1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/reset.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 62 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 65 } 66 } 67 68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 69 { 70 uint32_t wptr; 71 unsigned long flags; 72 73 update_shadow_rptr(gpu, ring); 74 75 spin_lock_irqsave(&ring->preempt_lock, flags); 76 77 /* Copy the shadow to the actual register */ 78 ring->cur = ring->next; 79 80 /* Make sure to wrap wptr if we need to */ 81 wptr = get_wptr(ring); 82 83 spin_unlock_irqrestore(&ring->preempt_lock, flags); 84 85 /* Make sure everything is posted before making a decision */ 86 mb(); 87 88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 89 } 90 91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 92 u64 iova) 93 { 94 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 96 CP_REG_TO_MEM_0_CNT(2) | 97 CP_REG_TO_MEM_0_64B); 98 OUT_RING(ring, lower_32_bits(iova)); 99 OUT_RING(ring, upper_32_bits(iova)); 100 } 101 102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 103 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 104 { 105 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; 106 phys_addr_t ttbr; 107 u32 asid; 108 u64 memptr = rbmemptr(ring, ttbr0); 109 110 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) 111 return; 112 113 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 114 return; 115 116 if (!sysprof) { 117 /* Turn off protected mode to write to special registers */ 118 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 119 OUT_RING(ring, 0); 120 121 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); 122 OUT_RING(ring, 1); 123 } 124 125 /* Execute the table update */ 126 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 127 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 128 129 OUT_RING(ring, 130 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 131 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 132 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 133 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 134 135 /* 136 * Write the new TTBR0 to the memstore. This is good for debugging. 137 */ 138 OUT_PKT7(ring, CP_MEM_WRITE, 4); 139 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 140 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 141 OUT_RING(ring, lower_32_bits(ttbr)); 142 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 143 144 /* 145 * And finally, trigger a uche flush to be sure there isn't anything 146 * lingering in that part of the GPU 147 */ 148 149 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 150 OUT_RING(ring, CACHE_INVALIDATE); 151 152 if (!sysprof) { 153 /* 154 * Wait for SRAM clear after the pgtable update, so the 155 * two can happen in parallel: 156 */ 157 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); 158 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); 159 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( 160 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); 161 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); 162 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); 163 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); 164 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); 165 166 /* Re-enable protected mode: */ 167 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 168 OUT_RING(ring, 1); 169 } 170 } 171 172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 173 { 174 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 175 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 176 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 177 struct msm_ringbuffer *ring = submit->ring; 178 unsigned int i, ibs = 0; 179 180 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 181 182 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 183 rbmemptr_stats(ring, index, cpcycles_start)); 184 185 /* 186 * For PM4 the GMU register offsets are calculated from the base of the 187 * GPU registers so we need to add 0x1a800 to the register value on A630 188 * to get the right value from PM4. 189 */ 190 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 191 rbmemptr_stats(ring, index, alwayson_start)); 192 193 /* Invalidate CCU depth and color */ 194 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 195 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 196 197 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 198 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 199 200 /* Submit the commands */ 201 for (i = 0; i < submit->nr_cmds; i++) { 202 switch (submit->cmd[i].type) { 203 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 204 break; 205 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 206 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 207 break; 208 fallthrough; 209 case MSM_SUBMIT_CMD_BUF: 210 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 211 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 212 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 213 OUT_RING(ring, submit->cmd[i].size); 214 ibs++; 215 break; 216 } 217 218 /* 219 * Periodically update shadow-wptr if needed, so that we 220 * can see partial progress of submits with large # of 221 * cmds.. otherwise we could needlessly stall waiting for 222 * ringbuffer state, simply due to looking at a shadow 223 * rptr value that has not been updated 224 */ 225 if ((ibs % 32) == 0) 226 update_shadow_rptr(gpu, ring); 227 } 228 229 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 230 rbmemptr_stats(ring, index, cpcycles_end)); 231 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 232 rbmemptr_stats(ring, index, alwayson_end)); 233 234 /* Write the fence to the scratch register */ 235 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 236 OUT_RING(ring, submit->seqno); 237 238 /* 239 * Execute a CACHE_FLUSH_TS event. This will ensure that the 240 * timestamp is written to the memory and then triggers the interrupt 241 */ 242 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 243 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 244 CP_EVENT_WRITE_0_IRQ); 245 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 246 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 247 OUT_RING(ring, submit->seqno); 248 249 trace_msm_gpu_submit_flush(submit, 250 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO)); 251 252 a6xx_flush(gpu, ring); 253 } 254 255 /* For a615 family (a615, a616, a618 and a619) */ 256 const struct adreno_reglist a615_hwcg[] = { 257 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 258 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 259 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 260 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 261 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 262 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 263 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 264 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 265 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 266 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 267 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 268 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 269 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 270 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 271 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 272 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 273 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 274 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 275 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 276 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 277 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 278 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 279 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 280 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 281 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 282 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 283 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 284 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 285 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 286 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 287 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 288 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 289 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 290 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 291 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 293 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020}, 294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 297 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00}, 299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00}, 300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00}, 301 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 302 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 303 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 304 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 305 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 306 