xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/pm_domain.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
106 	phys_addr_t ttbr;
107 	u32 asid;
108 	u64 memptr = rbmemptr(ring, ttbr0);
109 
110 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
111 		return;
112 
113 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
114 		return;
115 
116 	if (!sysprof) {
117 		/* Turn off protected mode to write to special registers */
118 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
119 		OUT_RING(ring, 0);
120 
121 		OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
122 		OUT_RING(ring, 1);
123 	}
124 
125 	/* Execute the table update */
126 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
127 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
128 
129 	OUT_RING(ring,
130 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
131 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
132 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
133 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
134 
135 	/*
136 	 * Write the new TTBR0 to the memstore. This is good for debugging.
137 	 */
138 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
139 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
140 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
141 	OUT_RING(ring, lower_32_bits(ttbr));
142 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
143 
144 	/*
145 	 * And finally, trigger a uche flush to be sure there isn't anything
146 	 * lingering in that part of the GPU
147 	 */
148 
149 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
150 	OUT_RING(ring, CACHE_INVALIDATE);
151 
152 	if (!sysprof) {
153 		/*
154 		 * Wait for SRAM clear after the pgtable update, so the
155 		 * two can happen in parallel:
156 		 */
157 		OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
158 		OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
159 		OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
160 				REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
161 		OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
162 		OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
163 		OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
164 		OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
165 
166 		/* Re-enable protected mode: */
167 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
168 		OUT_RING(ring, 1);
169 	}
170 }
171 
172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
173 {
174 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
175 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
176 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
177 	struct msm_ringbuffer *ring = submit->ring;
178 	unsigned int i, ibs = 0;
179 
180 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
181 
182 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
183 		rbmemptr_stats(ring, index, cpcycles_start));
184 
185 	/*
186 	 * For PM4 the GMU register offsets are calculated from the base of the
187 	 * GPU registers so we need to add 0x1a800 to the register value on A630
188 	 * to get the right value from PM4.
189 	 */
190 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
191 		rbmemptr_stats(ring, index, alwayson_start));
192 
193 	/* Invalidate CCU depth and color */
194 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
195 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
196 
197 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
198 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
199 
200 	/* Submit the commands */
201 	for (i = 0; i < submit->nr_cmds; i++) {
202 		switch (submit->cmd[i].type) {
203 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
204 			break;
205 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
206 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
207 				break;
208 			fallthrough;
209 		case MSM_SUBMIT_CMD_BUF:
210 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
211 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
212 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
213 			OUT_RING(ring, submit->cmd[i].size);
214 			ibs++;
215 			break;
216 		}
217 
218 		/*
219 		 * Periodically update shadow-wptr if needed, so that we
220 		 * can see partial progress of submits with large # of
221 		 * cmds.. otherwise we could needlessly stall waiting for
222 		 * ringbuffer state, simply due to looking at a shadow
223 		 * rptr value that has not been updated
224 		 */
225 		if ((ibs % 32) == 0)
226 			update_shadow_rptr(gpu, ring);
227 	}
228 
229 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
230 		rbmemptr_stats(ring, index, cpcycles_end));
231 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
232 		rbmemptr_stats(ring, index, alwayson_end));
233 
234 	/* Write the fence to the scratch register */
235 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
236 	OUT_RING(ring, submit->seqno);
237 
238 	/*
239 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
240 	 * timestamp is written to the memory and then triggers the interrupt
241 	 */
242 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
243 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
244 		CP_EVENT_WRITE_0_IRQ);
245 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
246 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
247 	OUT_RING(ring, submit->seqno);
248 
249 	trace_msm_gpu_submit_flush(submit,
250 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
251 
252 	a6xx_flush(gpu, ring);
253 }
254 
255 const struct adreno_reglist a612_hwcg[] = {
256 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
257 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
258 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081},
259 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
260 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
261 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
262 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
263 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
264 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
265 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
266 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
267 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
268 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
269 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
270 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
272 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
273 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222},
274 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
275 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
276 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022},
277 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
278 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
279 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
280 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
281 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
282 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
283 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
284 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
285 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
286 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
287 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
288 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
289 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
290 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
291 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
292 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
293 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
294 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
295 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
296 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
297 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
298 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
299 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
300 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
301 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
302 	{},
303 };
304 
305 /* For a615 family (a615, a616, a618 and a619) */
306 const struct adreno_reglist a615_hwcg[] = {
307 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0,  0x02222222},
308 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
309 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
310 	{REG_A6XX_RBBM_CLOCK_HYST_SP0,  0x0000F3CF},
311 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0,  0x02222222},
312 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1,  0x02222222},
313 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
314 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
315 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
316 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
317 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
318 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
319 	{REG_A6XX_RBBM_CLOCK_HYST_TP0,  0x77777777},
320 	{REG_A6XX_RBBM_CLOCK_HYST_TP1,  0x77777777},
321 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
322 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
323 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
324 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
325 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
326 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
327 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
328 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
329 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
330 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
331 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
332 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
333 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
334 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
335 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE,  0x22222222},
336 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
337 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
338 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
339 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE,  0x00000004},
340 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
344 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
345 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
346 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
347 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
348 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
349 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
350 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
351 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
352 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
353 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
354 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
355 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
356 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
357 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
358 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
359 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
360 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
361 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
362 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
363 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
364 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
365 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
366 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
367 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
368 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
369 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
370 	{},
371 };
372 
373 const struct adreno_reglist a630_hwcg[] = {
374 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
375 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
376 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
377 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
378 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
379 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
380 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
381 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
382 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
383 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
384 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
385 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
386 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
387 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
388 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
389 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
390 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
391 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
392 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
393 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
394 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
395 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
397 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
398 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
400 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
401 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
402 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
403 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
404 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
405 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
406 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
407 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
408 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
409 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
410 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
411 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
412 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
413 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
414 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
415 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
416 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
417 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
418 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
419 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
420 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
421 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
423 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
424 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
425 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
426 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
427 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
428 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
429 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
430 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
431 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
432 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
433 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
434 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
435 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
436 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
437 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
438 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
439 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
440 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
441 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
442 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
443 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
444 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
445 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
446 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
447 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
448 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
449 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
450 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
451 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
452 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
453 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
454 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
455 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
456 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
457 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
458 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
459 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
460 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
461 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
462 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
463 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
464 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
465 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
466 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
467 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
468 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
469 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
470 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
471 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
472 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
473 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
474 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
475 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
476 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
477 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
478 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
479 	{},
480 };
481 
482 const struct adreno_reglist a640_hwcg[] = {
483 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
484 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
485 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
486 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
487 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
488 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
489 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
490 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
491 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
492 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
493 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
494 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
495 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
496 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
497 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
498 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
499 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
500 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
501 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
502 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
503 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
504 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
505 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
506 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
507 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
508 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
509 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
510 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
511 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
512 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
513 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
514 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
515 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
516 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
517 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
518 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
519 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
520 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
521 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
522 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
523 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
524 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
525 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
526 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
527 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
528 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
529 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
530 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
531 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
532 	{},
533 };
534 
