xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision aa74c44b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	phys_addr_t ttbr;
106 	u32 asid;
107 	u64 memptr = rbmemptr(ring, ttbr0);
108 
109 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
110 		return;
111 
112 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
113 		return;
114 
115 	/* Execute the table update */
116 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
117 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
118 
119 	OUT_RING(ring,
120 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
121 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
122 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
123 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
124 
125 	/*
126 	 * Write the new TTBR0 to the memstore. This is good for debugging.
127 	 */
128 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
129 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
130 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
131 	OUT_RING(ring, lower_32_bits(ttbr));
132 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
133 
134 	/*
135 	 * And finally, trigger a uche flush to be sure there isn't anything
136 	 * lingering in that part of the GPU
137 	 */
138 
139 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
140 	OUT_RING(ring, 0x31);
141 }
142 
143 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
144 {
145 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
146 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
147 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
148 	struct msm_ringbuffer *ring = submit->ring;
149 	unsigned int i, ibs = 0;
150 
151 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
152 
153 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
154 		rbmemptr_stats(ring, index, cpcycles_start));
155 
156 	/*
157 	 * For PM4 the GMU register offsets are calculated from the base of the
158 	 * GPU registers so we need to add 0x1a800 to the register value on A630
159 	 * to get the right value from PM4.
160 	 */
161 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
162 		rbmemptr_stats(ring, index, alwayson_start));
163 
164 	/* Invalidate CCU depth and color */
165 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
166 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
167 
168 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
169 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
170 
171 	/* Submit the commands */
172 	for (i = 0; i < submit->nr_cmds; i++) {
173 		switch (submit->cmd[i].type) {
174 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
175 			break;
176 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
177 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
178 				break;
179 			fallthrough;
180 		case MSM_SUBMIT_CMD_BUF:
181 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
182 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
183 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
184 			OUT_RING(ring, submit->cmd[i].size);
185 			ibs++;
186 			break;
187 		}
188 
189 		/*
190 		 * Periodically update shadow-wptr if needed, so that we
191 		 * can see partial progress of submits with large # of
192 		 * cmds.. otherwise we could needlessly stall waiting for
193 		 * ringbuffer state, simply due to looking at a shadow
194 		 * rptr value that has not been updated
195 		 */
196 		if ((ibs % 32) == 0)
197 			update_shadow_rptr(gpu, ring);
198 	}
199 
200 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
201 		rbmemptr_stats(ring, index, cpcycles_end));
202 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
203 		rbmemptr_stats(ring, index, alwayson_end));
204 
205 	/* Write the fence to the scratch register */
206 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
207 	OUT_RING(ring, submit->seqno);
208 
209 	/*
210 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
211 	 * timestamp is written to the memory and then triggers the interrupt
212 	 */
213 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
214 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
215 		CP_EVENT_WRITE_0_IRQ);
216 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
217 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
218 	OUT_RING(ring, submit->seqno);
219 
220 	trace_msm_gpu_submit_flush(submit,
221 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
222 			REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
223 
224 	a6xx_flush(gpu, ring);
225 }
226 
227 const struct adreno_reglist a630_hwcg[] = {
228 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
229 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
230 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
231 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
232 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
233 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
234 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
235 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
236 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
237 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
238 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
239 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
240 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
241 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
242 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
243 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
244 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
245 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
246 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
247 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
248 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
249 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
250 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
251 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
252 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
253 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
254 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
255 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
256 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
257 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
258 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
259 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
260 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
261 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
262 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
263 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
264 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
265 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
266 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
267 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
268 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
269 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
270 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
272 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
273 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
274 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
275 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
276 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
277 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
278 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
279 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
280 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
281 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
282 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
283 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
284 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
285 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
286 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
287 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
288 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
289 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
290 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
291 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
292 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
293 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
294 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
295 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
296 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
297 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
298 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
299 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
300 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
301 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
302 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
303 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
304 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
305 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
306 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
307 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
308 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
309 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
310 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
311 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
312 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
313 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
314 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
315 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
316 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
317 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
318 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
319 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
320 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
321 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
322 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
323 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
324 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
325 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
326 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
327 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
328 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
329 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
330 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
331 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
332 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
333 	{},
334 };
335 
336 const struct adreno_reglist a640_hwcg[] = {
337 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
338 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
339 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
340 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
344 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
345 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
346 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
347 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
348 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
349 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
350 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
351 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
352 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
353 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
354 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
355 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
356 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
357 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
358 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
359 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
360 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
361 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
362 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
363 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
364 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
365 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
366 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
367 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
368 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
369 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
370 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
371 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
372 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
373 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
374 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
375 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
376 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
377 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
378 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
379 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
380 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
381 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
382 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
383 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
384 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
385 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
386 	{},
387 };
388 
389 const struct adreno_reglist a650_hwcg[] = {
390 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
391 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
392 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
393 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
394 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
395 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
397 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
398 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
399 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
400 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
401 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
402 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
403 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
404 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
405 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
406 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
407 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
408 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
409 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
410 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
411 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
412 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
413 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
414 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
415 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
416 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
417 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
418 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