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 307 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 308 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 309 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 310 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 311 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 312 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 313 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 314 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 315 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 316 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 317 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 318 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 319 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 320 {}, 321 }; 322 323 const struct adreno_reglist a630_hwcg[] = { 324 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 325 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 326 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 327 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 328 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 329 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 330 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 331 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 332 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 333 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 334 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 335 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 336 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 337 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 338 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 339 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 340 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 341 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 342 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 343 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 344 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 345 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 346 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 347 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 348 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 349 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 350 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 351 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 352 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 353 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 354 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 355 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 356 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 357 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 358 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 359 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 360 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 361 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 362 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 363 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 364 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 365 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 366 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 367 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 368 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 369 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 370 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 371 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 372 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 373 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 374 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 375 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 376 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 377 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 378 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 379 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 380 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 381 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 382 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 383 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 384 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 385 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 386 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 387 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 388 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 389 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 390 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 391 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 392 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 393 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 394 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 395 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 396 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 397 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 398 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 399 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 400 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 401 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 403 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 404 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 405 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 406 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 407 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 408 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 409 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 410 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 411 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 412 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 413 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 414 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 415 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 416 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 417 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 418 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 419 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 421 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 422 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 423 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 424 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 425 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 426 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 427 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 428 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 429 {}, 430 }; 431 432 const struct adreno_reglist a640_hwcg[] = { 433 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 434 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 435 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 436 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 437 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 438 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 439 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 440 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 441 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 442 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 443 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 444 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 445 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 446 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 447 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 448 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 449 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 450 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 451 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 452 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 453 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 454 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 455 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 456 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 457 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 458 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 459 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 460 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 461 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 462 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 463 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 464 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 465 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 466 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 467 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 468 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 469 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 470 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 471 