535 const struct adreno_reglist a650_hwcg[] = {
536 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
537 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
538 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
539 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
540 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
541 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
542 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
543 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
544 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
545 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
546 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
547 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
548 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
549 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
550 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
551 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
552 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
553 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
554 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
555 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
556 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
557 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
558 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
559 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
560 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
561 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
562 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
563 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
564 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
565 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
566 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
567 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
568 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
569 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
570 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
571 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
572 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
573 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
574 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
575 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
576 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
577 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
578 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
579 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
580 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
581 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
582 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
583 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
584 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
585 	{},
586 };
587 
588 const struct adreno_reglist a660_hwcg[] = {
589 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
590 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
591 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
592 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
593 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
594 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
595 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
596 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
597 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
598 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
599 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
600 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
601 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
602 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
603 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
604 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
605 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
606 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
607 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
608 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
609 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
610 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
611 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
612 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
613 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
614 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
615 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
616 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
617 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
618 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
619 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
620 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
621 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
622 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
623 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
624 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
625 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
626 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
627 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
628 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
629 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
630 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
631 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
632 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
633 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
634 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
635 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
636 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
637 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
638 	{},
639 };
640 
641 const struct adreno_reglist a690_hwcg[] = {
642 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
643 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
644 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
645 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
646 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
647 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
648 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
649 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
650 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
651 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
652 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
653 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
654 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
655 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
656 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
657 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
658 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
659 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
660 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
661 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
662 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
663 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
664 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
665 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
666 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
667 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
668 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
669 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
670 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
671 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
672 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
673 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
674 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
675 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
676 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
677 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
678 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
679 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
680 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
681 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
682 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
683 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
684 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
685 	{REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82},
686 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
687 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
688 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
689 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
690 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
691 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
692 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200},
693 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111},
694 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555},
695 	{}
696 };
697 
698 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
699 {
700 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
701 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
702 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
703 	const struct adreno_reglist *reg;
704 	unsigned int i;
705 	u32 val, clock_cntl_on;
706 
707 	if (!adreno_gpu->info->hwcg)
708 		return;
709 
710 	if (adreno_is_a630(adreno_gpu))
711 		clock_cntl_on = 0x8aa8aa02;
712 	else if (adreno_is_a610(adreno_gpu))
713 		clock_cntl_on = 0xaaa8aa82;
714 	else
715 		clock_cntl_on = 0x8aa8aa82;
716 
717 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
718 
719 	/* Don't re-program the registers if they are already correct */
720 	if ((!state && !val) || (state && (val == clock_cntl_on)))
721 		return;
722 
723 	/* Disable SP clock before programming HWCG registers */
724 	if (!adreno_is_a610(adreno_gpu))
725 		gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
726 
727 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
728 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
729 
730 	/* Enable SP clock */
731 	if (!adreno_is_a610(adreno_gpu))
732 		gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
733 
734 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
735 }
736 
737 /* For a615, a616, a618, a619, a630, a640 and a680 */
738 static const u32 a6xx_protect[] = {
739 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
740 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
741 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
742 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
743 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
744 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
745 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
746 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
747 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
748 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
749 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
750 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
751 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
752 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
753 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
754 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
755 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
756 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
757 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
758 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
759 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
760 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
761 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
762 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
763 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
764 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
765 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
766 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
767 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
768 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
769 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
770 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
771 };
772 
773 /* These are for a620 and a650 */
774 static const u32 a650_protect[] = {
775 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
776 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
777 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
778 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
779 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
780 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
781 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
782 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
783 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
784 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
785 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
786 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
787 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
788 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
789 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
790 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
791 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
792 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
793 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
794 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
795 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
796 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
797 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
798 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
799 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
800 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
801 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
802 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
803 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
804 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
805 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
806 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
807 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
808 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
809 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
810 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
811 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
812 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
813 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
814 };
815 
816 /* These are for a635 and a660 */
817 static const u32 a660_protect[] = {
818 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
819 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
820 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
821 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
822 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
823 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
824 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
825 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
826 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
827 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
828 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
829 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
830 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
831 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
832 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
833 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
834 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
835 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
836 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
837 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
838 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
839 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
840 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
841 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
842 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
843 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
844 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
845 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
846 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
847 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
848 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
849 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
850 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
851 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
852 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
853 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
854 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
855 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
856 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
857 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
858 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
859 };
860 
861 /* These are for a690 */
862 static const u32 a690_protect[] = {
863 	A6XX_PROTECT_RDONLY(0x00000, 0x004ff),
864 	A6XX_PROTECT_RDONLY(0x00501, 0x00001),
865 	A6XX_PROTECT_RDONLY(0x0050b, 0x002f4),
866 	A6XX_PROTECT_NORDWR(0x0050e, 0x00000),
867 	A6XX_PROTECT_NORDWR(0x00510, 0x00000),
868 	A6XX_PROTECT_NORDWR(0x00534, 0x00000),
869 	A6XX_PROTECT_NORDWR(0x00800, 0x00082),
870 	A6XX_PROTECT_NORDWR(0x008a0, 0x00008),
871 	A6XX_PROTECT_NORDWR(0x008ab, 0x00024),
872 	A6XX_PROTECT_RDONLY(0x008de, 0x000ae),
873 	A6XX_PROTECT_NORDWR(0x00900, 0x0004d),
874 	A6XX_PROTECT_NORDWR(0x0098d, 0x00272),
875 	A6XX_PROTECT_NORDWR(0x00e00, 0x00001),
876 	A6XX_PROTECT_NORDWR(0x00e03, 0x0000c),
877 	A6XX_PROTECT_NORDWR(0x03c00, 0x000c3),
878 	A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff),
879 	A6XX_PROTECT_NORDWR(0x08630, 0x001cf),
880 	A6XX_PROTECT_NORDWR(0x08e00, 0x00000),
881 	A6XX_PROTECT_NORDWR(0x08e08, 0x00007),
882 	A6XX_PROTECT_NORDWR(0x08e50, 0x0001f),
883 	A6XX_PROTECT_NORDWR(0x08e80, 0x0027f),
884 	A6XX_PROTECT_NORDWR(0x09624, 0x001db),
885 	A6XX_PROTECT_NORDWR(0x09e60, 0x00011),
886 	A6XX_PROTECT_NORDWR(0x09e78, 0x00187),
887 	A6XX_PROTECT_NORDWR(0x0a630, 0x001cf),
888 	A6XX_PROTECT_NORDWR(0x0ae02, 0x00000),
889 	A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f),
890 	A6XX_PROTECT_NORDWR(0x0b604, 0x00000),
891 	A6XX_PROTECT_NORDWR(0x0b608, 0x00006),
892 	A6XX_PROTECT_NORDWR(0x0be02, 0x00001),
893 	A6XX_PROTECT_NORDWR(0x0be20, 0x0015f),
894 	A6XX_PROTECT_NORDWR(0x0d000, 0x005ff),
895 	A6XX_PROTECT_NORDWR(0x0f000, 0x00bff),
896 	A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff),
897 	A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */
898 };
899 
900 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
901 {
902 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
903 	const u32 *regs = a6xx_protect;
904 	unsigned i, count, count_max;
905 
906 	if (adreno_is_a650(adreno_gpu)) {
907 		regs = a650_protect;
908 		count = ARRAY_SIZE(a650_protect);
909 		count_max = 48;
910 		BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
911 	} else if (adreno_is_a690(adreno_gpu)) {
912 		regs = a690_protect;
913 		count = ARRAY_SIZE(a690_protect);
914 		count_max = 48;
915 		BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48);
916 	} else if (adreno_is_a660_family(adreno_gpu)) {
917 		regs = a660_protect;
918 		count = ARRAY_SIZE(a660_protect);
919 		count_max = 48;
920 		BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
921 	} else {
922 		regs = a6xx_protect;
923 		count = ARRAY_SIZE(a6xx_protect);
924 		count_max = 32;
925 		BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
926 	}
927 
928 	/*
929 	 * Enable access protection to privileged registers, fault on an access
930 	 * protect violation and select the last span to protect from the start
931 	 * address all the way to the end of the register address space
932 	 */
933 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
934 
935 	for (i = 0; i < count - 1; i++)
936 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
937 	/* last CP_PROTECT to have "infinite" length on the last entry */
938 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
939 }
940 
941 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
942 {
943 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
944 	/* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */
945 	u32 rgb565_predicator = 0;
946 	/* Unknown, introduced with A650 family */
947 	u32 uavflagprd_inv = 0;
948 	/* Whether the minimum access length is 64 bits */
949 	u32 min_acc_len = 0;
950 	/* Entirely magic, per-GPU-gen value */
951 	u32 ubwc_mode = 0;
952 	/*
953 	 * The Highest Bank Bit value represents the bit of the highest DDR bank.