419 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
421 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
423 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
424 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
425 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
426 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
427 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
428 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
429 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
430 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
431 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
432 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
433 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
434 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
435 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
436 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
437 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
438 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
439 	{},
440 };
441 
442 const struct adreno_reglist a660_hwcg[] = {
443 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
444 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
445 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
446 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
447 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
448 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
449 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
450 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
451 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
452 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
453 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
454 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
455 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
456 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
457 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
458 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
459 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
460 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
461 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
462 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
463 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
464 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
465 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
466 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
467 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
468 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
469 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
470 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
471 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
472 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
473 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
474 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
475 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
476 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
477 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
478 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
479 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
480 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
481 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
482 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
483 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
484 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
485 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
486 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
487 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
488 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
489 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
490 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
491 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
492 	{},
493 };
494 
495 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
496 {
497 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
498 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
499 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
500 	const struct adreno_reglist *reg;
501 	unsigned int i;
502 	u32 val, clock_cntl_on;
503 
504 	if (!adreno_gpu->info->hwcg)
505 		return;
506 
507 	if (adreno_is_a630(adreno_gpu))
508 		clock_cntl_on = 0x8aa8aa02;
509 	else
510 		clock_cntl_on = 0x8aa8aa82;
511 
512 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
513 
514 	/* Don't re-program the registers if they are already correct */
515 	if ((!state && !val) || (state && (val == clock_cntl_on)))
516 		return;
517 
518 	/* Disable SP clock before programming HWCG registers */
519 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
520 
521 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
522 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
523 
524 	/* Enable SP clock */
525 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
526 
527 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
528 }
529 
530 /* For a615, a616, a618, A619, a630, a640 and a680 */
531 static const u32 a6xx_protect[] = {
532 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
533 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
534 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
535 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
536 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
537 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
538 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
539 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
540 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
541 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
542 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
543 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
544 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
545 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
546 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
547 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
548 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
549 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
550 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
551 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
552 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
553 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
554 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
555 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
556 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
557 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
558 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
559 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
560 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
561 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
562 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
563 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
564 };
565 
566 /* These are for a620 and a650 */
567 static const u32 a650_protect[] = {
568 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
569 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
570 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
571 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
572 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
573 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
574 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
575 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
576 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
577 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
578 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
579 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
580 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
581 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
582 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
583 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
584 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
585 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
586 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
587 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
588 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
589 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
590 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
591 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
592 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
593 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
594 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
595 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
596 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
597 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
598 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
599 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
600 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
601 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
602 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
603 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
604 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
605 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
606 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
607 };
608 
609 /* These are for a635 and a660 */
610 static const u32 a660_protect[] = {
611 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
612 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
613 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
614 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
615 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
616 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
617 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
618 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
619 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
620 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
621 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
622 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
623 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
624 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
625 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
626 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
627 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
628 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
629 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
630 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
631 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
632 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
633 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
634 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
635 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
636 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
637 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
638 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
639 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
640 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
641 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
642 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
643 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
644 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
645 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
646 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
647 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
648 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
649 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
650 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
651 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
652 };
653 
654 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
655 {
656 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
657 	const u32 *regs = a6xx_protect;
658 	unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
659 
660 	BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
661 	BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
662 
663 	if (adreno_is_a650(adreno_gpu)) {
664 		regs = a650_protect;
665 		count = ARRAY_SIZE(a650_protect);
666 		count_max = 48;
667 	} else if (adreno_is_a660_family(adreno_gpu)) {
668 		regs = a660_protect;
669 		count = ARRAY_SIZE(a660_protect);
670 		count_max = 48;
671 	}
672 
673 	/*
674 	 * Enable access protection to privileged registers, fault on an access
675 	 * protect violation and select the last span to protect from the start
676 	 * address all the way to the end of the register address space
677 	 */
678 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
679 
680 	for (i = 0; i < count - 1; i++)
681 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
682 	/* last CP_PROTECT to have "infinite" length on the last entry */
683 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
684 }
685 
686 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
687 {
688 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
689 	u32 lower_bit = 2;
690 	u32 amsbc = 0;
691 	u32 rgb565_predicator = 0;
692 	u32 uavflagprd_inv = 0;
693 
694 	/* a618 is using the hw default values */
695 	if (adreno_is_a618(adreno_gpu))
696 		return;
697 
698 	if (adreno_is_a640_family(adreno_gpu))
699 		amsbc = 1;
700 
701 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
702 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
703 		lower_bit = 3;
704 		amsbc = 1;
705 		rgb565_predicator = 1;
706 		uavflagprd_inv = 2;
707 	}
708 
709 	if (adreno_is_7c3(adreno_gpu)) {
710 		lower_bit = 1;
711 		amsbc = 1;
712 		rgb565_predicator = 1;
713 		uavflagprd_inv = 2;
714 	}
715 
716 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
717 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
718 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
719 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
720 		uavflagprd_inv << 4 | lower_bit << 1);
721 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
722 }
723 
724 static int a6xx_cp_init(struct msm_gpu *gpu)
725 {
726 	struct msm_ringbuffer *ring = gpu->rb[0];
727 
728 	OUT_PKT7(ring, CP_ME_INIT, 8);
729 
730 	OUT_RING(ring, 0x0000002f);
731 
732 	/* Enable multiple hardware contexts */
733 	OUT_RING(ring, 0x00000003);
734 
735 	/* Enable error detection */
736 	OUT_RING(ring, 0x20000000);
737 
738 	/* Don't enable header dump */
739 	OUT_RING(ring, 0x00000000);
740 	OUT_RING(ring, 0x00000000);
741 
742 	/* No workarounds enabled */
743 	OUT_RING(ring, 0x00000000);
744 
745 	/* Pad rest of the cmds with 0's */
746 	OUT_RING(ring, 0x00000000);
747 	OUT_RING(ring, 0x00000000);
748 
749 	a6xx_flush(gpu, ring);
750 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
751 }
752 
753 /*
754  * Check that the microcode version is new enough to include several key
755  * security fixes. Return true if the ucode is safe.