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 472 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 473 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 474 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 475 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 476 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 477 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 478 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 479 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 480 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 481 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 482 {}, 483 }; 484 485 const struct adreno_reglist a650_hwcg[] = { 486 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 487 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 488 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 489 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 490 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 491 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 492 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 493 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 494 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 495 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 496 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 497 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 498 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 499 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 500 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 501 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 502 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 503 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 504 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 505 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 506 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 507 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 508 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 509 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 510 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 511 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 512 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 513 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 514 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 515 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 516 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 517 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 518 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 519 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 520 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 521 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 522 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 523 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 524 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 525 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 526 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 527 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 528 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 529 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 530 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 531 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 532 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 533 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 534 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 535 {}, 536 }; 537 538 const struct adreno_reglist a660_hwcg[] = { 539 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 540 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 541 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 542 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 543 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 544 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 545 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 546 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 547 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 548 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 549 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 550 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 551 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 552 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 553 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 554 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 555 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 556 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 557 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 558 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 559 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 560 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 561 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 562 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 563 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 564 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 565 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 566 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 567 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 568 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 569 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 570 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 571 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 572 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 573 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 574 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 575 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 576 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 577 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 578 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 579 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 580 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 581 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 582 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 583 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 584 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 585 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 586 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 587 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 588 {}, 589 }; 590 591 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 592 { 593 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 594 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 595 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 596 const struct adreno_reglist *reg; 597 unsigned int i; 598 u32 val, clock_cntl_on; 599 600 if (!adreno_gpu->info->hwcg) 601 return; 602 603 if (adreno_is_a630(adreno_gpu)) 604 clock_cntl_on = 0x8aa8aa02; 605 else 606 clock_cntl_on = 0x8aa8aa82; 607 608 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 609 610 /* Don't re-program the registers if they are already correct */ 611 if ((!state && !val) || (state && (val == clock_cntl_on))) 612 return; 613 614 /* Disable SP clock before programming HWCG registers */ 615 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 616 617 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 618 gpu_write(gpu, reg->offset, state ? reg->value : 0); 619 620 /* Enable SP clock */ 621 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 622 623 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 624 } 625 626 /* For a615, a616, a618, a619, a630, a640 and a680 */ 627 static const u32 a6xx_protect[] = { 628 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 629 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 630 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 631 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 632 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 633 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 634 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 635 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 636 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 637 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 638 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 639 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 640 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 641 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 642 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 643 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 644 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 645 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 646 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 647 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 648 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 649 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 650 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 651 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 652 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 653 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 