954 	 * We then subtract 13 from it (13 is the minimum value allowed by hw) and
955 	 * write the lowest two bits of the remaining value as hbb_lo and the
956 	 * one above it as hbb_hi to the hardware. This should ideally use DRAM
957 	 * type detection.
958 	 */
959 	u32 hbb_hi = 0;
960 	u32 hbb_lo = 2;
961 	/* Unknown, introduced with A640/680 */
962 	u32 amsbc = 0;
963 
964 	if (adreno_is_a610(adreno_gpu)) {
965 		/* HBB = 14 */
966 		hbb_lo = 1;
967 		min_acc_len = 1;
968 		ubwc_mode = 1;
969 	}
970 
971 	/* a618 is using the hw default values */
972 	if (adreno_is_a618(adreno_gpu))
973 		return;
974 
975 	if (adreno_is_a619_holi(adreno_gpu))
976 		hbb_lo = 0;
977 
978 	if (adreno_is_a640_family(adreno_gpu))
979 		amsbc = 1;
980 
981 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
982 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
983 		hbb_lo = 3;
984 		amsbc = 1;
985 		rgb565_predicator = 1;
986 		uavflagprd_inv = 2;
987 	}
988 
989 	if (adreno_is_a690(adreno_gpu)) {
990 		hbb_lo = 2;
991 		amsbc = 1;
992 		rgb565_predicator = 1;
993 		uavflagprd_inv = 2;
994 	}
995 
996 	if (adreno_is_7c3(adreno_gpu)) {
997 		hbb_lo = 1;
998 		amsbc = 1;
999 		rgb565_predicator = 1;
1000 		uavflagprd_inv = 2;
1001 	}
1002 
1003 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
1004 		  rgb565_predicator << 11 | hbb_hi << 10 | amsbc << 4 |
1005 		  min_acc_len << 3 | hbb_lo << 1 | ubwc_mode);
1006 
1007 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 |
1008 		  min_acc_len << 3 | hbb_lo << 1 | ubwc_mode);
1009 
1010 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 |
1011 		  uavflagprd_inv << 4 | min_acc_len << 3 |
1012 		  hbb_lo << 1 | ubwc_mode);
1013 
1014 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, min_acc_len << 23 | hbb_lo << 21);
1015 }
1016 
1017 static int a6xx_cp_init(struct msm_gpu *gpu)
1018 {
1019 	struct msm_ringbuffer *ring = gpu->rb[0];
1020 
1021 	OUT_PKT7(ring, CP_ME_INIT, 8);
1022 
1023 	OUT_RING(ring, 0x0000002f);
1024 
1025 	/* Enable multiple hardware contexts */
1026 	OUT_RING(ring, 0x00000003);
1027 
1028 	/* Enable error detection */
1029 	OUT_RING(ring, 0x20000000);
1030 
1031 	/* Don't enable header dump */
1032 	OUT_RING(ring, 0x00000000);
1033 	OUT_RING(ring, 0x00000000);
1034 
1035 	/* No workarounds enabled */
1036 	OUT_RING(ring, 0x00000000);
1037 
1038 	/* Pad rest of the cmds with 0's */
1039 	OUT_RING(ring, 0x00000000);
1040 	OUT_RING(ring, 0x00000000);
1041 
1042 	a6xx_flush(gpu, ring);
1043 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
1044 }
1045 
1046 /*
1047  * Check that the microcode version is new enough to include several key
1048  * security fixes. Return true if the ucode is safe.
1049  */
1050 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
1051 		struct drm_gem_object *obj)
1052 {
1053 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1054 	struct msm_gpu *gpu = &adreno_gpu->base;
1055 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
1056 	u32 *buf = msm_gem_get_vaddr(obj);
1057 	bool ret = false;
1058 
1059 	if (IS_ERR(buf))
1060 		return false;
1061 
1062 	/*
1063 	 * Targets up to a640 (a618, a630 and a640) need to check for a
1064 	 * microcode version that is patched to support the whereami opcode or
1065 	 * one that is new enough to include it by default.
1066 	 *
1067 	 * a650 tier targets don't need whereami but still need to be
1068 	 * equal to or newer than 0.95 for other security fixes
1069 	 *
1070 	 * a660 targets have all the critical security fixes from the start
1071 	 */
1072 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
1073 		/*
1074 		 * If the lowest nibble is 0xa that is an indication that this
1075 		 * microcode has been patched. The actual version is in dword
1076 		 * [3] but we only care about the patchlevel which is the lowest
1077 		 * nibble of dword [3]
1078 		 *
1079 		 * Otherwise check that the firmware is greater than or equal
1080 		 * to 1.90 which was the first version that had this fix built
1081 		 * in
1082 		 */
1083 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
1084 			(buf[0] & 0xfff) >= 0x190) {
1085 			a6xx_gpu->has_whereami = true;
1086 			ret = true;
1087 			goto out;
1088 		}
1089 
1090 		DRM_DEV_ERROR(&gpu->pdev->dev,
1091 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
1092 			buf[0] & 0xfff, 0x190);
1093 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
1094 		if ((buf[0] & 0xfff) >= 0x095) {
1095 			ret = true;
1096 			goto out;
1097 		}
1098 
1099 		DRM_DEV_ERROR(&gpu->pdev->dev,
1100 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
1101 			buf[0] & 0xfff, 0x095);
1102 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
1103 		ret = true;
1104 	} else {
1105 		DRM_DEV_ERROR(&gpu->pdev->dev,
1106 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
1107 	}
1108 out:
1109 	msm_gem_put_vaddr(obj);
1110 	return ret;
1111 }
1112 
1113 static int a6xx_ucode_load(struct msm_gpu *gpu)
1114 {
1115 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1116 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1117 
1118 	if (!a6xx_gpu->sqe_bo) {
1119 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
1120 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
1121 
1122 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
1123 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
1124 
1125 			a6xx_gpu->sqe_bo = NULL;
1126 			DRM_DEV_ERROR(&gpu->pdev->dev,
1127 				"Could not allocate SQE ucode: %d\n", ret);
1128 
1129 			return ret;
1130 		}
1131 
1132 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
1133 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
1134 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1135 			drm_gem_object_put(a6xx_gpu->sqe_bo);
1136 
1137 			a6xx_gpu->sqe_bo = NULL;
1138 			return -EPERM;
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1144 	 * privileged buffer to store the RPTR shadow
1145 	 */
1146 	if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) &&
1147 	    !a6xx_gpu->shadow_bo) {
1148 		a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1149 						      sizeof(u32) * gpu->nr_rings,
1150 						      MSM_BO_WC | MSM_BO_MAP_PRIV,
1151 						      gpu->aspace, &a6xx_gpu->shadow_bo,
1152 						      &a6xx_gpu->shadow_iova);
1153 
1154 		if (IS_ERR(a6xx_gpu->shadow))
1155 			return PTR_ERR(a6xx_gpu->shadow);
1156 
1157 		msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
1164 {
1165 	static bool loaded;
1166 	int ret;
1167 
1168 	if (loaded)
1169 		return 0;
1170 
1171 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
1172 
1173 	loaded = !ret;
1174 	return ret;
1175 }
1176 
1177 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
1178 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
1179 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
1180 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
1181 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
1182 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
1183 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
1184 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
1185 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
1186 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
1187 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
1188 
1189 static int hw_init(struct msm_gpu *gpu)
1190 {
1191 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1192 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1193 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1194 	int ret;
1195 
1196 	if (!adreno_has_gmu_wrapper(adreno_gpu)) {
1197 		/* Make sure the GMU keeps the GPU on while we set it up */
1198 		a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1199 	}
1200 
1201 	/* Clear GBIF halt in case GX domain was not collapsed */
1202 	if (adreno_is_a619_holi(adreno_gpu)) {
1203 		gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
1204 		gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0);
1205 		/* Let's make extra sure that the GPU can access the memory.. */
1206 		mb();
1207 	} else if (a6xx_has_gbif(adreno_gpu)) {
1208 		gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
1209 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
1210 		/* Let's make extra sure that the GPU can access the memory.. */
1211 		mb();
1212 	}
1213 
1214 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
1215 
1216 	if (adreno_is_a619_holi(adreno_gpu))
1217 		a6xx_sptprac_enable(gmu);
1218 
1219 	/*
1220 	 * Disable the trusted memory range - we don't actually supported secure
1221 	 * memory rendering at this point in time and we don't want to block off
1222 	 * part of the virtual memory space.