756  */
757 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
758 		struct drm_gem_object *obj)
759 {
760 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
761 	struct msm_gpu *gpu = &adreno_gpu->base;
762 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
763 	u32 *buf = msm_gem_get_vaddr(obj);
764 	bool ret = false;
765 
766 	if (IS_ERR(buf))
767 		return false;
768 
769 	/*
770 	 * Targets up to a640 (a618, a630 and a640) need to check for a
771 	 * microcode version that is patched to support the whereami opcode or
772 	 * one that is new enough to include it by default.
773 	 *
774 	 * a650 tier targets don't need whereami but still need to be
775 	 * equal to or newer than 0.95 for other security fixes
776 	 *
777 	 * a660 targets have all the critical security fixes from the start
778 	 */
779 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
780 		/*
781 		 * If the lowest nibble is 0xa that is an indication that this
782 		 * microcode has been patched. The actual version is in dword
783 		 * [3] but we only care about the patchlevel which is the lowest
784 		 * nibble of dword [3]
785 		 *
786 		 * Otherwise check that the firmware is greater than or equal
787 		 * to 1.90 which was the first version that had this fix built
788 		 * in
789 		 */
790 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
791 			(buf[0] & 0xfff) >= 0x190) {
792 			a6xx_gpu->has_whereami = true;
793 			ret = true;
794 			goto out;
795 		}
796 
797 		DRM_DEV_ERROR(&gpu->pdev->dev,
798 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
799 			buf[0] & 0xfff, 0x190);
800 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
801 		if ((buf[0] & 0xfff) >= 0x095) {
802 			ret = true;
803 			goto out;
804 		}
805 
806 		DRM_DEV_ERROR(&gpu->pdev->dev,
807 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
808 			buf[0] & 0xfff, 0x095);
809 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
810 		ret = true;
811 	} else {
812 		DRM_DEV_ERROR(&gpu->pdev->dev,
813 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
814 	}
815 out:
816 	msm_gem_put_vaddr(obj);
817 	return ret;
818 }
819 
820 static int a6xx_ucode_init(struct msm_gpu *gpu)
821 {
822 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
823 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
824 
825 	if (!a6xx_gpu->sqe_bo) {
826 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
827 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
828 
829 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
830 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
831 
832 			a6xx_gpu->sqe_bo = NULL;
833 			DRM_DEV_ERROR(&gpu->pdev->dev,
834 				"Could not allocate SQE ucode: %d\n", ret);
835 
836 			return ret;
837 		}
838 
839 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
840 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
841 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
842 			drm_gem_object_put(a6xx_gpu->sqe_bo);
843 
844 			a6xx_gpu->sqe_bo = NULL;
845 			return -EPERM;
846 		}
847 	}
848 
849 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
850 		REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
851 
852 	return 0;
853 }
854 
855 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
856 {
857 	static bool loaded;
858 	int ret;
859 
860 	if (loaded)
861 		return 0;
862 
863 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
864 
865 	loaded = !ret;
866 	return ret;
867 }
868 
869 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
870 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
871 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
872 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
873 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
874 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
875 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
876 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
877 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
878 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
879 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
880 
881 static int hw_init(struct msm_gpu *gpu)
882 {
883 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
884 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
885 	int ret;
886 
887 	/* Make sure the GMU keeps the GPU on while we set it up */
888 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
889 
890 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
891 
892 	/*
893 	 * Disable the trusted memory range - we don't actually supported secure
894 	 * memory rendering at this point in time and we don't want to block off
895 	 * part of the virtual memory space.