654 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 655 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 656 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 657 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 658 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 659 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 660 }; 661 662 /* These are for a620 and a650 */ 663 static const u32 a650_protect[] = { 664 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 665 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 666 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 667 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 668 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 669 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 670 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 671 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 672 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 673 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 674 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 675 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 676 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 677 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 678 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 679 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 680 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 681 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 682 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 683 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 684 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 685 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 686 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 687 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 688 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 689 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 690 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 691 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 692 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 693 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 694 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 695 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 696 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 697 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 698 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 699 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 700 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 701 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 702 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 703 }; 704 705 /* These are for a635 and a660 */ 706 static const u32 a660_protect[] = { 707 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 708 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 709 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 710 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 711 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 712 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 713 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 714 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 715 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 716 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 717 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 718 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 719 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 720 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 721 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 722 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 723 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 724 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 725 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 726 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 727 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 728 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 729 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 730 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 731 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 732 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 733 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 734 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 735 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 736 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 737 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 738 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 739 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 740 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 741 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 742 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 743 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 744 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 745 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 746 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 747 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 748 }; 749 750 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 751 { 752 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 753 const u32 *regs = a6xx_protect; 754 unsigned i, count, count_max; 755 756 if (adreno_is_a650(adreno_gpu)) { 757 regs = a650_protect; 758 count = ARRAY_SIZE(a650_protect); 759 count_max = 48; 760 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 761 } else if (adreno_is_a660_family(adreno_gpu)) { 762 regs = a660_protect; 763 count = ARRAY_SIZE(a660_protect); 764 count_max = 48; 765 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); 766 } else { 767 regs = a6xx_protect; 768 count = ARRAY_SIZE(a6xx_protect); 769 count_max = 32; 770 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 771 } 772 773 /* 774 * Enable access protection to privileged registers, fault on an access 775 * protect violation and select the last span to protect from the start 776 * address all the way to the end of the register address space 777 */ 778 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3)); 779 780 for (i = 0; i < count - 1; i++) 781 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 782 /* last CP_PROTECT to have "infinite" length on the last entry */ 783 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 784 } 785 786 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 787 { 788 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 789 u32 lower_bit = 2; 790 u32 amsbc = 0; 791 u32 rgb565_predicator = 0; 792 u32 uavflagprd_inv = 0; 793 794 /* a618 is using the hw default values */ 795 if (adreno_is_a618(adreno_gpu)) 796 return; 797 798 if (adreno_is_a640_family(adreno_gpu)) 799 amsbc = 1; 800 801 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { 802 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 803 lower_bit = 3; 804 amsbc = 1; 805 rgb565_predicator = 1; 806 uavflagprd_inv = 2; 807 } 808 809 if (adreno_is_7c3(adreno_gpu)) { 810 lower_bit = 1; 811 amsbc = 1; 812 rgb565_predicator = 1; 813 uavflagprd_inv = 2; 814 } 815 816 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 817 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1); 818 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1); 819 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 820 uavflagprd_inv << 4 | lower_bit << 1); 821 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21); 822 } 823 824 static int a6xx_cp_init(struct msm_gpu *gpu) 825 { 826 struct msm_ringbuffer *ring = gpu->rb[0]; 827 828 OUT_PKT7(ring, CP_ME_INIT, 8); 829 830 OUT_RING(ring, 0x0000002f); 831 832 /* Enable multiple hardware contexts */ 833 OUT_RING(ring, 0x00000003); 834 835 /* Enable error detection */ 836 OUT_RING(ring, 0x20000000); 837 838 /* Don't enable header dump */ 839 OUT_RING(ring, 0x00000000); 840 OUT_RING(ring, 0x00000000); 841 842 /* No workarounds enabled */ 843 OUT_RING(ring, 0x00000000); 844 845 /* Pad rest of the cmds with 0's */ 846 OUT_RING(ring, 0x00000000); 847 OUT_RING(ring, 0x00000000); 848 849 a6xx_flush(gpu, ring); 850 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 851 } 852 853 /* 854 * Check that the microcode version is new enough to include several key 855 * security fixes. Return true if the ucode is safe. 856 */ 857 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 858 struct drm_gem_object *obj) 859 { 860 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 861 struct msm_gpu *gpu = &adreno_gpu->base; 862 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 863 u32 *buf = msm_gem_get_vaddr(obj); 864 bool ret = false; 865 866 if (IS_ERR(buf)) 867 return false; 868 869 /* 870 * Targets up to a640 (a618, a630 and a640) need to check for a 871 * microcode version that is patched to support the whereami opcode or 872 * one that is new enough to include it by default. 