1223 	 */
1224 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000);
1225 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1226 
1227 	/* Turn on 64 bit addressing for all blocks */
1228 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1229 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1230 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1231 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1232 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1233 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1234 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1235 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1236 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1237 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1238 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1239 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1240 
1241 	/* enable hardware clockgating */
1242 	a6xx_set_hwcg(gpu, true);
1243 
1244 	/* VBIF/GBIF start*/
1245 	if (adreno_is_a610(adreno_gpu) ||
1246 	    adreno_is_a640_family(adreno_gpu) ||
1247 	    adreno_is_a650_family(adreno_gpu)) {
1248 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1249 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1250 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1251 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1252 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
1253 	} else {
1254 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1255 	}
1256 
1257 	if (adreno_is_a630(adreno_gpu))
1258 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1259 
1260 	/* Make all blocks contribute to the GPU BUSY perf counter */
1261 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1262 
1263 	/* Disable L2 bypass in the UCHE */
1264 	gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu);
1265 	gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu);
1266 	gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu);
1267 
1268 	if (!adreno_is_a650_family(adreno_gpu)) {
1269 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1270 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, 0x00100000);
1271 
1272 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX,
1273 			0x00100000 + adreno_gpu->gmem - 1);
1274 	}
1275 
1276 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1277 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1278 
1279 	if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) {
1280 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1281 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1282 	} else if (adreno_is_a610(adreno_gpu)) {
1283 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060);
1284 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16);
1285 	} else {
1286 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1287 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1288 	}
1289 
1290 	if (adreno_is_a660_family(adreno_gpu))
1291 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1292 
1293 	/* Setting the mem pool size */
1294 	if (adreno_is_a610(adreno_gpu)) {
1295 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48);
1296 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47);
1297 	} else
1298 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1299 
1300 	/* Setting the primFifo thresholds default values,
1301 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1302 	*/
1303 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu) || adreno_is_a690(adreno_gpu))
1304 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1305 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1306 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1307 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1308 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1309 	else if (adreno_is_a619(adreno_gpu))
1310 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000);
1311 	else if (adreno_is_a610(adreno_gpu))
1312 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000);
1313 	else
1314 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1315 
1316 	/* Set the AHB default slave response to "ERROR" */
1317 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1318 
1319 	/* Turn on performance counters */
1320 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1321 
1322 	/* Select CP0 to always count cycles */
1323 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1324 
1325 	a6xx_set_ubwc_config(gpu);
1326 
1327 	/* Enable fault detection */
1328 	if (adreno_is_a619(adreno_gpu))
1329 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff);
1330 	else if (adreno_is_a610(adreno_gpu))
1331 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff);
1332 	else
1333 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff);
1334 
1335 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1336 
1337 	/* Set weights for bicubic filtering */
1338 	if (adreno_is_a650_family(adreno_gpu)) {
1339 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1340 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1341 			0x3fe05ff4);
1342 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1343 			0x3fa0ebee);
1344 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1345 			0x3f5193ed);
1346 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1347 			0x3f0243f0);
1348 	}
1349 
1350 	/* Set up the CX GMU counter 0 to count busy ticks */
1351 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
1352 
1353 	/* Enable the power counter */
1354 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5));
1355 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
1356 
1357 	/* Protect registers from the CP */
1358 	a6xx_set_cp_protect(gpu);
1359 
1360 	if (adreno_is_a660_family(adreno_gpu)) {
1361 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1362 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1363 	}
1364 
1365 	/* Set dualQ + disable afull for A660 GPU */
1366 	if (adreno_is_a660(adreno_gpu))
1367 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1368 
1369 	/* Enable expanded apriv for targets that support it */
1370 	if (gpu->hw_apriv) {
1371 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1372 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1373 	}
1374 
1375 	/* Enable interrupts */
1376 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1377 
1378 	ret = adreno_hw_init(gpu);
1379 	if (ret)
1380 		goto out;
1381 
1382 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova);
1383 
1384 	/* Set the ringbuffer address */
1385 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova);
1386 
1387 	/* Targets that support extended APRIV can use the RPTR shadow from
1388 	 * hardware but all the other ones need to disable the feature. Targets
1389 	 * that support the WHERE_AM_I opcode can use that instead
1390 	 */
1391 	if (adreno_gpu->base.hw_apriv)
1392 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1393 	else
1394 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1395 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1396 
1397 	/* Configure the RPTR shadow if needed: */
1398 	if (a6xx_gpu->shadow_bo) {
1399 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR,
1400 			shadowptr(a6xx_gpu, gpu->rb[0]));
1401 	}
1402 
1403 	/* Always come up on rb 0 */
1404 	a6xx_gpu->cur_ring = gpu->rb[0];
1405 
1406 	gpu->cur_ctx_seqno = 0;
1407 
1408 	/* Enable the SQE_to start the CP engine */
1409 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1410 
1411 	ret = a6xx_cp_init(gpu);
1412 	if (ret)
1413 		goto out;
1414 
1415 	/*
1416 	 * Try to load a zap shader into the secure world. If successful
1417 	 * we can use the CP to switch out of secure mode. If not then we
1418 	 * have no resource but to try to switch ourselves out manually. If we
1419 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1420 	 * be blocked and a permissions violation will soon follow.
1421 	 */
1422 	ret = a6xx_zap_shader_init(gpu);
1423 	if (!ret) {
1424 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1425 		OUT_RING(gpu->rb[0], 0x00000000);
1426 
1427 		a6xx_flush(gpu, gpu->rb[0]);
1428 		if (!a6xx_idle(gpu, gpu->rb[0]))
1429 			return -EINVAL;
1430 	} else if (ret == -ENODEV) {
1431 		/*
1432 		 * This device does not use zap shader (but print a warning
1433 		 * just in case someone got their dt wrong.. hopefully they
1434 		 * have a debug UART to realize the error of their ways...
