1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/devfreq.h> 12 13 #define GPU_PAS_ID 13 14 15 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 16 { 17 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 18 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 19 20 /* Check that the GMU is idle */ 21 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 22 return false; 23 24 /* Check tha the CX master is idle */ 25 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 26 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 27 return false; 28 29 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 30 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 31 } 32 33 bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 34 { 35 /* wait for CP to drain ringbuffer: */ 36 if (!adreno_idle(gpu, ring)) 37 return false; 38 39 if (spin_until(_a6xx_check_idle(gpu))) { 40 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 41 gpu->name, __builtin_return_address(0), 42 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 43 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 44 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 45 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 46 return false; 47 } 48 49 return true; 50 } 51 52 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 53 { 54 uint32_t wptr; 55 unsigned long flags; 56 57 spin_lock_irqsave(&ring->lock, flags); 58 59 /* Copy the shadow to the actual register */ 60 ring->cur = ring->next; 61 62 /* Make sure to wrap wptr if we need to */ 63 wptr = get_wptr(ring); 64 65 spin_unlock_irqrestore(&ring->lock, flags); 66 67 /* Make sure everything is posted before making a decision */ 68 mb(); 69 70 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 71 } 72 73 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 74 u64 iova) 75 { 76 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 77 OUT_RING(ring, counter | (1 << 30) | (2 << 18)); 78 OUT_RING(ring, lower_32_bits(iova)); 79 OUT_RING(ring, upper_32_bits(iova)); 80 } 81 82 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit, 83 struct msm_file_private *ctx) 84 { 85 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 86 struct msm_drm_private *priv = gpu->dev->dev_private; 87 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 88 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 89 struct msm_ringbuffer *ring = submit->ring; 90 unsigned int i; 91 92 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 93 rbmemptr_stats(ring, index, cpcycles_start)); 94 95 /* 96 * For PM4 the GMU register offsets are calculated from the base of the 97 * GPU registers so we need to add 0x1a800 to the register value on A630 98 * to get the right value from PM4. 99 */ 100 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 101 rbmemptr_stats(ring, index, alwayson_start)); 102 103 /* Invalidate CCU depth and color */ 104 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 105 OUT_RING(ring, PC_CCU_INVALIDATE_DEPTH); 106 107 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 108 OUT_RING(ring, PC_CCU_INVALIDATE_COLOR); 109 110 /* Submit the commands */ 111 for (i = 0; i < submit->nr_cmds; i++) { 112 switch (submit->cmd[i].type) { 113 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 114 break; 115 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 116 if (priv->lastctx == ctx) 117 break; 118 case MSM_SUBMIT_CMD_BUF: 119 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 120 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 121 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 122 OUT_RING(ring, submit->cmd[i].size); 123 break; 124 } 125 } 126 127 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 128 rbmemptr_stats(ring, index, cpcycles_end)); 129 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 130 rbmemptr_stats(ring, index, alwayson_end)); 131 132 /* Write the fence to the scratch register */ 133 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 134 OUT_RING(ring, submit->seqno); 135 136 /* 137 * Execute a CACHE_FLUSH_TS event. This will ensure that the 138 * timestamp is written to the memory and then triggers the interrupt 139 */ 140 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 141 OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31)); 142 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 143 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 144 OUT_RING(ring, submit->seqno); 145 146 trace_msm_gpu_submit_flush(submit, 147 gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L, 148 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H)); 149 150 a6xx_flush(gpu, ring); 151 } 152 153 static const struct { 154 u32 offset; 155 u32 value; 156 } a6xx_hwcg[] = { 157 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 158 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 159 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 160 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 161 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 162 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 163 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 164 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 165 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 166 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 167 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 168 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 169 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 170 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 171 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 172 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 173 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 174 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 175 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 176 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 177 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 178 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 179 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 180 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 181 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 182 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 183 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 