873 * 874 * a650 tier targets don't need whereami but still need to be 875 * equal to or newer than 0.95 for other security fixes 876 * 877 * a660 targets have all the critical security fixes from the start 878 */ 879 if (!strcmp(sqe_name, "a630_sqe.fw")) { 880 /* 881 * If the lowest nibble is 0xa that is an indication that this 882 * microcode has been patched. The actual version is in dword 883 * [3] but we only care about the patchlevel which is the lowest 884 * nibble of dword [3] 885 * 886 * Otherwise check that the firmware is greater than or equal 887 * to 1.90 which was the first version that had this fix built 888 * in 889 */ 890 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 891 (buf[0] & 0xfff) >= 0x190) { 892 a6xx_gpu->has_whereami = true; 893 ret = true; 894 goto out; 895 } 896 897 DRM_DEV_ERROR(&gpu->pdev->dev, 898 "a630 SQE ucode is too old. Have version %x need at least %x\n", 899 buf[0] & 0xfff, 0x190); 900 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 901 if ((buf[0] & 0xfff) >= 0x095) { 902 ret = true; 903 goto out; 904 } 905 906 DRM_DEV_ERROR(&gpu->pdev->dev, 907 "a650 SQE ucode is too old. Have version %x need at least %x\n", 908 buf[0] & 0xfff, 0x095); 909 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 910 ret = true; 911 } else { 912 DRM_DEV_ERROR(&gpu->pdev->dev, 913 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 914 } 915 out: 916 msm_gem_put_vaddr(obj); 917 return ret; 918 } 919 920 static int a6xx_ucode_init(struct msm_gpu *gpu) 921 { 922 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 923 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 924 925 if (!a6xx_gpu->sqe_bo) { 926 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 927 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 928 929 if (IS_ERR(a6xx_gpu->sqe_bo)) { 930 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 931 932 a6xx_gpu->sqe_bo = NULL; 933 DRM_DEV_ERROR(&gpu->pdev->dev, 934 "Could not allocate SQE ucode: %d\n", ret); 935 936 return ret; 937 } 938 939 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 940 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 941 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 942 drm_gem_object_put(a6xx_gpu->sqe_bo); 943 944 a6xx_gpu->sqe_bo = NULL; 945 return -EPERM; 946 } 947 } 948 949 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova); 950 951 return 0; 952 } 953 954 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 955 { 956 static bool loaded; 957 int ret; 958 959 if (loaded) 960 return 0; 961 962 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 963 964 loaded = !ret; 965 return ret; 966 } 967 968 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 969 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 970 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 971 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 972 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 973 A6XX_RBBM_INT_0_MASK_CP_RB | \ 974 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 975 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 976 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 977 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 978 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 979 980 static int hw_init(struct msm_gpu *gpu) 981 { 982 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 983 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 984 int ret; 985 986 /* Make sure the GMU keeps the GPU on while we set it up */ 987 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 988 989 /* Clear GBIF halt in case GX domain was not collapsed */ 990 if (a6xx_has_gbif(adreno_gpu)) 991 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0); 992 993 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 994 995 /* 996 * Disable the trusted memory range - we don't actually supported secure 997 * memory rendering at this point in time and we don't want to block off 998 * part of the virtual memory space. 999 */ 1000 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000); 1001 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 1002 1003 /* Turn on 64 bit addressing for all blocks */ 1004 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 1005 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 1006 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 1007 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 1008 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 1009 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 1010 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 1011 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 1012 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 1013 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 1014 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 1015 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 1016 1017 /* enable hardware clockgating */ 1018 a6xx_set_hwcg(gpu, true); 1019 1020 /* VBIF/GBIF start*/ 1021 if (adreno_is_a640_family(adreno_gpu) || 1022 adreno_is_a650_family(adreno_gpu)) { 1023 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 1024 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 1025 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 1026 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 1027 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 1028 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 1029 } else { 1030 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 1031 } 1032 1033 if (adreno_is_a630(adreno_gpu)) 1034 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 1035 1036 /* Make all blocks contribute to the GPU BUSY perf counter */ 1037 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 1038 1039 /* Disable L2 bypass in the UCHE */ 1040 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 1041 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 1042 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 1043 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 1044 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 1045 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 1046 1047 if (!adreno_is_a650_family(adreno_gpu)) { 1048 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 1049 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000); 1050 1051 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 1052 0x00100000 + adreno_gpu->gmem - 1); 1053 } 1054 1055 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 1056 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 1057 1058 if (adreno_is_a640_family(adreno_gpu) || 1059 adreno_is_a650_family(adreno_gpu)) 1060 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 1061 else 1062 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 1063 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1064 1065 if (adreno_is_a660_family(adreno_gpu)) 1066 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 1067 1068 /* Setting the mem pool size */ 1069 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 1070 1071 /* Setting the primFifo thresholds default values, 1072 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 1073 */ 1074 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1075 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1076 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 1077 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 1078 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1079 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1080 else 1081 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 1082 1083 /* Set the AHB default slave response to "ERROR" */ 1084 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 1085 1086 /* Turn on performance counters */ 1087 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 1088 1089 /* Select CP0 to always count cycles */ 1090 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 1091 1092 a6xx_set_ubwc_config(gpu); 1093 1094 /* Enable fault detection */ 1095 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 1096 (1 << 30) | 0x1fffff); 1097 1098 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 1099 1100 /* Set weights for bicubic filtering */ 1101 if (adreno_is_a650_family(adreno_gpu)) { 1102 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1103 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1104 0x3fe05ff4); 1105 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1106 0x3fa0ebee); 1107 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1108 0x3f5193ed); 1109 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1110 0x3f0243f0); 1111 } 1112 1113 /* Protect registers from the CP */ 1114 a6xx_set_cp_protect(gpu); 1115 1116 if (adreno_is_a660_family(adreno_gpu)) { 1117 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1118 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1119 } 1120 1121 /* Set dualQ + disable afull for A660 GPU */ 1122 if (adreno_is_a660(adreno_gpu)) 1123 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1124 1125 /* Enable expanded apriv for targets that support it */ 1126 if (gpu->hw_apriv) { 1127 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1128 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 1129 } 1130 1131 /* Enable interrupts */ 1132 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 