896 	 */
897 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
898 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
899 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
900 
901 	/* Turn on 64 bit addressing for all blocks */
902 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
903 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
904 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
905 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
906 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
907 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
908 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
909 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
910 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
911 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
912 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
913 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
914 
915 	/* enable hardware clockgating */
916 	a6xx_set_hwcg(gpu, true);
917 
918 	/* VBIF/GBIF start*/
919 	if (adreno_is_a640_family(adreno_gpu) ||
920 	    adreno_is_a650_family(adreno_gpu)) {
921 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
922 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
923 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
924 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
925 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
926 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
927 	} else {
928 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
929 	}
930 
931 	if (adreno_is_a630(adreno_gpu))
932 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
933 
934 	/* Make all blocks contribute to the GPU BUSY perf counter */
935 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
936 
937 	/* Disable L2 bypass in the UCHE */
938 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
939 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
940 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
941 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
942 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
943 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
944 
945 	if (!adreno_is_a650_family(adreno_gpu)) {
946 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
947 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
948 			REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
949 
950 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
951 			REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
952 			0x00100000 + adreno_gpu->gmem - 1);
953 	}
954 
955 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
956 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
957 
958 	if (adreno_is_a640_family(adreno_gpu) ||
959 	    adreno_is_a650_family(adreno_gpu))
960 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
961 	else
962 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
963 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
964 
965 	if (adreno_is_a660_family(adreno_gpu))
966 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
967 
968 	/* Setting the mem pool size */
969 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
970 
971 	/* Setting the primFifo thresholds default values,
972 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
973 	*/
974 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
975 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
976 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
977 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
978 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
979 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
980 	else
981 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
982 
983 	/* Set the AHB default slave response to "ERROR" */
984 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
985 
986 	/* Turn on performance counters */
987 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
988 
989 	/* Select CP0 to always count cycles */
990 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
991 
992 	a6xx_set_ubwc_config(gpu);
993 
994 	/* Enable fault detection */
995 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
996 		(1 << 30) | 0x1fffff);
997 
998 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
999 
1000 	/* Set weights for bicubic filtering */
1001 	if (adreno_is_a650_family(adreno_gpu)) {
1002 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1003 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1004 			0x3fe05ff4);
1005 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1006 			0x3fa0ebee);
1007 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1008 			0x3f5193ed);
1009 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1010 			0x3f0243f0);
1011 	}
1012 
1013 	/* Protect registers from the CP */
1014 	a6xx_set_cp_protect(gpu);
1015 
1016 	if (adreno_is_a660_family(adreno_gpu)) {
1017 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1018 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1019 	}
1020 
1021 	/* Set dualQ + disable afull for A660 GPU */
1022 	if (adreno_is_a660(adreno_gpu))
1023 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1024 
1025 	/* Enable expanded apriv for targets that support it */
1026 	if (gpu->hw_apriv) {
1027 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1028 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1029 	}
1030 
1031 	/* Enable interrupts */
1032 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1033 
1034 	ret = adreno_hw_init(gpu);
1035 	if (ret)
1036 		goto out;
1037 
1038 	ret = a6xx_ucode_init(gpu);
1039 	if (ret)
1040 		goto out;
1041 
1042 	/* Set the ringbuffer address */
1043 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1044 		gpu->rb[0]->iova);
1045 
1046 	/* Targets that support extended APRIV can use the RPTR shadow from
1047 	 * hardware but all the other ones need to disable the feature. Targets
1048 	 * that support the WHERE_AM_I opcode can use that instead
1049 	 */
1050 	if (adreno_gpu->base.hw_apriv)
1051 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1052 	else
1053 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1054 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1055 
1056 	/*
1057 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1058 	 * privileged buffer to store the RPTR shadow
1059 	 */
1060 
1061 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1062 		if (!a6xx_gpu->shadow_bo) {
1063 			a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1064 				sizeof(u32) * gpu->nr_rings,
1065 				MSM_BO_WC | MSM_BO_MAP_PRIV,
1066 				gpu->aspace, &a6xx_gpu->shadow_bo,
1067 				&a6xx_gpu->shadow_iova);
1068 
1069 			if (IS_ERR(a6xx_gpu->shadow))
1070 				return PTR_ERR(a6xx_gpu->shadow);
1071 
1072 			msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1073 		}
1074 
1075 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1076 			REG_A6XX_CP_RB_RPTR_ADDR_HI,
1077 			shadowptr(a6xx_gpu, gpu->rb[0]));
1078 	}
1079 
1080 	/* Always come up on rb 0 */
1081 	a6xx_gpu->cur_ring = gpu->rb[0];
1082 
1083 	gpu->cur_ctx_seqno = 0;
1084 
1085 	/* Enable the SQE_to start the CP engine */
1086 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1087 
1088 	ret = a6xx_cp_init(gpu);
1089 	if (ret)
1090 		goto out;
1091 
1092 	/*
1093 	 * Try to load a zap shader into the secure world. If successful
1094 	 * we can use the CP to switch out of secure mode. If not then we
1095 	 * have no resource but to try to switch ourselves out manually. If we
1096 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1097 	 * be blocked and a permissions violation will soon follow.
1098 	 */
1099 	ret = a6xx_zap_shader_init(gpu);
1100 	if (!ret) {
1101 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1102 		OUT_RING(gpu->rb[0], 0x00000000);
1103 
1104 		a6xx_flush(gpu, gpu->rb[0]);
1105 		if (!a6xx_idle(gpu, gpu->rb[0]))
1106 			return -EINVAL;
1107 	} else if (ret == -ENODEV) {
1108 		/*
1109 		 * This device does not use zap shader (but print a warning
1110 		 * just in case someone got their dt wrong.. hopefully they
1111 		 * have a debug UART to realize the error of their ways...