1435 		 * if you mess this up you are about to crash horribly)
1436 		 */
1437 		dev_warn_once(gpu->dev->dev,
1438 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1439 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1440 		ret = 0;
1441 	} else {
1442 		return ret;
1443 	}
1444 
1445 out:
1446 	if (adreno_has_gmu_wrapper(adreno_gpu))
1447 		return ret;
1448 	/*
1449 	 * Tell the GMU that we are done touching the GPU and it can start power
1450 	 * management
1451 	 */
1452 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1453 
1454 	if (a6xx_gpu->gmu.legacy) {
1455 		/* Take the GMU out of its special boot mode */
1456 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 static int a6xx_hw_init(struct msm_gpu *gpu)
1463 {
1464 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1465 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1466 	int ret;
1467 
1468 	mutex_lock(&a6xx_gpu->gmu.lock);
1469 	ret = hw_init(gpu);
1470 	mutex_unlock(&a6xx_gpu->gmu.lock);
1471 
1472 	return ret;
1473 }
1474 
1475 static void a6xx_dump(struct msm_gpu *gpu)
1476 {
1477 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1478 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1479 	adreno_dump(gpu);
1480 }
1481 
1482 static void a6xx_recover(struct msm_gpu *gpu)
1483 {
1484 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1485 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1486 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1487 	int i, active_submits;
1488 
1489 	adreno_dump_info(gpu);
1490 
1491 	for (i = 0; i < 8; i++)
1492 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1493 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1494 
1495 	if (hang_debug)
1496 		a6xx_dump(gpu);
1497 
1498 	/*
1499 	 * To handle recovery specific sequences during the rpm suspend we are
1500 	 * about to trigger
1501 	 */
1502 	a6xx_gpu->hung = true;
1503 
1504 	/* Halt SQE first */
1505 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
1506 
1507 	pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
1508 
1509 	/* active_submit won't change until we make a submission */
1510 	mutex_lock(&gpu->active_lock);
1511 	active_submits = gpu->active_submits;
1512 
1513 	/*
1514 	 * Temporarily clear active_submits count to silence a WARN() in the
1515 	 * runtime suspend cb
1516 	 */
1517 	gpu->active_submits = 0;
1518 
1519 	if (adreno_has_gmu_wrapper(adreno_gpu)) {
1520 		/* Drain the outstanding traffic on memory buses */
1521 		a6xx_bus_clear_pending_transactions(adreno_gpu, true);
1522 
1523 		/* Reset the GPU to a clean state */
1524 		a6xx_gpu_sw_reset(gpu, true);
1525 		a6xx_gpu_sw_reset(gpu, false);
1526 	}
1527 
1528 	reinit_completion(&gmu->pd_gate);
1529 	dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb);
1530 	dev_pm_genpd_synced_poweroff(gmu->cxpd);
1531 
1532 	/* Drop the rpm refcount from active submits */
1533 	if (active_submits)
1534 		pm_runtime_put(&gpu->pdev->dev);
1535 
1536 	/* And the final one from recover worker */
1537 	pm_runtime_put_sync(&gpu->pdev->dev);
1538 
1539 	if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000)))
1540 		DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n");
1541 
1542 	dev_pm_genpd_remove_notifier(gmu->cxpd);
1543 
1544 	pm_runtime_use_autosuspend(&gpu->pdev->dev);
1545 
1546 	if (active_submits)
1547 		pm_runtime_get(&gpu->pdev->dev);
1548 
1549 	pm_runtime_get_sync(&gpu->pdev->dev);
1550 
1551 	gpu->active_submits = active_submits;
1552 	mutex_unlock(&gpu->active_lock);
1553 
1554 	msm_gpu_hw_init(gpu);
1555 	a6xx_gpu->hung = false;
1556 }
1557 
1558 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1559 {
1560 	static const char *uche_clients[7] = {
1561 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1562 	};
1563 	u32 val;
1564 
1565 	if (mid < 1 || mid > 3)
1566 		return "UNKNOWN";
1567 
1568 	/*
1569 	 * The source of the data depends on the mid ID read from FSYNR1.
1570 	 * and the client ID read from the UCHE block
1571 	 */
1572 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1573 
1574 	/* mid = 3 is most precise and refers to only one block per client */
1575 	if (mid == 3)
1576 		return uche_clients[val & 7];
1577 
1578 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1579 	if (mid == 2)
1580 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1581 
1582 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1583 	return "UCHE";
1584 }
1585 
1586 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1587 {
1588 	if (id == 0)
1589 		return "CP";
1590 	else if (id == 4)
1591 		return "CCU";
1592 	else if (id == 6)
1593 		return "CDP Prefetch";
1594 
1595 	return a6xx_uche_fault_block(gpu, id);
1596 }
1597 
1598 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1599 {
1600 	struct msm_gpu *gpu = arg;
1601 	struct adreno_smmu_fault_info *info = data;
1602 	const char *block = "unknown";
1603 
1604 	u32 scratch[] = {
1605 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1606 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1607 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1608 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)),
1609 	};
1610 
1611 	if (info)
1612 		block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1613 
1614 	return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
1615 }
1616 
1617 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1618 {
1619 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1620 
1621 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1622 		u32 val;
1623 
1624 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1625 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1626 		dev_err_ratelimited(&gpu->pdev->dev,
1627 			"CP | opcode error | possible opcode=0x%8.8X\n",
1628 			val);
1629 	}
1630 
1631 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1632 		dev_err_ratelimited(&gpu->pdev->dev,
1633 			"CP ucode error interrupt\n");
1634 
1635 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1636 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1637 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1638 
1639 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1640 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1641 
1642 		dev_err_ratelimited(&gpu->pdev->dev,
1643 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1644 			val & (1 << 20) ? "READ" : "WRITE",
1645 			(val & 0x3ffff), val);
1646 	}
1647 
1648 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1649 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1650 
1651 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1652 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1653 
1654 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1655 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1656 
1657 }
1658 
1659 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1660 {
1661 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1662 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1663 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1664 
1665 	/*
1666 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1667 	 * but the fault handler will trigger the devcore dump, and we want
1668 	 * to otherwise resume normally rather than killing the submit, so
1669 	 * just bail.
1670 	 */
1671 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1672 		return;
1673 
1674 	/*
1675 	 * Force the GPU to stay on until after we finish
1676 	 * collecting information
1677 	 */
1678 	if (!adreno_has_gmu_wrapper(adreno_gpu))
1679 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1680 
1681 	DRM_DEV_ERROR(&gpu->pdev->dev,
1682 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1683 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1684 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1685 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1686 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1687 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
1688 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1689 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
1690 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1691 
1692 	/* Turn off the hangcheck timer to keep it from bothering us */
1693 	del_timer(&gpu->hangcheck_timer);
1694 
1695 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1696 }
1697 
1698 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1699 {
1700 	struct msm_drm_private *priv = gpu->dev->dev_private;
1701 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1702 
1703 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1704 
1705 	if (priv->disable_err_irq)
1706 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1707 
1708 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1709 		a6xx_fault_detect_irq(gpu);
1710 
1711 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1712 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1713 
1714 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1715 		a6xx_cp_hw_err_irq(gpu);
1716 
1717 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1718 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1719 
1720 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1721 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1722 
1723 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1724 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1725 
1726 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1727 		msm_gpu_retire(gpu);
1728 
1729 	return IRQ_HANDLED;
1730 }
1731 
1732 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1733 {
1734 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1735 }
1736 
1737 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1738 {
1739 	msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1740 }
1741 
1742 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1743 {
1744 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1745 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1746 }
1747 
1748 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1749 {
1750 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1751 	struct msm_gpu *gpu = &adreno_gpu->base;
1752 	u32 cntl1_regval = 0;
1753 
1754 	if (IS_ERR(a6xx_gpu->llc_mmio))
1755 		return;
1756 
1757 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1758 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1759 
1760 		gpu_scid &= 0x1f;
1761 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1762 			       (gpu_scid << 15) | (gpu_scid << 20);
1763 
1764 		/* On A660, the SCID programming for UCHE traffic is done in
1765 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1766 		 */
1767 		if (adreno_is_a660_family(adreno_gpu))
1768 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1769 				(1 << 8), (gpu_scid << 10) | (1 << 8));
1770 	}
1771 
1772 	/*
1773 	 * For targets with a MMU500, activate the slice but don't program the
1774 	 * register.  The XBL will take care of that.