1133 1134 ret = adreno_hw_init(gpu); 1135 if (ret) 1136 goto out; 1137 1138 ret = a6xx_ucode_init(gpu); 1139 if (ret) 1140 goto out; 1141 1142 /* Set the ringbuffer address */ 1143 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova); 1144 1145 /* Targets that support extended APRIV can use the RPTR shadow from 1146 * hardware but all the other ones need to disable the feature. Targets 1147 * that support the WHERE_AM_I opcode can use that instead 1148 */ 1149 if (adreno_gpu->base.hw_apriv) 1150 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1151 else 1152 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1153 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1154 1155 /* 1156 * Expanded APRIV and targets that support WHERE_AM_I both need a 1157 * privileged buffer to store the RPTR shadow 1158 */ 1159 1160 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) { 1161 if (!a6xx_gpu->shadow_bo) { 1162 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1163 sizeof(u32) * gpu->nr_rings, 1164 MSM_BO_WC | MSM_BO_MAP_PRIV, 1165 gpu->aspace, &a6xx_gpu->shadow_bo, 1166 &a6xx_gpu->shadow_iova); 1167 1168 if (IS_ERR(a6xx_gpu->shadow)) 1169 return PTR_ERR(a6xx_gpu->shadow); 1170 1171 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); 1172 } 1173 1174 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO, 1175 shadowptr(a6xx_gpu, gpu->rb[0])); 1176 } 1177 1178 /* Always come up on rb 0 */ 1179 a6xx_gpu->cur_ring = gpu->rb[0]; 1180 1181 gpu->cur_ctx_seqno = 0; 1182 1183 /* Enable the SQE_to start the CP engine */ 1184 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1185 1186 ret = a6xx_cp_init(gpu); 1187 if (ret) 1188 goto out; 1189 1190 /* 1191 * Try to load a zap shader into the secure world. If successful 1192 * we can use the CP to switch out of secure mode. If not then we 1193 * have no resource but to try to switch ourselves out manually. If we 1194 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1195 * be blocked and a permissions violation will soon follow. 1196 */ 1197 ret = a6xx_zap_shader_init(gpu); 1198 if (!ret) { 1199 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1200 OUT_RING(gpu->rb[0], 0x00000000); 1201 1202 a6xx_flush(gpu, gpu->rb[0]); 1203 if (!a6xx_idle(gpu, gpu->rb[0])) 1204 return -EINVAL; 1205 } else if (ret == -ENODEV) { 1206 /* 1207 * This device does not use zap shader (but print a warning 1208 * just in case someone got their dt wrong.. hopefully they 1209 * have a debug UART to realize the error of their ways... 1210 * if you mess this up you are about to crash horribly) 1211 */ 1212 dev_warn_once(gpu->dev->dev, 1213 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1214 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1215 ret = 0; 1216 } else { 1217 return ret; 1218 } 1219 1220 out: 1221 /* 1222 * Tell the GMU that we are done touching the GPU and it can start power 1223 * management 1224 */ 1225 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1226 1227 if (a6xx_gpu->gmu.legacy) { 1228 /* Take the GMU out of its special boot mode */ 1229 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1230 } 1231 1232 return ret; 1233 } 1234 1235 static int a6xx_hw_init(struct msm_gpu *gpu) 1236 { 1237 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1238 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1239 int ret; 1240 1241 mutex_lock(&a6xx_gpu->gmu.lock); 1242 ret = hw_init(gpu); 1243 mutex_unlock(&a6xx_gpu->gmu.lock); 1244 1245 return ret; 1246 } 1247 1248 static void a6xx_dump(struct msm_gpu *gpu) 1249 { 1250 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1251 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1252 adreno_dump(gpu); 1253 } 1254 1255 #define VBIF_RESET_ACK_TIMEOUT 100 1256 #define VBIF_RESET_ACK_MASK 0x00f0 1257 1258 static void a6xx_recover(struct msm_gpu *gpu) 1259 { 1260 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1261 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1262 int i, active_submits; 1263 1264 adreno_dump_info(gpu); 1265 1266 for (i = 0; i < 8; i++) 1267 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1268 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1269 1270 if (hang_debug) 1271 a6xx_dump(gpu); 1272 1273 /* 1274 * To handle recovery specific sequences during the rpm suspend we are 1275 * about to trigger 1276 */ 1277 a6xx_gpu->hung = true; 1278 1279 /* Halt SQE first */ 1280 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3); 1281 1282 /* 1283 * Turn off keep alive that might have been enabled by the hang 1284 * interrupt 1285 */ 1286 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 1287 1288 pm_runtime_dont_use_autosuspend(&gpu->pdev->dev); 1289 1290 /* active_submit won't change until we make a submission */ 1291 mutex_lock(&gpu->active_lock); 1292 active_submits = gpu->active_submits; 1293 1294 /* 1295 * Temporarily clear active_submits count to silence a WARN() in the 1296 * runtime suspend cb 1297 */ 1298 gpu->active_submits = 0; 1299 1300 /* Drop the rpm refcount from active submits */ 1301 if (active_submits) 1302 pm_runtime_put(&gpu->pdev->dev); 1303 1304 /* And the final one from recover worker */ 1305 pm_runtime_put_sync(&gpu->pdev->dev); 1306 1307 /* Call into gpucc driver to poll for cx gdsc collapse */ 1308 reset_control_reset(gpu->cx_collapse); 1309 1310 pm_runtime_use_autosuspend(&gpu->pdev->dev); 1311 1312 if (active_submits) 1313 pm_runtime_get(&gpu->pdev->dev); 1314 1315 pm_runtime_get_sync(&gpu->pdev->dev); 1316 1317 gpu->active_submits = active_submits; 1318 mutex_unlock(&gpu->active_lock); 1319 1320 msm_gpu_hw_init(gpu); 1321 a6xx_gpu->hung = false; 1322 } 1323 1324 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 1325 { 1326 static const char *uche_clients[7] = { 1327 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 1328 }; 1329 u32 val; 1330 1331 if (mid < 1 || mid > 3) 1332 return "UNKNOWN"; 1333 1334 /* 1335 * The source of the data depends on the mid ID read from FSYNR1. 1336 * and the client ID read from the UCHE block 1337 */ 1338 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 1339 1340 /* mid = 3 is most precise and refers to only one block per client */ 1341 if (mid == 3) 1342 return uche_clients[val & 7]; 1343 1344 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 1345 if (mid == 2) 1346 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 1347 1348 /* For mid=1 just return "UCHE" as a catchall for everything else */ 1349 return "UCHE"; 1350 } 1351 1352 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 1353 { 1354 if (id == 0) 1355 return "CP"; 1356 else if (id == 4) 1357 return "CCU"; 1358 else if (id == 6) 1359 return "CDP Prefetch"; 1360 1361 return a6xx_uche_fault_block(gpu, id); 1362 } 1363 1364 #define ARM_SMMU_FSR_TF BIT(1) 1365 #define ARM_SMMU_FSR_PF BIT(3) 1366 #define ARM_SMMU_FSR_EF BIT(4) 1367 1368 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1369 { 1370 struct msm_gpu *gpu = arg; 1371 struct adreno_smmu_fault_info *info = data; 1372 const char *type = "UNKNOWN"; 1373 const char *block; 1374 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate); 1375 1376 /* 1377 * If we aren't going to be resuming later from fault_worker, then do 1378 * it now. 1379 */ 1380 if (!do_devcoredump) { 1381 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu); 1382 } 1383 1384 /* 1385 * Print a default message if we couldn't get the data from the 1386 * adreno-smmu-priv 1387 */ 1388 if (!info) { 1389 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n", 1390 iova, flags, 1391 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1392 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1393 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1394 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1395 1396 return 0; 1397 } 1398 1399 if (info->fsr & ARM_SMMU_FSR_TF) 1400 type = "TRANSLATION"; 1401 else if (info->fsr & ARM_SMMU_FSR_PF) 1402 type = "PERMISSION"; 1403 else if (info->fsr & ARM_SMMU_FSR_EF) 1404 type = "EXTERNAL"; 1405 1406 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 1407 1408 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n", 1409 info->ttbr0, iova, 1410 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ", 1411 type, block, 1412 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1413 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1414 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1415 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1416 1417 if (do_devcoredump) { 1418 /* Turn off the hangcheck timer to keep it from bothering us */ 1419 del_timer(&gpu->hangcheck_timer); 1420 1421 gpu->fault_info.ttbr0 = info->ttbr0; 1422 gpu->fault_info.iova = iova; 1423 gpu->fault_info.flags = flags; 1424 gpu->fault_info.type = type; 1425 gpu->fault_info.block = block; 1426 1427 kthread_queue_work(gpu->worker, &gpu->fault_work); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 1434 { 1435 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 1436 1437 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 1438 u32 val; 1439 1440 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 1441 