100000000ULL, 2156 adreno_private_address_space_size(gpu)); 2157 } 2158 2159 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2160 { 2161 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2162 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2163 2164 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 2165 return a6xx_gpu->shadow[ring->id]; 2166 2167 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 2168 } 2169 2170 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2171 { 2172 struct msm_cp_state cp_state = { 2173 .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 2174 .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 2175 .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 2176 .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE), 2177 }; 2178 bool progress; 2179 2180 /* 2181 * Adjust the remaining data to account for what has already been 2182 * fetched from memory, but not yet consumed by the SQE. 2183 * 2184 * This is not *technically* correct, the amount buffered could 2185 * exceed the IB size due to hw prefetching ahead, but: 2186 * 2187 * (1) We aren't trying to find the exact position, just whether 2188 * progress has been made 2189 * (2) The CP_REG_TO_MEM at the end of a submit should be enough 2190 * to prevent prefetching into an unrelated submit. (And 2191 * either way, at some point the ROQ will be full.) 2192 */ 2193 cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16; 2194 cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16; 2195 2196 progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state)); 2197 2198 ring->last_cp_state = cp_state; 2199 2200 return progress; 2201 } 2202 2203 static u32 fuse_to_supp_hw(const struct adreno_info *info, u32 fuse) 2204 { 2205 if (!info->speedbins) 2206 return UINT_MAX; 2207 2208 for (int i = 0; info->speedbins[i].fuse != SHRT_MAX; i++) 2209 if (info->speedbins[i].fuse == fuse) 2210 return BIT(info->speedbins[i].speedbin); 2211 2212 return UINT_MAX; 2213 } 2214 2215 static int a6xx_set_supported_hw(struct device *dev, const struct adreno_info *info) 2216 { 2217 u32 supp_hw; 2218 u32 speedbin; 2219 int ret; 2220 2221 ret = adreno_read_speedbin(dev, &speedbin); 2222 /* 2223 * -ENOENT means that the platform doesn't support speedbin which is 2224 * fine 2225 */ 2226 if (ret == -ENOENT) { 2227 return 0; 2228 } else if (ret) { 2229 dev_err_probe(dev, ret, 2230 "failed to read speed-bin. Some OPPs may not be supported by hardware\n"); 2231 return ret; 2232 } 2233 2234 supp_hw = fuse_to_supp_hw(info, speedbin); 2235 2236 if (supp_hw == UINT_MAX) { 2237 DRM_DEV_ERROR(dev, 2238 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n", 2239 speedbin); 2240 supp_hw = BIT(0); /* Default */ 2241 } 2242 2243 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 2244 if (ret) 2245 return ret; 2246 2247 return 0; 2248 } 2249 2250 static const struct adreno_gpu_funcs funcs = { 2251 .base = { 2252 .get_param = adreno_get_param, 2253 .set_param = adreno_set_param, 2254 .hw_init = a6xx_hw_init, 2255 .ucode_load = a6xx_ucode_load, 2256 .pm_suspend = a6xx_gmu_pm_suspend, 2257 .pm_resume = a6xx_gmu_pm_resume, 2258 .recover = a6xx_recover, 2259 .submit = a6xx_submit, 2260 .active_ring = a6xx_active_ring, 2261 .irq = a6xx_irq, 2262 .destroy = a6xx_destroy, 2263 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2264 .show = a6xx_show, 2265 #endif 2266 .gpu_busy = a6xx_gpu_busy, 2267 .gpu_get_freq = a6xx_gmu_get_freq, 2268 .gpu_set_freq = a6xx_gpu_set_freq, 2269 