1775 	 */
1776 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1777 		if (!a6xx_gpu->have_mmu500) {
1778 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1779 
1780 			gpuhtw_scid &= 0x1f;
1781 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1782 		}
1783 	}
1784 
1785 	if (!cntl1_regval)
1786 		return;
1787 
1788 	/*
1789 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1790 	 * pagetables
1791 	 */
1792 	if (!a6xx_gpu->have_mmu500) {
1793 		a6xx_llc_write(a6xx_gpu,
1794 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1795 
1796 		/*
1797 		 * Program cacheability overrides to not allocate cache
1798 		 * lines on a write miss
1799 		 */
1800 		a6xx_llc_rmw(a6xx_gpu,
1801 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1802 		return;
1803 	}
1804 
1805 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1806 }
1807 
1808 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1809 {
1810 	/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
1811 	if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
1812 		return;
1813 
1814 	llcc_slice_putd(a6xx_gpu->llc_slice);
1815 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1816 }
1817 
1818 static void a6xx_llc_slices_init(struct platform_device *pdev,
1819 		struct a6xx_gpu *a6xx_gpu)
1820 {
1821 	struct device_node *phandle;
1822 
1823 	/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
1824 	if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
1825 		return;
1826 
1827 	/*
1828 	 * There is a different programming path for targets with an mmu500
1829 	 * attached, so detect if that is the case
1830 	 */
1831 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1832 	a6xx_gpu->have_mmu500 = (phandle &&
1833 		of_device_is_compatible(phandle, "arm,mmu-500"));
1834 	of_node_put(phandle);
1835 
1836 	if (a6xx_gpu->have_mmu500)
1837 		a6xx_gpu->llc_mmio = NULL;
1838 	else
1839 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1840 
1841 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1842 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1843 
1844 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1845 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1846 }
1847 
1848 #define GBIF_CLIENT_HALT_MASK		BIT(0)
1849 #define GBIF_ARB_HALT_MASK		BIT(1)
1850 #define VBIF_XIN_HALT_CTRL0_MASK	GENMASK(3, 0)
1851 #define VBIF_RESET_ACK_MASK		0xF0
1852 #define GPR0_GBIF_HALT_REQUEST		0x1E0
1853 
1854 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off)
1855 {
1856 	struct msm_gpu *gpu = &adreno_gpu->base;
1857 
1858 	if (adreno_is_a619_holi(adreno_gpu)) {
1859 		gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST);
1860 		spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) &
1861 				(VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK);
1862 	} else if (!a6xx_has_gbif(adreno_gpu)) {
1863 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK);
1864 		spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
1865 				(VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK);
1866 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
1867 
1868 		return;
1869 	}
1870 
1871 	if (gx_off) {
1872 		/* Halt the gx side of GBIF */
1873 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1);
1874 		spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1);
1875 	}
1876 
1877 	/* Halt new client requests on GBIF */
1878 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
1879 	spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
1880 			(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
1881 
1882 	/* Halt all AXI requests on GBIF */
1883 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
1884 	spin_until((gpu_read(gpu,  REG_A6XX_GBIF_HALT_ACK) &
1885 			(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
1886 
1887 	/* The GBIF halt needs to be explicitly cleared */
1888 	gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
1889 }
1890 
1891 void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert)
1892 {
1893 	/* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */
1894 	if (adreno_is_a610(to_adreno_gpu(gpu)))
1895 		return;
1896 
1897 	gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert);
1898 	/* Perform a bogus read and add a brief delay to ensure ordering. */
1899 	gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD);
1900 	udelay(1);
1901 
1902 	/* The reset line needs to be asserted for at least 100 us */
1903 	if (assert)
1904 		udelay(100);
1905 }
1906 
1907 static int a6xx_gmu_pm_resume(struct msm_gpu *gpu)
1908 {
1909 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1910 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1911 	int ret;
1912 
1913 	gpu->needs_hw_init = true;
1914 
1915 	trace_msm_gpu_resume(0);
1916 
1917 	mutex_lock(&a6xx_gpu->gmu.lock);
1918 	ret = a6xx_gmu_resume(a6xx_gpu);
1919 	mutex_unlock(&a6xx_gpu->gmu.lock);
1920 	if (ret)
1921 		return ret;
1922 
1923 	msm_devfreq_resume(gpu);
1924 
1925 	a6xx_llc_activate(a6xx_gpu);
1926 
1927 	return ret;
1928 }
1929 
1930 static int a6xx_pm_resume(struct msm_gpu *gpu)
1931 {
1932 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1933 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1934 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1935 	unsigned long freq = gpu->fast_rate;
1936 	struct dev_pm_opp *opp;
1937 	int ret;
1938 
1939 	gpu->needs_hw_init = true;
1940 
1941 	trace_msm_gpu_resume(0);
1942 
1943 	mutex_lock(&a6xx_gpu->gmu.lock);
1944 
1945 	opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq);
1946 	if (IS_ERR(opp)) {
1947 		ret = PTR_ERR(opp);
1948 		goto err_set_opp;
1949 	}
1950 	dev_pm_opp_put(opp);
1951 
1952 	/* Set the core clock and bus bw, having VDD scaling in mind */
1953 	dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
1954 
1955 	pm_runtime_resume_and_get(gmu->dev);
1956 	pm_runtime_resume_and_get(gmu->gxpd);
1957 
1958 	ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks);
1959 	if (ret)
1960 		goto err_bulk_clk;
1961 
1962 	if (adreno_is_a619_holi(adreno_gpu))
1963 		a6xx_sptprac_enable(gmu);
1964 
1965 	/* If anything goes south, tear the GPU down piece by piece.. */
1966 	if (ret) {
1967 err_bulk_clk:
1968 		pm_runtime_put(gmu->gxpd);
1969 		pm_runtime_put(gmu->dev);
1970 		dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
1971 	}
1972 err_set_opp:
1973 	mutex_unlock(&a6xx_gpu->gmu.lock);
1974 
1975 	if (!ret)
1976 		msm_devfreq_resume(gpu);
1977 
1978 	return ret;
1979 }
1980 
1981 static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu)
1982 {
1983 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1984 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1985 	int i, ret;
1986 
1987 	trace_msm_gpu_suspend(0);
1988 
1989 	a6xx_llc_deactivate(a6xx_gpu);
1990 
1991 	msm_devfreq_suspend(gpu);
1992 
1993 	mutex_lock(&a6xx_gpu->gmu.lock);
1994 	ret = a6xx_gmu_stop(a6xx_gpu);
1995 	mutex_unlock(&a6xx_gpu->gmu.lock);
1996 	if (ret)
1997 		return ret;
1998 
1999 	if (a6xx_gpu->shadow_bo)
2000 		for (i = 0; i < gpu->nr_rings; i++)
2001 			a6xx_gpu->shadow[i] = 0;
2002 
2003 	gpu->suspend_count++;
2004 
2005 	return 0;
2006 }
2007 
2008 static int a6xx_pm_suspend(struct msm_gpu *gpu)
2009 {
2010 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2011 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2012 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
2013 	int i;
2014 
2015 	trace_msm_gpu_suspend(0);
2016 
2017 	msm_devfreq_suspend(gpu);
2018 
2019 	mutex_lock(&a6xx_gpu->gmu.lock);
2020 
2021 	/* Drain the outstanding traffic on memory buses */
2022 	a6xx_bus_clear_pending_transactions(adreno_gpu, true);
2023 
2024 	if (adreno_is_a619_holi(adreno_gpu))
2025 		a6xx_sptprac_disable(gmu);
2026 
2027 	clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks);
2028 
2029 	pm_runtime_put_sync(gmu->gxpd);
2030 	dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
2031 	pm_runtime_put_sync(gmu->dev);
2032 
2033 	mutex_unlock(&a6xx_gpu->gmu.lock);
2034 
2035 	if (a6xx_gpu->shadow_bo)
2036 		for (i = 0; i < gpu->nr_rings; i++)
2037 			a6xx_gpu->shadow[i] = 0;
2038 
2039 	gpu->suspend_count++;
2040 
2041 	return 0;
2042 }
2043 
2044 static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
2045 {
2046 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2047 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2048 
2049 	mutex_lock(&a6xx_gpu->gmu.lock);
2050 
2051 	/* Force the GPU power on so we can read this register */
2052 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
2053 
2054 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
2055 
2056 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
2057 
2058 	mutex_unlock(&a6xx_gpu->gmu.lock);
2059 
2060 	return 0;
2061 }
2062 
2063 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
2064 {
2065 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
2066 	return 0;
2067 }
2068 
2069 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
2070 {
2071 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2072 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2073 
2074 	return a6xx_gpu->cur_ring;
2075 }
2076 
2077 static void a6xx_destroy(struct msm_gpu *gpu)
2078 {
2079 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2080 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2081 
2082 	if (a6xx_gpu->sqe_bo) {
2083 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
2084 		drm_gem_object_put(a6xx_gpu->sqe_bo);
2085 	}
2086 
2087 	if (a6xx_gpu->shadow_bo) {
2088 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
2089 		drm_gem_object_put(a6xx_gpu->shadow_bo);
2090 	}
2091 
2092 	a6xx_llc_slices_destroy(a6xx_gpu);
2093 
2094 	mutex_lock(&a6xx_gpu->gmu.lock);
2095 	a6xx_gmu_remove(a6xx_gpu);
2096 	mutex_unlock(&a6xx_gpu->gmu.lock);
2097 
2098 	adreno_gpu_cleanup(adreno_gpu);
2099 
2100 	kfree(a6xx_gpu);
2101 }
2102 
2103 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
2104 {
2105 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2106 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2107 	u64 busy_cycles;
2108 
2109 	/* 19.2MHz */
2110 	*out_sample_rate = 19200000;
2111 
2112 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
2113 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
2114 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
2115 
2116 	return busy_cycles;
2117 }
2118 
2119 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
2120 			      bool suspended)
2121 {
2122 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2123 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2124 
2125 	mutex_lock(&a6xx_gpu->gmu.lock);
2126 	a6xx_gmu_set_freq(gpu, opp, suspended);
2127 	mutex_unlock(&a6xx_gpu->gmu.lock);
2128 }
2129 
2130 static struct msm_gem_address_space *
2131 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
2132 {
2133 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2134 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2135 	unsigned long quirks = 0;
2136 
2137 	/*
2138 	 * This allows GPU to set the bus attributes required to use system
2139 	 * cache on behalf of the iommu page table walker.