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 1442 dev_err_ratelimited(&gpu->pdev->dev, 1443 "CP | opcode error | possible opcode=0x%8.8X\n", 1444 val); 1445 } 1446 1447 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 1448 dev_err_ratelimited(&gpu->pdev->dev, 1449 "CP ucode error interrupt\n"); 1450 1451 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 1452 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 1453 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 1454 1455 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1456 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1457 1458 dev_err_ratelimited(&gpu->pdev->dev, 1459 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1460 val & (1 << 20) ? "READ" : "WRITE", 1461 (val & 0x3ffff), val); 1462 } 1463 1464 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1465 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1466 1467 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1468 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1469 1470 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1471 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1472 1473 } 1474 1475 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1476 { 1477 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1478 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1479 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1480 1481 /* 1482 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1483 * but the fault handler will trigger the devcore dump, and we want 1484 * to otherwise resume normally rather than killing the submit, so 1485 * just bail. 1486 */ 1487 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 1488 return; 1489 1490 /* 1491 * Force the GPU to stay on until after we finish 1492 * collecting information 1493 */ 1494 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1495 1496 DRM_DEV_ERROR(&gpu->pdev->dev, 1497 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1498 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, 1499 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1500 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1501 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1502 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 1503 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1504 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 1505 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1506 1507 /* Turn off the hangcheck timer to keep it from bothering us */ 1508 del_timer(&gpu->hangcheck_timer); 1509 1510 kthread_queue_work(gpu->worker, &gpu->recover_work); 1511 } 1512 1513 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1514 { 1515 struct msm_drm_private *priv = gpu->dev->dev_private; 1516 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1517 1518 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1519 1520 if (priv->disable_err_irq) 1521 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; 1522 1523 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1524 a6xx_fault_detect_irq(gpu); 1525 1526 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1527 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1528 1529 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1530 a6xx_cp_hw_err_irq(gpu); 1531 1532 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1533 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1534 1535 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1536 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1537 1538 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1539 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1540 1541 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1542 msm_gpu_retire(gpu); 1543 1544 return IRQ_HANDLED; 1545 } 1546 1547 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) 1548 { 1549 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); 1550 } 1551 1552 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) 1553 { 1554 msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); 1555 } 1556 1557 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1558 { 1559 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1560 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1561 } 1562 1563 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1564 { 1565 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1566 struct msm_gpu *gpu = &adreno_gpu->base; 1567 u32 cntl1_regval = 0; 1568 1569 if (IS_ERR(a6xx_gpu->llc_mmio)) 1570 return; 1571 1572 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1573 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1574 1575 gpu_scid &= 0x1f; 1576 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1577 (gpu_scid << 15) | (gpu_scid << 20); 1578 1579 /* On A660, the SCID programming for UCHE traffic is done in 1580 * A6XX_GBIF_SCACHE_CNTL0[14:10] 1581 */ 1582 if (adreno_is_a660_family(adreno_gpu)) 1583 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 1584 (1 << 8), (gpu_scid << 10) | (1 << 8)); 1585 } 1586 1587 /* 1588 * For targets with a MMU500, activate the slice but don't program the 1589 * register. The XBL will take care of that. 1590 */ 1591 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1592 if (!a6xx_gpu->have_mmu500) { 1593 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1594 1595 gpuhtw_scid &= 0x1f; 1596 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1597 } 1598 } 1599 1600 if (!cntl1_regval) 1601 return; 1602 1603 /* 1604 * Program the slice IDs for the various GPU blocks and GPU MMU 1605 * pagetables 1606 */ 1607 if (!a6xx_gpu->have_mmu500) { 1608 a6xx_llc_write(a6xx_gpu, 1609 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1610 1611 /* 1612 * Program cacheability overrides to not allocate cache 1613 * lines on a write miss 1614 */ 1615 a6xx_llc_rmw(a6xx_gpu, 1616 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1617 return; 1618 } 1619 1620 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 1621 } 1622 1623 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1624 { 1625 llcc_slice_putd(a6xx_gpu->llc_slice); 1626 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1627 } 1628 1629 static void a6xx_llc_slices_init(struct platform_device *pdev, 1630 struct a6xx_gpu *a6xx_gpu) 1631 { 1632 struct device_node *phandle; 1633 1634 /* 1635 * There is a different programming path for targets with an mmu500 1636 * attached, so detect if that is the case 1637 */ 1638 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1639 a6xx_gpu->have_mmu500 = (phandle && 1640 of_device_is_compatible(phandle, "arm,mmu-500")); 1641 of_node_put(phandle); 1642 1643 if (a6xx_gpu->have_mmu500) 1644 a6xx_gpu->llc_mmio = NULL; 1645 else 1646 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); 1647 1648 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1649 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1650 1651 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1652 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1653 } 1654 1655 static int a6xx_pm_resume(struct msm_gpu *gpu) 1656 { 1657 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1658 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1659 int ret; 1660 1661 gpu->needs_hw_init = true; 1662 1663 trace_msm_gpu_resume(0); 1664 1665 mutex_lock(&a6xx_gpu->gmu.lock); 1666 ret = a6xx_gmu_resume(a6xx_gpu); 1667 mutex_unlock(&a6xx_gpu->gmu.lock); 1668 if (ret) 1669 return ret; 1670 1671 msm_devfreq_resume(gpu); 1672 1673 a6xx_llc_activate(a6xx_gpu); 1674 1675 return 0; 1676 } 1677 1678 static int a6xx_pm_suspend(struct msm_gpu *gpu) 1679 { 1680 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1681 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1682 int i, ret; 1683 1684 trace_msm_gpu_suspend(0); 1685 1686 a6xx_llc_deactivate(a6xx_gpu); 1687 1688 msm_devfreq_suspend(gpu); 1689 1690 mutex_lock(&a6xx_gpu->gmu.lock); 1691 ret = a6xx_gmu_stop(a6xx_gpu); 1692 mutex_unlock(&a6xx_gpu->gmu.lock); 1693 if (ret) 1694 return ret; 1695 1696 if (a6xx_gpu->shadow_bo) 1697 for (i = 0; i < gpu->nr_rings; i++) 1698 a6xx_gpu->shadow[i] = 0; 1699 1700 gpu->suspend_count++; 1701 1702 return 0; 1703 } 1704 1705 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1706 { 1707 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1708 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1709 1710 mutex_lock(&a6xx_gpu->gmu.lock); 1711 1712 /* Force the GPU power on so we can read this register */ 1713 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1714 1715 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO); 1716 1717 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1718 1719 mutex_unlock(&a6xx_gpu->gmu.lock); 1720 1721 return 0; 1722 } 1723 1724 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 1725 { 1726 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1727 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1728 1729 return a6xx_gpu->cur_ring; 1730 } 1731 1732 static void a6xx_destroy(struct msm_gpu *gpu) 1733 { 1734 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1735 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1736 