184 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 185 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 186 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 187 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 188 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 189 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 190 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 191 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 192 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 193 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 194 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 195 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 196 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 197 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 198 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 199 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 200 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 201 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 202 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 203 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 204 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 205 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 206 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 207 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 208 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 209 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 210 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 211 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 212 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 213 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 214 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 215 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 216 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 217 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 218 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 219 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 220 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 221 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 222 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 223 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 224 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 225 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 226 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 227 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 228 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 229 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 230 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 231 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 232 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 233 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 234 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 235 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 236 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 237 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 238 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 239 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 240 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 241 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 242 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 243 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 244 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 245 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 246 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 247 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 248 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 249 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 250 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 251 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 252 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 253 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 254 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 255 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 256 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 257 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 258 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 259 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 260 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 261 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555} 262 }; 263 264 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 265 { 266 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 267 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 268 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 269 unsigned int i; 270 u32 val; 271 272 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 273 274 /* Don't re-program the registers if they are already correct */ 275 if ((!state && !val) || (state && (val == 0x8aa8aa02))) 276 return; 277 278 /* Disable SP clock before programming HWCG registers */ 279 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 280 281 for (i = 0; i < ARRAY_SIZE(a6xx_hwcg); i++) 282 gpu_write(gpu, a6xx_hwcg[i].offset, 283 state ? a6xx_hwcg[i].value : 0); 284 285 /* Enable SP clock */ 286 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 287 288 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? 