2140 	 */
2141 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) &&
2142 	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY))
2143 		quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA;
2144 
2145 	return adreno_iommu_create_address_space(gpu, pdev, quirks);
2146 }
2147 
2148 static struct msm_gem_address_space *
2149 a6xx_create_private_address_space(struct msm_gpu *gpu)
2150 {
2151 	struct msm_mmu *mmu;
2152 
2153 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
2154 
2155 	if (IS_ERR(mmu))
2156 		return ERR_CAST(mmu);
2157 
2158 	return msm_gem_address_space_create(mmu,
2159 		"gpu", 0x100000000ULL,
2160 		adreno_private_address_space_size(gpu));
2161 }
2162 
2163 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
2164 {
2165 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2166 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2167 
2168 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
2169 		return a6xx_gpu->shadow[ring->id];
2170 
2171 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
2172 }
2173 
2174 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
2175 {
2176 	struct msm_cp_state cp_state = {
2177 		.ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
2178 		.ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
2179 		.ib1_rem  = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
2180 		.ib2_rem  = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE),
2181 	};
2182 	bool progress;
2183 
2184 	/*
2185 	 * Adjust the remaining data to account for what has already been
2186 	 * fetched from memory, but not yet consumed by the SQE.
2187 	 *
2188 	 * This is not *technically* correct, the amount buffered could
2189 	 * exceed the IB size due to hw prefetching ahead, but:
2190 	 *
2191 	 * (1) We aren't trying to find the exact position, just whether
2192 	 *     progress has been made
2193 	 * (2) The CP_REG_TO_MEM at the end of a submit should be enough
2194 	 *     to prevent prefetching into an unrelated submit.  (And
2195 	 *     either way, at some point the ROQ will be full.)
2196 	 */
2197 	cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16;
2198 	cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16;
2199 
2200 	progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state));
2201 
2202 	ring->last_cp_state = cp_state;
2203 
2204 	return progress;
2205 }
2206 
2207 static u32 a610_get_speed_bin(u32 fuse)
2208 {
2209 	/*
2210 	 * There are (at least) three SoCs implementing A610: SM6125 (trinket),
2211 	 * SM6115 (bengal) and SM6225 (khaje). Trinket does not have speedbinning,
2212 	 * as only a single SKU exists and we don't support khaje upstream yet.
2213 	 * Hence, this matching table is only valid for bengal and can be easily
2214 	 * expanded if need be.
2215 	 */
2216 
2217 	if (fuse == 0)
2218 		return 0;
2219 	else if (fuse == 206)
2220 		return 1;
2221 	else if (fuse == 200)
2222 		return 2;
2223 	else if (fuse == 157)
2224 		return 3;
2225 	else if (fuse == 127)
2226 		return 4;
2227 
2228 	return UINT_MAX;
2229 }
2230 
2231 static u32 a618_get_speed_bin(u32 fuse)
2232 {
2233 	if (fuse == 0)
2234 		return 0;
2235 	else if (fuse == 169)
2236 		return 1;
2237 	else if (fuse == 174)
2238 		return 2;
2239 
2240 	return UINT_MAX;
2241 }
2242 
2243 static u32 a619_holi_get_speed_bin(u32 fuse)
2244 {
2245 	/*
2246 	 * There are (at least) two SoCs implementing A619_holi: SM4350 (holi)
2247 	 * and SM6375 (blair). Limit the fuse matching to the corresponding
2248 	 * SoC to prevent bogus frequency setting (as improbable as it may be,
2249 	 * given unexpected fuse values are.. unexpected! But still possible.)
2250 	 */
2251 
2252 	if (fuse == 0)
2253 		return 0;
2254 
2255 	if (of_machine_is_compatible("qcom,sm4350")) {
2256 		if (fuse == 138)
2257 			return 1;
2258 		else if (fuse == 92)
2259 			return 2;
2260 	} else if (of_machine_is_compatible("qcom,sm6375")) {
2261 		if (fuse == 190)
2262 			return 1;
2263 		else if (fuse == 177)
2264 			return 2;
2265 	} else
2266 		pr_warn("Unknown SoC implementing A619_holi!\n");
2267 
2268 	return UINT_MAX;
2269 }
2270 
2271 static u32 a619_get_speed_bin(u32 fuse)
2272 {
2273 	if (fuse == 0)
2274 		return 0;
2275 	else if (fuse == 120)
2276 		return 4;
2277 	else if (fuse == 138)
2278 		return 3;
2279 	else if (fuse == 169)
2280 		return 2;
2281 	else if (fuse == 180)
2282 		return 1;
2283 
2284 	return UINT_MAX;
2285 }
2286 
2287 static u32 a640_get_speed_bin(u32 fuse)
2288 {
2289 	if (fuse == 0)
2290 		return 0;
2291 	else if (fuse == 1)
2292 		return 1;
2293 
2294 	return UINT_MAX;
2295 }
2296 
2297 static u32 a650_get_speed_bin(u32 fuse)
2298 {
2299 	if (fuse == 0)
2300 		return 0;
2301 	else if (fuse == 1)
2302 		return 1;
2303 	/* Yep, 2 and 3 are swapped! :/ */
2304 	else if (fuse == 2)
2305 		return 3;
2306 	else if (fuse == 3)
2307 		return 2;
2308 
2309 	return UINT_MAX;
2310 }
2311 
2312 static u32 adreno_7c3_get_speed_bin(u32 fuse)
2313 {
2314 	if (fuse == 0)
2315 		return 0;
2316 	else if (fuse == 117)
2317 		return 0;
2318 	else if (fuse == 190)
2319 		return 1;
2320 
2321 	return UINT_MAX;
2322 }
2323 
2324 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_gpu *adreno_gpu, u32 fuse)
2325 {
2326 	u32 val = UINT_MAX;
2327 
2328 	if (adreno_is_a610(adreno_gpu))
2329 		val = a610_get_speed_bin(fuse);
2330 
2331 	if (adreno_is_a618(adreno_gpu))
2332 		val = a618_get_speed_bin(fuse);
2333 
2334 	else if (adreno_is_a619_holi(adreno_gpu))
2335 		val = a619_holi_get_speed_bin(fuse);
2336 
2337 	else if (adreno_is_a619(adreno_gpu))
2338 		val = a619_get_speed_bin(fuse);
2339 
2340 	else if (adreno_is_7c3(adreno_gpu))
2341 		val = adreno_7c3_get_speed_bin(fuse);
2342 
2343 	else if (adreno_is_a640(adreno_gpu))
2344 		val = a640_get_speed_bin(fuse);
2345 
2346 	else if (adreno_is_a650(adreno_gpu))
2347 		val = a650_get_speed_bin(fuse);
2348 