1112 		 * if you mess this up you are about to crash horribly)
1113 		 */
1114 		dev_warn_once(gpu->dev->dev,
1115 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1116 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1117 		ret = 0;
1118 	} else {
1119 		return ret;
1120 	}
1121 
1122 out:
1123 	/*
1124 	 * Tell the GMU that we are done touching the GPU and it can start power
1125 	 * management
1126 	 */
1127 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1128 
1129 	if (a6xx_gpu->gmu.legacy) {
1130 		/* Take the GMU out of its special boot mode */
1131 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1132 	}
1133 
1134 	return ret;
1135 }
1136 
1137 static int a6xx_hw_init(struct msm_gpu *gpu)
1138 {
1139 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1140 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1141 	int ret;
1142 
1143 	mutex_lock(&a6xx_gpu->gmu.lock);
1144 	ret = hw_init(gpu);
1145 	mutex_unlock(&a6xx_gpu->gmu.lock);
1146 
1147 	return ret;
1148 }
1149 
1150 static void a6xx_dump(struct msm_gpu *gpu)
1151 {
1152 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1153 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1154 	adreno_dump(gpu);
1155 }
1156 
1157 #define VBIF_RESET_ACK_TIMEOUT	100
1158 #define VBIF_RESET_ACK_MASK	0x00f0
1159 
1160 static void a6xx_recover(struct msm_gpu *gpu)
1161 {
1162 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1163 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1164 	int i;
1165 
1166 	adreno_dump_info(gpu);
1167 
1168 	for (i = 0; i < 8; i++)
1169 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1170 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1171 
1172 	if (hang_debug)
1173 		a6xx_dump(gpu);
1174 
1175 	/*
1176 	 * Turn off keep alive that might have been enabled by the hang
1177 	 * interrupt
1178 	 */
1179 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1180 
1181 	gpu->funcs->pm_suspend(gpu);
1182 	gpu->funcs->pm_resume(gpu);
1183 
1184 	msm_gpu_hw_init(gpu);
1185 }
1186 
1187 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1188 {
1189 	static const char *uche_clients[7] = {
1190 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1191 	};
1192 	u32 val;
1193 
1194 	if (mid < 1 || mid > 3)
1195 		return "UNKNOWN";
1196 
1197 	/*
1198 	 * The source of the data depends on the mid ID read from FSYNR1.
1199 	 * and the client ID read from the UCHE block
1200 	 */
1201 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1202 
1203 	/* mid = 3 is most precise and refers to only one block per client */
1204 	if (mid == 3)
1205 		return uche_clients[val & 7];
1206 
1207 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1208 	if (mid == 2)
1209 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1210 
1211 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1212 	return "UCHE";
1213 }
1214 
1215 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1216 {
1217 	if (id == 0)
1218 		return "CP";
1219 	else if (id == 4)
1220 		return "CCU";
1221 	else if (id == 6)
1222 		return "CDP Prefetch";
1223 
1224 	return a6xx_uche_fault_block(gpu, id);
1225 }
1226 
1227 #define ARM_SMMU_FSR_TF                 BIT(1)
1228 #define ARM_SMMU_FSR_PF			BIT(3)
1229 #define ARM_SMMU_FSR_EF			BIT(4)
1230 
1231 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1232 {
1233 	struct msm_gpu *gpu = arg;
1234 	struct adreno_smmu_fault_info *info = data;
1235 	const char *type = "UNKNOWN";
1236 	const char *block;
1237 	bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1238 
1239 	/*
1240 	 * If we aren't going to be resuming later from fault_worker, then do
1241 	 * it now.
1242 	 */
1243 	if (!do_devcoredump) {
1244 		gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1245 	}
1246 
1247 	/*
1248 	 * Print a default message if we couldn't get the data from the
1249 	 * adreno-smmu-priv
1250 	 */
1251 	if (!info) {
1252 		pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1253 			iova, flags,
1254 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1255 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1256 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1257 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1258 
1259 		return 0;
1260 	}
1261 
1262 	if (info->fsr & ARM_SMMU_FSR_TF)
1263 		type = "TRANSLATION";
1264 	else if (info->fsr & ARM_SMMU_FSR_PF)
1265 		type = "PERMISSION";
1266 	else if (info->fsr & ARM_SMMU_FSR_EF)
1267 		type = "EXTERNAL";
1268 
1269 	block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1270 
1271 	pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1272 			info->ttbr0, iova,
1273 			flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1274 			type, block,
1275 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1276 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1277 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1278 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1279 
1280 	if (do_devcoredump) {
1281 		/* Turn off the hangcheck timer to keep it from bothering us */
1282 		del_timer(&gpu->hangcheck_timer);
1283 
1284 		gpu->fault_info.ttbr0 = info->ttbr0;
1285 		gpu->fault_info.iova  = iova;
1286 		gpu->fault_info.flags = flags;
1287 		gpu->fault_info.type  = type;
1288 		gpu->fault_info.block = block;
1289 
1290 		kthread_queue_work(gpu->worker, &gpu->fault_work);
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1297 {
1298 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1299 
1300 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1301 		u32 val;
1302 
1303 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1304 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1305 		dev_err_ratelimited(&gpu->pdev->dev,
1306 			"CP | opcode error | possible opcode=0x%8.8X\n",
1307 			val);
1308 	}
1309 
1310 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1311 		dev_err_ratelimited(&gpu->pdev->dev,
1312 			"CP ucode error interrupt\n");
1313 
1314 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1315 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1316 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1317 
1318 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1319 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1320 
1321 		dev_err_ratelimited(&gpu->pdev->dev,
1322 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1323 			val & (1 << 20) ? "READ" : "WRITE",
1324 			(val & 0x3ffff), val);
1325 	}
1326 
1327 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1328 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1329 
1330 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1331 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1332 
1333 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1334 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1335 
1336 }
1337 
1338 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1339 {
1340 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1341 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1342 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1343 
1344 	/*
1345 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1346 	 * but the fault handler will trigger the devcore dump, and we want
1347 	 * to otherwise resume normally rather than killing the submit, so
1348 	 * just bail.