0x8aa8aa02 : 0); 289 } 290 291 static int a6xx_cp_init(struct msm_gpu *gpu) 292 { 293 struct msm_ringbuffer *ring = gpu->rb[0]; 294 295 OUT_PKT7(ring, CP_ME_INIT, 8); 296 297 OUT_RING(ring, 0x0000002f); 298 299 /* Enable multiple hardware contexts */ 300 OUT_RING(ring, 0x00000003); 301 302 /* Enable error detection */ 303 OUT_RING(ring, 0x20000000); 304 305 /* Don't enable header dump */ 306 OUT_RING(ring, 0x00000000); 307 OUT_RING(ring, 0x00000000); 308 309 /* No workarounds enabled */ 310 OUT_RING(ring, 0x00000000); 311 312 /* Pad rest of the cmds with 0's */ 313 OUT_RING(ring, 0x00000000); 314 OUT_RING(ring, 0x00000000); 315 316 a6xx_flush(gpu, ring); 317 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 318 } 319 320 static int a6xx_ucode_init(struct msm_gpu *gpu) 321 { 322 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 323 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 324 325 if (!a6xx_gpu->sqe_bo) { 326 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 327 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 328 329 if (IS_ERR(a6xx_gpu->sqe_bo)) { 330 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 331 332 a6xx_gpu->sqe_bo = NULL; 333 DRM_DEV_ERROR(&gpu->pdev->dev, 334 "Could not allocate SQE ucode: %d\n", ret); 335 336 return ret; 337 } 338 339 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 340 } 341 342 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO, 343 REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova); 344 345 return 0; 346 } 347 348 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 349 { 350 static bool loaded; 351 int ret; 352 353 if (loaded) 354 return 0; 355 356 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 357 358 loaded = !ret; 359 return ret; 360 } 361 362 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 363 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 364 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 365 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 366 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 367 A6XX_RBBM_INT_0_MASK_CP_RB | \ 368 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 369 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 370 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 371 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 372 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 373 374 static int a6xx_hw_init(struct msm_gpu *gpu) 375 { 376 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 377 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 378 int ret; 379 380 /* Make sure the GMU keeps the GPU on while we set it up */ 381 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 382 383 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 384 385 /* 386 * Disable the trusted memory range - we don't actually supported secure 387 * memory rendering at this point in time and we don't want to block off 388 * part of the virtual memory space. 389 */ 390 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 391 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 392 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 393 394 /* Turn on 64 bit addressing for all blocks */ 395 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 396 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 397 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 398 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 399 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 400 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 401 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 402 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 403 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 404 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 405 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 406 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 407 408 /* enable hardware clockgating */ 409 a6xx_set_hwcg(gpu, true); 410 411 /* VBIF start */ 412 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 413 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 414 415 /* Make all blocks contribute to the GPU BUSY perf counter */ 416 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 417 418 /* Disable L2 bypass in the UCHE */ 419 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 420 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 421 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 422 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 423 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 424 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 425 426 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 427 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 428 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 429 430 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 431 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 432 0x00100000 + adreno_gpu->gmem - 1); 433 434 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 435 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 436 437 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 438 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 439 440 /* Setting the mem pool size */ 441 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 442 443 /* Setting the primFifo thresholds default values */ 444 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11)); 445 446 /* Set the AHB default slave response to "ERROR" */ 447 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 448 449 /* Turn on performance counters */ 450 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 451 452 /* Select CP0 to always count cycles */ 453 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT); 454 455 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 2 << 1); 456 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, 2 << 1); 457 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 2 << 1); 458 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 2 << 21); 459 460 /* Enable fault detection */ 461 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 462 (1 << 30) | 0x1fffff); 463 464 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 465 466 /* Protect registers from the CP */ 467 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003); 468 469 gpu_write(gpu, REG_A6XX_CP_PROTECT(0), 470 A6XX_PROTECT_RDONLY(0x600, 0x51)); 471 gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2)); 472 gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13)); 473 gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8)); 474 gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1)); 475 gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187)); 476 gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810)); 477 gpu_write(gpu, REG_A6XX_CP_PROTECT(7), 478 A6XX_PROTECT_RDONLY(0xfc00, 0x3)); 479 gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0)); 480 gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0)); 481 gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0)); 482 gpu_write(gpu, REG_A6XX_CP_PROTECT(11), 483 A6XX_PROTECT_RDONLY(0x0, 