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2270 .gpu_state_get = a6xx_gpu_state_get, 2271 .gpu_state_put = a6xx_gpu_state_put, 2272 #endif 2273 .create_address_space = a6xx_create_address_space, 2274 .create_private_address_space = a6xx_create_private_address_space, 2275 .get_rptr = a6xx_get_rptr, 2276 .progress = a6xx_progress, 2277 }, 2278 .get_timestamp = a6xx_gmu_get_timestamp, 2279 }; 2280 2281 static const struct adreno_gpu_funcs funcs_gmuwrapper = { 2282 .base = { 2283 .get_param = adreno_get_param, 2284 .set_param = adreno_set_param, 2285 .hw_init = a6xx_hw_init, 2286 .ucode_load = a6xx_ucode_load, 2287 .pm_suspend = a6xx_pm_suspend, 2288 .pm_resume = a6xx_pm_resume, 2289 .recover = a6xx_recover, 2290 .submit = a6xx_submit, 2291 .active_ring = a6xx_active_ring, 2292 .irq = a6xx_irq, 2293 .destroy = a6xx_destroy, 2294 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2295 .show = a6xx_show, 2296 #endif 2297 .gpu_busy = a6xx_gpu_busy, 2298 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2299 .gpu_state_get = a6xx_gpu_state_get, 2300 .gpu_state_put = a6xx_gpu_state_put, 2301 #endif 2302 .create_address_space = a6xx_create_address_space, 2303 .create_private_address_space = a6xx_create_private_address_space, 2304 .get_rptr = a6xx_get_rptr, 2305 .progress = a6xx_progress, 2306 }, 2307 .get_timestamp = a6xx_get_timestamp, 2308 }; 2309 2310 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 2311 { 2312 struct msm_drm_private *priv = dev->dev_private; 2313 struct platform_device *pdev = priv->gpu_pdev; 2314 struct adreno_platform_config *config = pdev->dev.platform_data; 2315 struct device_node *node; 2316 struct a6xx_gpu *a6xx_gpu; 2317 struct adreno_gpu *adreno_gpu; 2318 struct msm_gpu *gpu; 2319 int ret; 2320 2321 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 2322 if (!a6xx_gpu) 2323 return ERR_PTR(-ENOMEM); 2324 2325 adreno_gpu = &a6xx_gpu->base; 2326 gpu = &adreno_gpu->base; 2327 2328 mutex_init(&a6xx_gpu->gmu.lock); 2329 2330 adreno_gpu->registers = NULL; 2331 2332 /* Check if there is a GMU phandle and set it up */ 2333 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 2334 /* FIXME: How do we gracefully handle this? */ 2335 BUG_ON(!node); 2336 2337 adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper"); 2338 2339 adreno_gpu->base.hw_apriv = 2340 !!(config->info->quirks & ADRENO_QUIRK_HAS_HW_APRIV); 2341 2342 a6xx_llc_slices_init(pdev, a6xx_gpu); 2343 2344 ret = a6xx_set_supported_hw(&pdev->dev, config->info); 2345 if (ret) { 2346 a6xx_destroy(&(a6xx_gpu->base.base)); 2347 return ERR_PTR(ret); 2348 } 2349 2350 if (adreno_has_gmu_wrapper(adreno_gpu)) 2351 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1); 2352 else 2353 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 2354 if (ret) { 2355 a6xx_destroy(&(a6xx_gpu->base.base)); 2356 return ERR_PTR(ret); 2357 } 2358 2359 /* 2360 * For now only clamp to idle freq for devices where this is known not 2361 * to cause power supply issues: 2362 */ 2363 if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 2364 priv->gpu_clamp_to_idle = true; 2365 2366 if (adreno_has_gmu_wrapper(adreno_gpu)) 2367 ret = a6xx_gmu_wrapper_init(a6xx_gpu, node); 2368 else 2369 ret = a6xx_gmu_init(a6xx_gpu, node); 2370 of_node_put(node); 2371 if (ret) { 2372 a6xx_destroy(&(a6xx_gpu->base.base)); 2373 return ERR_PTR(ret); 2374 } 2375 2376 if (gpu->aspace) 2377 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 2378 a6xx_fault_handler); 2379 2380 return gpu; 2381 } 2382