1349 	 */
1350 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1351 		return;
1352 
1353 	/*
1354 	 * Force the GPU to stay on until after we finish
1355 	 * collecting information
1356 	 */
1357 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1358 
1359 	DRM_DEV_ERROR(&gpu->pdev->dev,
1360 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1361 		ring ? ring->id : -1, ring ? ring->seqno : 0,
1362 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1363 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1364 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1365 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1366 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1367 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1368 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1369 
1370 	/* Turn off the hangcheck timer to keep it from bothering us */
1371 	del_timer(&gpu->hangcheck_timer);
1372 
1373 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1374 }
1375 
1376 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1377 {
1378 	struct msm_drm_private *priv = gpu->dev->dev_private;
1379 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1380 
1381 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1382 
1383 	if (priv->disable_err_irq)
1384 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1385 
1386 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1387 		a6xx_fault_detect_irq(gpu);
1388 
1389 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1390 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1391 
1392 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1393 		a6xx_cp_hw_err_irq(gpu);
1394 
1395 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1396 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1397 
1398 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1399 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1400 
1401 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1402 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1403 
1404 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1405 		msm_gpu_retire(gpu);
1406 
1407 	return IRQ_HANDLED;
1408 }
1409 
1410 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1411 {
1412 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1413 }
1414 
1415 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1416 {
1417 	return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1418 }
1419 
1420 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1421 {
1422 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1423 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1424 }
1425 
1426 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1427 {
1428 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1429 	struct msm_gpu *gpu = &adreno_gpu->base;
1430 	u32 cntl1_regval = 0;
1431 
1432 	if (IS_ERR(a6xx_gpu->llc_mmio))
1433 		return;
1434 
1435 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1436 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1437 
1438 		gpu_scid &= 0x1f;
1439 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1440 			       (gpu_scid << 15) | (gpu_scid << 20);
1441 
1442 		/* On A660, the SCID programming for UCHE traffic is done in
1443 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1444 		 */
1445 		if (adreno_is_a660_family(adreno_gpu))
1446 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1447 				(1 << 8), (gpu_scid << 10) | (1 << 8));
1448 	}
1449 
1450 	/*
1451 	 * For targets with a MMU500, activate the slice but don't program the
1452 	 * register.  The XBL will take care of that.
1453 	 */
1454 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1455 		if (!a6xx_gpu->have_mmu500) {
1456 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1457 
1458 			gpuhtw_scid &= 0x1f;
1459 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1460 		}
1461 	}
1462 
1463 	if (!cntl1_regval)
1464 		return;
1465 
1466 	/*
1467 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1468 	 * pagetables
1469 	 */
1470 	if (!a6xx_gpu->have_mmu500) {
1471 		a6xx_llc_write(a6xx_gpu,
1472 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1473 
1474 		/*
1475 		 * Program cacheability overrides to not allocate cache
1476 		 * lines on a write miss
1477 		 */
1478 		a6xx_llc_rmw(a6xx_gpu,
1479 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1480 		return;
1481 	}
1482 
1483 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1484 }
1485 
1486 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1487 {
1488 	llcc_slice_putd(a6xx_gpu->llc_slice);
1489 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1490 }
1491 
1492 static void a6xx_llc_slices_init(struct platform_device *pdev,
1493 		struct a6xx_gpu *a6xx_gpu)
1494 {
1495 	struct device_node *phandle;
1496 
1497 	/*
1498 	 * There is a different programming path for targets with an mmu500
1499 	 * attached, so detect if that is the case
1500 	 */
1501 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1502 	a6xx_gpu->have_mmu500 = (phandle &&
1503 		of_device_is_compatible(phandle, "arm,mmu-500"));
1504 	of_node_put(phandle);
1505 
1506 	if (a6xx_gpu->have_mmu500)
1507 		a6xx_gpu->llc_mmio = NULL;
1508 	else
1509 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1510 
1511 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1512 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1513 