1737 if (a6xx_gpu->sqe_bo) { 1738 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1739 drm_gem_object_put(a6xx_gpu->sqe_bo); 1740 } 1741 1742 if (a6xx_gpu->shadow_bo) { 1743 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 1744 drm_gem_object_put(a6xx_gpu->shadow_bo); 1745 } 1746 1747 a6xx_llc_slices_destroy(a6xx_gpu); 1748 1749 mutex_lock(&a6xx_gpu->gmu.lock); 1750 a6xx_gmu_remove(a6xx_gpu); 1751 mutex_unlock(&a6xx_gpu->gmu.lock); 1752 1753 adreno_gpu_cleanup(adreno_gpu); 1754 1755 kfree(a6xx_gpu); 1756 } 1757 1758 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) 1759 { 1760 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1761 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1762 u64 busy_cycles; 1763 1764 /* 19.2MHz */ 1765 *out_sample_rate = 19200000; 1766 1767 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 1768 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 1769 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 1770 1771 return busy_cycles; 1772 } 1773 1774 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, 1775 bool suspended) 1776 { 1777 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1778 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1779 1780 mutex_lock(&a6xx_gpu->gmu.lock); 1781 a6xx_gmu_set_freq(gpu, opp, suspended); 1782 mutex_unlock(&a6xx_gpu->gmu.lock); 1783 } 1784 1785 static struct msm_gem_address_space * 1786 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 1787 { 1788 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1789 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1790 unsigned long quirks = 0; 1791 1792 /* 1793 * This allows GPU to set the bus attributes required to use system 1794 * cache on behalf of the iommu page table walker. 1795 */ 1796 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1797 quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA; 1798 1799 return adreno_iommu_create_address_space(gpu, pdev, quirks); 1800 } 1801 1802 static struct msm_gem_address_space * 1803 a6xx_create_private_address_space(struct msm_gpu *gpu) 1804 { 1805 struct msm_mmu *mmu; 1806 1807 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 1808 1809 if (IS_ERR(mmu)) 1810 return ERR_CAST(mmu); 1811 1812 return msm_gem_address_space_create(mmu, 1813 "gpu", 0x100000000ULL, 1814 adreno_private_address_space_size(gpu)); 1815 } 1816 1817 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1818 { 1819 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1820 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1821 1822 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1823 return a6xx_gpu->shadow[ring->id]; 1824 1825 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 1826 } 1827 1828 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1829 { 1830 struct msm_cp_state cp_state = { 1831 .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 1832 .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 1833 .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1834 .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE), 1835 }; 1836 bool progress; 1837 1838 /* 1839 * Adjust the remaining data to account for what has already been 1840 * fetched from memory, but not yet consumed by the SQE. 1841 * 1842 * This is not *technically* correct, the amount buffered could 1843 * exceed the IB size due to hw prefetching ahead, but: 1844 * 1845 * (1) We aren't trying to find the exact position, just whether 1846 * progress has been made 1847 * (2) The CP_REG_TO_MEM at the end of a submit should be enough 1848 * to prevent prefetching into an unrelated submit. (And 1849 * either way, at some point the ROQ will be full.) 1850 */ 1851 cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_CSQ_IB1_STAT) >> 16; 1852 cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_CSQ_IB2_STAT) >> 16; 1853 1854 progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state)); 1855 1856 ring->last_cp_state = cp_state; 1857 1858 return progress; 1859 } 1860 1861 static u32 a618_get_speed_bin(u32 fuse) 1862 { 1863 if (fuse == 0) 1864 return 0; 1865 else if (fuse == 169) 1866 return 1; 1867 else if (fuse == 174) 1868 return 2; 1869 1870 return UINT_MAX; 1871 } 1872 1873 static u32 a619_get_speed_bin(u32 fuse) 1874 { 1875 if (fuse == 0) 1876 return 0; 1877 else if (fuse == 120) 1878 return 4; 1879 else if (fuse == 138) 1880 return 3; 1881 else if (fuse == 169) 1882 return 2; 1883 else if (fuse == 180) 1884 return 1; 1885 1886 return UINT_MAX; 1887 } 1888 1889 static u32 adreno_7c3_get_speed_bin(u32 fuse) 1890 { 1891 if (fuse == 0) 1892 return 0; 1893 else if (fuse == 117) 1894 return 0; 1895 else if (fuse == 190) 1896 return 1; 1897 1898 return UINT_MAX; 1899 } 1900 1901 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse) 1902 { 1903 u32 val = UINT_MAX; 1904 1905 if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev)) 1906 val = a618_get_speed_bin(fuse); 1907 1908 if (adreno_cmp_rev(ADRENO_REV(6, 1, 9, ANY_ID), rev)) 1909 val = a619_get_speed_bin(fuse); 1910 1911 if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev)) 1912 val = adreno_7c3_get_speed_bin(fuse); 1913 1914 if (val == UINT_MAX) { 1915 DRM_DEV_ERROR(dev, 1916 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n", 1917 fuse); 1918 return UINT_MAX; 1919 } 1920 1921 return (1 << val); 1922 } 1923 1924 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev) 1925 { 1926 u32 supp_hw; 1927 u32 speedbin; 1928 int ret; 1929 1930 ret = adreno_read_speedbin(dev, &speedbin); 1931 /* 1932 * -ENOENT means that the platform doesn't support speedbin which is 1933 * fine 1934 */ 1935 if (ret == -ENOENT) { 1936 return 0; 1937 } else if (ret) { 1938 dev_err_probe(dev, ret, 1939 "failed to read speed-bin. Some OPPs may not be supported by hardware\n"); 1940 return ret; 1941 } 1942 1943 supp_hw = fuse_to_supp_hw(dev, rev, speedbin); 1944 1945 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 1946 if (ret) 1947 return ret; 1948 1949 return 0; 1950 } 1951 1952 static const struct adreno_gpu_funcs funcs = { 1953 .base = { 1954 .get_param = adreno_get_param, 1955 .set_param = adreno_set_param, 1956 .hw_init = a6xx_hw_init, 1957 .pm_suspend = a6xx_pm_suspend, 1958 .pm_resume = a6xx_pm_resume, 1959 .recover = a6xx_recover, 1960 .submit = a6xx_submit, 1961 .active_ring = a6xx_active_ring, 1962 .irq = a6xx_irq, 1963 .destroy = a6xx_destroy, 1964 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1965 .show = a6xx_show, 1966 #endif 1967 .gpu_busy = a6xx_gpu_busy, 1968 .gpu_get_freq = a6xx_gmu_get_freq, 1969 .gpu_set_freq = a6xx_gpu_set_freq, 1970 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1971 .gpu_state_get = a6xx_gpu_state_get, 1972 .gpu_state_put = a6xx_gpu_state_put, 1973 #endif 1974 .create_address_space = a6xx_create_address_space, 1975 .create_private_address_space = a6xx_create_private_address_space, 1976 .get_rptr = a6xx_get_rptr, 1977 .progress = a6xx_progress, 1978 }, 1979 .get_timestamp = a6xx_get_timestamp, 1980 }; 1981 1982 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 1983 { 1984 struct msm_drm_private *priv = dev->dev_private; 1985 struct platform_device *pdev = priv->gpu_pdev; 1986 struct adreno_platform_config *config = pdev->dev.platform_data; 1987 const struct adreno_info *info; 1988 struct device_node *node; 1989 struct a6xx_gpu *a6xx_gpu; 1990 struct adreno_gpu *adreno_gpu; 1991 struct msm_gpu *gpu; 1992 int ret; 1993 1994 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 1995 if (!a6xx_gpu) 1996 return ERR_PTR(-ENOMEM); 1997 1998 adreno_gpu = &a6xx_gpu->base; 1999 gpu = &adreno_gpu->base; 2000 2001 adreno_gpu->registers = NULL; 2002 2003 /* 2004 * We need to know the platform type before calling into adreno_gpu_init 2005 * so that the hw_apriv flag can be correctly set. Snoop into the info 2006 * and grab the revision number 2007 */ 2008 info = adreno_info(config->rev); 2009 2010 if (info && (info->revn == 650 || info->revn == 660 || 2011 adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev))) 2012 adreno_gpu->base.hw_apriv = true; 2013 2014 a6xx_llc_slices_init(pdev, a6xx_gpu); 2015 2016 ret = a6xx_set_supported_hw(&pdev->dev, config->rev); 2017 if (ret) { 2018 a6xx_destroy(&(a6xx_gpu->base.base)); 2019 return ERR_PTR(ret); 2020 } 2021 2022 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 2023 if (ret) { 2024 a6xx_destroy(&(a6xx_gpu->base.base)); 2025 return ERR_PTR(ret); 2026 } 2027 2028 /* 2029 * For now only clamp to idle freq for devices where this is known not 2030 * to cause power supply issues: 2031 */ 2032 if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 2033 priv->gpu_clamp_to_idle = true; 2034 2035 /* Check if there is a GMU phandle and set it up */ 2036 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 2037 2038 /* FIXME: How do we gracefully handle this? */ 2039 BUG_ON(!node); 2040 2041 ret = a6xx_gmu_init(a6xx_gpu, node); 2042 of_node_put(node); 2043 if (ret) { 2044 a6xx_destroy(&(a6xx_gpu->base.base)); 2045 return ERR_PTR(ret); 2046 } 2047 2048 if (gpu->aspace) 2049 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 2050 a6xx_fault_handler); 2051 2052 return gpu; 2053 } 2054