0x4f9)); 484 gpu_write(gpu, REG_A6XX_CP_PROTECT(12), 485 A6XX_PROTECT_RDONLY(0x501, 0xa)); 486 gpu_write(gpu, REG_A6XX_CP_PROTECT(13), 487 A6XX_PROTECT_RDONLY(0x511, 0x44)); 488 gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe)); 489 gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0)); 490 gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf)); 491 gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0)); 492 gpu_write(gpu, REG_A6XX_CP_PROTECT(18), 493 A6XX_PROTECT_RW(0xbe20, 0x11f3)); 494 gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82)); 495 gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8)); 496 gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19)); 497 gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d)); 498 gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76)); 499 gpu_write(gpu, REG_A6XX_CP_PROTECT(24), 500 A6XX_PROTECT_RDONLY(0x980, 0x4)); 501 gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0)); 502 503 /* Enable interrupts */ 504 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 505 506 ret = adreno_hw_init(gpu); 507 if (ret) 508 goto out; 509 510 ret = a6xx_ucode_init(gpu); 511 if (ret) 512 goto out; 513 514 /* Always come up on rb 0 */ 515 a6xx_gpu->cur_ring = gpu->rb[0]; 516 517 /* Enable the SQE_to start the CP engine */ 518 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 519 520 ret = a6xx_cp_init(gpu); 521 if (ret) 522 goto out; 523 524 /* 525 * Try to load a zap shader into the secure world. If successful 526 * we can use the CP to switch out of secure mode. If not then we 527 * have no resource but to try to switch ourselves out manually. If we 528 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 529 * be blocked and a permissions violation will soon follow. 530 */ 531 ret = a6xx_zap_shader_init(gpu); 532 if (!ret) { 533 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 534 OUT_RING(gpu->rb[0], 0x00000000); 535 536 a6xx_flush(gpu, gpu->rb[0]); 537 if (!a6xx_idle(gpu, gpu->rb[0])) 538 return -EINVAL; 539 } else { 540 /* Print a warning so if we die, we know why */ 541 dev_warn_once(gpu->dev->dev, 542 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 543 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 544 ret = 0; 545 } 546 547 out: 548 /* 549 * Tell the GMU that we are done touching the GPU and it can start power 550 * management 551 */ 552 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 553 554 /* Take the GMU out of its special boot mode */ 555 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 556 557 return ret; 558 } 559 560 static void a6xx_dump(struct msm_gpu *gpu) 561 { 562 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 563 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 564 adreno_dump(gpu); 565 } 566 567 #define VBIF_RESET_ACK_TIMEOUT 100 568 #define VBIF_RESET_ACK_MASK 0x00f0 569 570 static void a6xx_recover(struct msm_gpu *gpu) 571 { 572 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 573 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 574 int i; 575 576 adreno_dump_info(gpu); 577 578 for (i = 0; i < 8; i++) 579 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 580 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 581 582 if (hang_debug) 583 a6xx_dump(gpu); 584 585 /* 586 * Turn off keep alive that might have been enabled by the hang 587 * interrupt 588 */ 589 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 590 591 gpu->funcs->pm_suspend(gpu); 592 gpu->funcs->pm_resume(gpu); 593 594 msm_gpu_hw_init(gpu); 595 } 596 597 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags) 598 { 599 struct msm_gpu *gpu = arg; 600 601 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n", 602 iova, flags, 603 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 604 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 605 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 606 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 607 608 return -EFAULT; 609 } 610 611 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 612 { 613 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 614 615 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 616 u32 val; 617 618 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 619 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 620 dev_err_ratelimited(&gpu->pdev->dev, 621 "CP | opcode error | possible opcode=0x%8.8X\n", 622 val); 623 } 624 625 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 626 dev_err_ratelimited(&gpu->pdev->dev, 627 "CP ucode error interrupt\n"); 628 629 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 630 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 631 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 632 633 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 634 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 635 636 dev_err_ratelimited(&gpu->pdev->dev, 637 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 638 val & (1 << 20) ? "READ" : "WRITE", 639 (val & 0x3ffff), val); 640 } 641 642 if (status & A6XX_CP_INT_CP_AHB_ERROR) 643 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 644 645 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 646 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 647 648 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 649 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 650 651 } 652 653 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 654 { 655 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 656 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 657 struct drm_device *dev = gpu->dev; 658 struct msm_drm_private *priv = dev->dev_private; 659 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 660 661 /* 662 * Force the GPU to stay on until after we finish 663 * collecting information 664 */ 665 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 666 667 DRM_DEV_ERROR(&gpu->pdev->dev, 668 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 669 ring ? ring->id : -1, ring ? ring->seqno : 0, 670 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 671 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 672 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 673 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 674 