1514 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1515 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1516 }
1517 
1518 static int a6xx_pm_resume(struct msm_gpu *gpu)
1519 {
1520 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1521 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1522 	int ret;
1523 
1524 	gpu->needs_hw_init = true;
1525 
1526 	trace_msm_gpu_resume(0);
1527 
1528 	mutex_lock(&a6xx_gpu->gmu.lock);
1529 	ret = a6xx_gmu_resume(a6xx_gpu);
1530 	mutex_unlock(&a6xx_gpu->gmu.lock);
1531 	if (ret)
1532 		return ret;
1533 
1534 	msm_devfreq_resume(gpu);
1535 
1536 	a6xx_llc_activate(a6xx_gpu);
1537 
1538 	return 0;
1539 }
1540 
1541 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1542 {
1543 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1544 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1545 	int i, ret;
1546 
1547 	trace_msm_gpu_suspend(0);
1548 
1549 	a6xx_llc_deactivate(a6xx_gpu);
1550 
1551 	msm_devfreq_suspend(gpu);
1552 
1553 	mutex_lock(&a6xx_gpu->gmu.lock);
1554 	ret = a6xx_gmu_stop(a6xx_gpu);
1555 	mutex_unlock(&a6xx_gpu->gmu.lock);
1556 	if (ret)
1557 		return ret;
1558 
1559 	if (a6xx_gpu->shadow_bo)
1560 		for (i = 0; i < gpu->nr_rings; i++)
1561 			a6xx_gpu->shadow[i] = 0;
1562 
1563 	return 0;
1564 }
1565 
1566 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1567 {
1568 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1569 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1570 
1571 	mutex_lock(&a6xx_gpu->gmu.lock);
1572 
1573 	/* Force the GPU power on so we can read this register */
1574 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1575 
1576 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1577 			    REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1578 
1579 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1580 
1581 	mutex_unlock(&a6xx_gpu->gmu.lock);
1582 
1583 	return 0;
1584 }
1585 
1586 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1587 {
1588 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1589 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1590 
1591 	return a6xx_gpu->cur_ring;
1592 }
1593 
1594 static void a6xx_destroy(struct msm_gpu *gpu)
1595 {
1596 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1597 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1598 
1599 	if (a6xx_gpu->sqe_bo) {
1600 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1601 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1602 	}
1603 
1604 	if (a6xx_gpu->shadow_bo) {
1605 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1606 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1607 	}
1608 
1609 	a6xx_llc_slices_destroy(a6xx_gpu);
1610 
1611 	a6xx_gmu_remove(a6xx_gpu);
1612 
1613 	adreno_gpu_cleanup(adreno_gpu);
1614 
1615 	kfree(a6xx_gpu);
1616 }
1617 
1618 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1619 {
1620 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1621 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1622 	u64 busy_cycles, busy_time;
1623 
1624 
1625 	/* Only read the gpu busy if the hardware is already active */
1626 	if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1627 		return 0;
1628 
1629 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1630 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1631 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1632 
1633 	busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1634 	do_div(busy_time, 192);
1635 
1636 	gpu->devfreq.busy_cycles = busy_cycles;
1637 
1638 	pm_runtime_put(a6xx_gpu->gmu.dev);
1639 
1640 	if (WARN_ON(busy_time > ~0LU))
1641 		return ~0LU;
1642 
1643 	return (unsigned long)busy_time;
1644 }
1645 
1646 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp)
1647 {
1648 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1649 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1650 
1651 	mutex_lock(&a6xx_gpu->gmu.lock);
1652 	a6xx_gmu_set_freq(gpu, opp);
1653 	mutex_unlock(&a6xx_gpu->gmu.lock);
1654 }
1655 
1656 static struct msm_gem_address_space *
1657 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1658 {
1659 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1660 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1661 	struct iommu_domain *iommu;
1662 	struct msm_mmu *mmu;
1663 	struct msm_gem_address_space *aspace;
1664 	u64 start, size;
1665 
1666 	iommu = iommu_domain_alloc(&platform_bus_type);
1667 	if (!iommu)
1668 		return NULL;
1669 
1670 	/*
1671 	 * This allows GPU to set the bus attributes required to use system
1672 	 * cache on behalf of the iommu page table walker.
1673 	 */
1674 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1675 		adreno_set_llc_attributes(iommu);
1676 
1677 	mmu = msm_iommu_new(&pdev->dev, iommu);
1678 	if (IS_ERR(mmu)) {
1679 		iommu_domain_free(iommu);
1680 		return ERR_CAST(mmu);
1681 	}
1682 
1683 	/*
1684 	 * Use the aperture start or SZ_16M, whichever is greater. This will
1685 	 * ensure that we align with the allocated pagetable range while still
1686 	 * allowing room in the lower 32 bits for GMEM and whatnot
1687 	 */
1688 	start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1689 	size = iommu->geometry.aperture_end - start + 1;
1690 
1691 	aspace = msm_gem_address_space_create(mmu, "gpu",
1692 		start & GENMASK_ULL(48, 0), size);