2349 	if (val == UINT_MAX) {
2350 		DRM_DEV_ERROR(dev,
2351 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
2352 			fuse);
2353 		return UINT_MAX;
2354 	}
2355 
2356 	return (1 << val);
2357 }
2358 
2359 static int a6xx_set_supported_hw(struct device *dev, struct adreno_gpu *adreno_gpu)
2360 {
2361 	u32 supp_hw;
2362 	u32 speedbin;
2363 	int ret;
2364 
2365 	ret = adreno_read_speedbin(dev, &speedbin);
2366 	/*
2367 	 * -ENOENT means that the platform doesn't support speedbin which is
2368 	 * fine
2369 	 */
2370 	if (ret == -ENOENT) {
2371 		return 0;
2372 	} else if (ret) {
2373 		dev_err_probe(dev, ret,
2374 			      "failed to read speed-bin. Some OPPs may not be supported by hardware\n");
2375 		return ret;
2376 	}
2377 
2378 	supp_hw = fuse_to_supp_hw(dev, adreno_gpu, speedbin);
2379 
2380 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
2381 	if (ret)
2382 		return ret;
2383 
2384 	return 0;
2385 }
2386 
2387 static const struct adreno_gpu_funcs funcs = {
2388 	.base = {
2389 		.get_param = adreno_get_param,
2390 		.set_param = adreno_set_param,
2391 		.hw_init = a6xx_hw_init,
2392 		.ucode_load = a6xx_ucode_load,
2393 		.pm_suspend = a6xx_gmu_pm_suspend,
2394 		.pm_resume = a6xx_gmu_pm_resume,
2395 		.recover = a6xx_recover,
2396 		.submit = a6xx_submit,
2397 		.active_ring = a6xx_active_ring,
2398 		.irq = a6xx_irq,
2399 		.destroy = a6xx_destroy,
2400 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2401 		.show = a6xx_show,
2402 #endif
2403 		.gpu_busy = a6xx_gpu_busy,
2404 		.gpu_get_freq = a6xx_gmu_get_freq,
2405 		.gpu_set_freq = a6xx_gpu_set_freq,
2406 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2407 		.gpu_state_get = a6xx_gpu_state_get,
2408 		.gpu_state_put = a6xx_gpu_state_put,
2409 #endif
2410 		.create_address_space = a6xx_create_address_space,
2411 		.create_private_address_space = a6xx_create_private_address_space,
2412 		.get_rptr = a6xx_get_rptr,
2413 		.progress = a6xx_progress,
2414 	},
2415 	.get_timestamp = a6xx_gmu_get_timestamp,
2416 };
2417 
2418 static const struct adreno_gpu_funcs funcs_gmuwrapper = {
2419 	.base = {
2420 		.get_param = adreno_get_param,
2421 		.set_param = adreno_set_param,
2422 		.hw_init = a6xx_hw_init,
2423 		.ucode_load = a6xx_ucode_load,
2424 		.pm_suspend = a6xx_pm_suspend,
2425 		.pm_resume = a6xx_pm_resume,
2426 		.recover = a6xx_recover,
2427 		.submit = a6xx_submit,
2428 		.active_ring = a6xx_active_ring,
2429 		.irq = a6xx_irq,
2430 		.destroy = a6xx_destroy,
2431 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2432 		.show = a6xx_show,
2433 #endif
2434 		.gpu_busy = a6xx_gpu_busy,
2435 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2436 		.gpu_state_get = a6xx_gpu_state_get,
2437 		.gpu_state_put = a6xx_gpu_state_put,
2438 #endif
2439 		.create_address_space = a6xx_create_address_space,
2440 		.create_private_address_space = a6xx_create_private_address_space,
2441 		.get_rptr = a6xx_get_rptr,
2442 		.progress = a6xx_progress,
2443 	},
2444 	.get_timestamp = a6xx_get_timestamp,
2445 };
2446 
2447 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
2448 {
2449 	struct msm_drm_private *priv = dev->dev_private;
2450 	struct platform_device *pdev = priv->gpu_pdev;
2451 	struct adreno_platform_config *config = pdev->dev.platform_data;
2452 	const struct adreno_info *info;
2453 	struct device_node *node;
2454 	struct a6xx_gpu *a6xx_gpu;
2455 	struct adreno_gpu *adreno_gpu;
2456 	struct msm_gpu *gpu;
2457 	int ret;
2458 
2459 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
2460 	if (!a6xx_gpu)
2461 		return ERR_PTR(-ENOMEM);
2462 
2463 	adreno_gpu = &a6xx_gpu->base;
2464 	gpu = &adreno_gpu->base;
2465 
2466 	mutex_init(&a6xx_gpu->gmu.lock);
2467 
2468 	adreno_gpu->registers = NULL;
2469 
2470 	/* Check if there is a GMU phandle and set it up */
2471 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
2472 	/* FIXME: How do we gracefully handle this? */
2473 	BUG_ON(!node);
2474 
2475 	adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper");
2476 
2477 	/*
2478 	 * We need to know the platform type before calling into adreno_gpu_init
2479 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
2480 	 * and grab the revision number
2481 	 */
2482 	info = adreno_info(config->rev);
2483 	if (!info)
2484 		return ERR_PTR(-EINVAL);
2485 
2486 	/* Assign these early so that we can use the is_aXYZ helpers */
2487 	/* Numeric revision IDs (e.g. 630) */
2488 	adreno_gpu->revn = info->revn;
2489 	/* New-style ADRENO_REV()-only */
2490 	adreno_gpu->rev = info->rev;
2491 	/* Quirk data */
2492 	adreno_gpu->info = info;
2493 
2494 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660_family(adreno_gpu))
2495 		adreno_gpu->base.hw_apriv = true;
2496 
2497 	a6xx_llc_slices_init(pdev, a6xx_gpu);
2498 
2499 	ret = a6xx_set_supported_hw(&pdev->dev, adreno_gpu);
2500 	if (ret) {
2501 		a6xx_destroy(&(a6xx_gpu->base.base));
2502 		return ERR_PTR(ret);
2503 	}
2504 
2505 	if (adreno_has_gmu_wrapper(adreno_gpu))
2506 		ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1);
2507 	else
2508 		ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
2509 	if (ret) {
2510 		a6xx_destroy(&(a6xx_gpu->base.base));
2511 		return ERR_PTR(ret);
2512 	}
2513 
2514 	/*
2515 	 * For now only clamp to idle freq for devices where this is known not
2516 	 * to cause power supply issues:
2517 	 */
2518 	if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu))
2519 		priv->gpu_clamp_to_idle = true;
2520 
2521 	if (adreno_has_gmu_wrapper(adreno_gpu))
2522 		ret = a6xx_gmu_wrapper_init(a6xx_gpu, node);
2523 	else
2524 		ret = a6xx_gmu_init(a6xx_gpu, node);
2525 	of_node_put(node);
2526 	if (ret) {
2527 		a6xx_destroy(&(a6xx_gpu->base.base));
2528 		return ERR_PTR(ret);
2529 	}
2530 
2531 	if (gpu->aspace)
2532 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
2533 				a6xx_fault_handler);
2534 
2535 	return gpu;
2536 }
2537