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 675 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 676 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 677 678 /* Turn off the hangcheck timer to keep it from bothering us */ 679 del_timer(&gpu->hangcheck_timer); 680 681 queue_work(priv->wq, &gpu->recover_work); 682 } 683 684 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 685 { 686 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 687 688 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 689 690 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 691 a6xx_fault_detect_irq(gpu); 692 693 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 694 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 695 696 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 697 a6xx_cp_hw_err_irq(gpu); 698 699 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 700 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 701 702 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 703 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 704 705 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 706 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 707 708 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 709 msm_gpu_retire(gpu); 710 711 return IRQ_HANDLED; 712 } 713 714 static const u32 a6xx_register_offsets[REG_ADRENO_REGISTER_MAX] = { 715 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A6XX_CP_RB_BASE), 716 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A6XX_CP_RB_BASE_HI), 717 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR, 718 REG_A6XX_CP_RB_RPTR_ADDR_LO), 719 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI, 720 REG_A6XX_CP_RB_RPTR_ADDR_HI), 721 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A6XX_CP_RB_RPTR), 722 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A6XX_CP_RB_WPTR), 723 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A6XX_CP_RB_CNTL), 724 }; 725 726 static int a6xx_pm_resume(struct msm_gpu *gpu) 727 { 728 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 729 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 730 int ret; 731 732 gpu->needs_hw_init = true; 733 734 ret = a6xx_gmu_resume(a6xx_gpu); 735 if (ret) 736 return ret; 737 738 msm_gpu_resume_devfreq(gpu); 739 740 return 0; 741 } 742 743 static int a6xx_pm_suspend(struct msm_gpu *gpu) 744 { 745 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 746 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 747 748 devfreq_suspend_device(gpu->devfreq.devfreq); 749 750 return a6xx_gmu_stop(a6xx_gpu); 751 } 752 753 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 754 { 755 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 756 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 757 758 /* Force the GPU power on so we can read this register */ 759 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 760 761 *value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 762 REG_A6XX_RBBM_PERFCTR_CP_0_HI); 763 764 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 765 return 0; 766 } 767 768 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 769 { 770 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 771 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 772 773 return a6xx_gpu->cur_ring; 774 } 775 776 static void a6xx_destroy(struct msm_gpu *gpu) 777 { 778 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 779 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 780 781 if (a6xx_gpu->sqe_bo) { 782 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 783 drm_gem_object_put_unlocked(a6xx_gpu->sqe_bo); 784 } 785 786 a6xx_gmu_remove(a6xx_gpu); 787 788 adreno_gpu_cleanup(adreno_gpu); 789 kfree(a6xx_gpu); 790 } 791 792 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 793 { 794 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 795 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 796 u64 busy_cycles, busy_time; 797 798 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 799 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 800 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 801 802 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 803 do_div(busy_time, 192); 804 805 gpu->devfreq.busy_cycles = busy_cycles; 806 807 if (WARN_ON(busy_time > ~0LU)) 808 return ~0LU; 809 810 return (unsigned long)busy_time; 811 } 812 813 static const struct adreno_gpu_funcs funcs = { 814 .base = { 815 .get_param = adreno_get_param, 816 .hw_init = a6xx_hw_init, 817 .pm_suspend = a6xx_pm_suspend, 818 .pm_resume = a6xx_pm_resume, 819 .recover = a6xx_recover, 820 .submit = a6xx_submit, 821 .flush = a6xx_flush, 822 .active_ring = a6xx_active_ring, 823 .irq = a6xx_irq, 824 .destroy = a6xx_destroy, 825 #if defined(CONFIG_DRM_MSM_GPU_STATE) 826 .show = a6xx_show, 827 #endif 828 .gpu_busy = a6xx_gpu_busy, 829 .gpu_get_freq = a6xx_gmu_get_freq, 830 .gpu_set_freq = a6xx_gmu_set_freq, 831 #if defined(CONFIG_DRM_MSM_GPU_STATE) 832 .gpu_state_get = a6xx_gpu_state_get, 833 .gpu_state_put = a6xx_gpu_state_put, 834 #endif 835 }, 836 .get_timestamp = a6xx_get_timestamp, 837 }; 838 839 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 840 { 841 struct msm_drm_private *priv = dev->dev_private; 842 struct platform_device *pdev = priv->gpu_pdev; 843 struct device_node *node; 844 struct a6xx_gpu *a6xx_gpu; 845 struct adreno_gpu *adreno_gpu; 846 struct msm_gpu *gpu; 847 int ret; 848 849 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 850 if (!a6xx_gpu) 851 return ERR_PTR(-ENOMEM); 852 853 adreno_gpu = &a6xx_gpu->base; 854 gpu = &adreno_gpu->base; 855 856 adreno_gpu->registers = NULL; 857 adreno_gpu->reg_offsets = a6xx_register_offsets; 858 859 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 860 if (ret) { 861 a6xx_destroy(&(a6xx_gpu->base.base)); 862 return ERR_PTR(ret); 863 } 864 865 /* Check if there is a GMU phandle and set it up */ 866 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 867 868 /* FIXME: How do we gracefully handle this? */ 869 BUG_ON(!node); 870 871 ret = a6xx_gmu_init(a6xx_gpu, node); 872 if (ret) { 873 a6xx_destroy(&(a6xx_gpu->base.base)); 874 return ERR_PTR(ret); 875 } 876 877 if (gpu->aspace) 878 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 879 a6xx_fault_handler); 880 881 return gpu; 882 } 883