1693 
1694 	if (IS_ERR(aspace) && !IS_ERR(mmu))
1695 		mmu->funcs->destroy(mmu);
1696 
1697 	return aspace;
1698 }
1699 
1700 static struct msm_gem_address_space *
1701 a6xx_create_private_address_space(struct msm_gpu *gpu)
1702 {
1703 	struct msm_mmu *mmu;
1704 
1705 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1706 
1707 	if (IS_ERR(mmu))
1708 		return ERR_CAST(mmu);
1709 
1710 	return msm_gem_address_space_create(mmu,
1711 		"gpu", 0x100000000ULL, 0x1ffffffffULL);
1712 }
1713 
1714 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1715 {
1716 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1717 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1718 
1719 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1720 		return a6xx_gpu->shadow[ring->id];
1721 
1722 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1723 }
1724 
1725 static u32 a618_get_speed_bin(u32 fuse)
1726 {
1727 	if (fuse == 0)
1728 		return 0;
1729 	else if (fuse == 169)
1730 		return 1;
1731 	else if (fuse == 174)
1732 		return 2;
1733 
1734 	return UINT_MAX;
1735 }
1736 
1737 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1738 {
1739 	u32 val = UINT_MAX;
1740 
1741 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1742 		val = a618_get_speed_bin(fuse);
1743 
1744 	if (val == UINT_MAX) {
1745 		DRM_DEV_ERROR(dev,
1746 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1747 			fuse);
1748 		return UINT_MAX;
1749 	}
1750 
1751 	return (1 << val);
1752 }
1753 
1754 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1755 {
1756 	u32 supp_hw = UINT_MAX;
1757 	u32 speedbin;
1758 	int ret;
1759 
1760 	ret = nvmem_cell_read_variable_le_u32(dev, "speed_bin", &speedbin);
1761 	/*
1762 	 * -ENOENT means that the platform doesn't support speedbin which is
1763 	 * fine
1764 	 */
1765 	if (ret == -ENOENT) {
1766 		return 0;
1767 	} else if (ret) {
1768 		DRM_DEV_ERROR(dev,
1769 			      "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1770 			      ret);
1771 		goto done;
1772 	}
1773 
1774 	supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1775 
1776 done:
1777 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1778 	if (ret)
1779 		return ret;
1780 
1781 	return 0;
1782 }
1783 
1784 static const struct adreno_gpu_funcs funcs = {
1785 	.base = {
1786 		.get_param = adreno_get_param,
1787 		.hw_init = a6xx_hw_init,
1788 		.pm_suspend = a6xx_pm_suspend,
1789 		.pm_resume = a6xx_pm_resume,
1790 		.recover = a6xx_recover,
1791 		.submit = a6xx_submit,
1792 		.active_ring = a6xx_active_ring,
1793 		.irq = a6xx_irq,
1794 		.destroy = a6xx_destroy,
1795 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1796 		.show = a6xx_show,
1797 #endif
1798 		.gpu_busy = a6xx_gpu_busy,
1799 		.gpu_get_freq = a6xx_gmu_get_freq,
1800 		.gpu_set_freq = a6xx_gpu_set_freq,
1801 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1802 		.gpu_state_get = a6xx_gpu_state_get,
1803 		.gpu_state_put = a6xx_gpu_state_put,
1804 #endif
1805 		.create_address_space = a6xx_create_address_space,
1806 		.create_private_address_space = a6xx_create_private_address_space,
1807 		.get_rptr = a6xx_get_rptr,
1808 	},
1809 	.get_timestamp = a6xx_get_timestamp,
1810 };
1811 
1812 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1813 {
1814 	struct msm_drm_private *priv = dev->dev_private;
1815 	struct platform_device *pdev = priv->gpu_pdev;
1816 	struct adreno_platform_config *config = pdev->dev.platform_data;
1817 	const struct adreno_info *info;
1818 	struct device_node *node;
1819 	struct a6xx_gpu *a6xx_gpu;
1820 	struct adreno_gpu *adreno_gpu;
1821 	struct msm_gpu *gpu;
1822 	int ret;
1823 
1824 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1825 	if (!a6xx_gpu)
1826 		return ERR_PTR(-ENOMEM);
1827 
1828 	adreno_gpu = &a6xx_gpu->base;
1829 	gpu = &adreno_gpu->base;
1830 
1831 	adreno_gpu->registers = NULL;
1832 
1833 	/*
1834 	 * We need to know the platform type before calling into adreno_gpu_init
1835 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
1836 	 * and grab the revision number
1837 	 */
1838 	info = adreno_info(config->rev);
1839 
1840 	if (info && (info->revn == 650 || info->revn == 660 ||
1841 			adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1842 		adreno_gpu->base.hw_apriv = true;
1843 
1844 	/*
1845 	 * For now only clamp to idle freq for devices where this is known not
1846 	 * to cause power supply issues:
1847 	 */
1848 	if (info && (info->revn == 618))
1849 		gpu->clamp_to_idle = true;
1850 
1851 	a6xx_llc_slices_init(pdev, a6xx_gpu);
1852 
1853 	ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
1854 	if (ret) {
1855 		a6xx_destroy(&(a6xx_gpu->base.base));
1856 		return ERR_PTR(ret);
1857 	}
1858 
1859 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1860 	if (ret) {
1861 		a6xx_destroy(&(a6xx_gpu->base.base));
1862 		return ERR_PTR(ret);
1863 	}
1864 
1865 	/* Check if there is a GMU phandle and set it up */
1866 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1867 
1868 	/* FIXME: How do we gracefully handle this? */
1869 	BUG_ON(!node);
1870 
1871 	ret = a6xx_gmu_init(a6xx_gpu, node);
1872 	if (ret) {
1873 		a6xx_destroy(&(a6xx_gpu->base.base));
1874 		return ERR_PTR(ret);
1875 	}
1876 
1877 	if (gpu->aspace)
1878 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1879 				a6xx_fault_handler);
1880 
1881 	return gpu;
1882 }
1883