1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/nvmem-consumer.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 uint32_t wptr; 60 unsigned long flags; 61 62 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 63 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 64 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 65 66 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 67 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 68 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 69 } 70 71 spin_lock_irqsave(&ring->preempt_lock, flags); 72 73 /* Copy the shadow to the actual register */ 74 ring->cur = ring->next; 75 76 /* Make sure to wrap wptr if we need to */ 77 wptr = get_wptr(ring); 78 79 spin_unlock_irqrestore(&ring->preempt_lock, flags); 80 81 /* Make sure everything is posted before making a decision */ 82 mb(); 83 84 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 85 } 86 87 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 88 u64 iova) 89 { 90 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 91 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 92 CP_REG_TO_MEM_0_CNT(2) | 93 CP_REG_TO_MEM_0_64B); 94 OUT_RING(ring, lower_32_bits(iova)); 95 OUT_RING(ring, upper_32_bits(iova)); 96 } 97 98 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 99 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 100 { 101 phys_addr_t ttbr; 102 u32 asid; 103 u64 memptr = rbmemptr(ring, ttbr0); 104 105 if (ctx == a6xx_gpu->cur_ctx) 106 return; 107 108 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 109 return; 110 111 /* Execute the table update */ 112 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 113 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 114 115 OUT_RING(ring, 116 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 117 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 118 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 119 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 120 121 /* 122 * Write the new TTBR0 to the memstore. This is good for debugging. 123 */ 124 OUT_PKT7(ring, CP_MEM_WRITE, 4); 125 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 126 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 127 OUT_RING(ring, lower_32_bits(ttbr)); 128 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 129 130 /* 131 * And finally, trigger a uche flush to be sure there isn't anything 132 * lingering in that part of the GPU 133 */ 134 135 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 136 OUT_RING(ring, 0x31); 137 138 a6xx_gpu->cur_ctx = ctx; 139 } 140 141 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 142 { 143 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 144 struct msm_drm_private *priv = gpu->dev->dev_private; 145 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 146 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 147 struct msm_ringbuffer *ring = submit->ring; 148 unsigned int i; 149 150 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 151 152 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 153 rbmemptr_stats(ring, index, cpcycles_start)); 154 155 /* 156 * For PM4 the GMU register offsets are calculated from the base of the 157 * GPU registers so we need to add 0x1a800 to the register value on A630 158 * to get the right value from PM4. 159 */ 160 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 161 rbmemptr_stats(ring, index, alwayson_start)); 162 163 /* Invalidate CCU depth and color */ 164 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 165 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 166 167 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 168 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 169 170 /* Submit the commands */ 171 for (i = 0; i < submit->nr_cmds; i++) { 172 switch (submit->cmd[i].type) { 173 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 174 break; 175 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 176 if (priv->lastctx == submit->queue->ctx) 177 break; 178 fallthrough; 179 case MSM_SUBMIT_CMD_BUF: 180 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 181 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 182 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 183 OUT_RING(ring, submit->cmd[i].size); 184 break; 185 } 186 } 187 188 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 189 rbmemptr_stats(ring, index, cpcycles_end)); 190 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 191 rbmemptr_stats(ring, index, alwayson_end)); 192 193 /* Write the fence to the scratch register */ 194 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 195 OUT_RING(ring, submit->seqno); 196 197 /* 198 * Execute a CACHE_FLUSH_TS event. This will ensure that the 199 * timestamp is written to the memory and then triggers the interrupt 200 */ 201 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 202 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 203 CP_EVENT_WRITE_0_IRQ); 204 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 205 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 206 OUT_RING(ring, submit->seqno); 207 208 trace_msm_gpu_submit_flush(submit, 209 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 210 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI)); 211 212 a6xx_flush(gpu, ring); 213 } 214 215 const struct adreno_reglist a630_hwcg[] = { 216 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 217 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 218 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 219 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 220 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 221 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 222 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 223 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 224 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 225 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 226 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 227 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 228 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 229 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 230 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 231 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 232 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 233 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 234 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 235 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 236 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 237 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 238 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 239 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 240 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 241 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 242 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 243 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 244 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 245 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 246 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 247 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 248 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 249 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 250 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 251 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 252 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 253 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 254 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 255 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 256 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 257 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 258 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 259 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 260 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 261 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 262 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 263 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 264 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 265 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 266 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 267 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 268 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 269 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 270 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 271 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 272 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 273 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 274 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 275 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 276 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 277 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 278 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 279 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 280 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 281 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 282 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 283 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 284 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 285 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 286 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 287 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 288 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 289 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 290 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 291 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 293 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 297 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 301 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 302 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 303 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 304 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 305 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 306 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 307 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 308 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 309 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 310 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 311 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 312 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 313 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 314 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 315 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 316 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 317 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 318 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 319 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 320 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 321 {}, 322 }; 323 324 const struct adreno_reglist a640_hwcg[] = { 325 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 326 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 327 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 328 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 329 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 330 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 331 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 332 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 333 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 334 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 335 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 336 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 337 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 338 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 339 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 340 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 341 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 342 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 343 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 344 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 345 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 346 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 347 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 348 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 349 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 350 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 351 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 352 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 353 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 354 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 355 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 356 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 357 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 358 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 359 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 360 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 361 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 362 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 363 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 364 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 365 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 366 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 367 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 368 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 369 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 370 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 371 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 372 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 373 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 374 {}, 375 }; 376 377 const struct adreno_reglist a650_hwcg[] = { 378 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 379 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 380 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 381 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 382 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 383 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 384 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 385 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 386 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 387 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 388 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 389 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 390 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 391 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 392 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 393 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 394 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 395 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 396 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 397 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 398 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 399 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 400 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 401 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 403 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 404 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 405 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 406 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 407 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 408 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 409 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 410 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 411 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 412 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 413 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 414 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 415 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 416 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 417 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 418 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 419 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 421 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 422 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 423 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 424 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 426 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 427 {}, 428 }; 429 430 const struct adreno_reglist a660_hwcg[] = { 431 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 432 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 433 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 434 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 435 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 436 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 437 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 438 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 439 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 440 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 441 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 442 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 443 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 444 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 445 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 446 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 447 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 448 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 449 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 450 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 451 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 452 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 453 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 454 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 455 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 456 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 457 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 458 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 459 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 460 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 461 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 462 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 463 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 464 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 465 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 466 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 467 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 468 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 469 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 470 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 471 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 472 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 473 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 474 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 475 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 476 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 477 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 478 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 479 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 480 {}, 481 }; 482 483 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 484 { 485 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 486 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 487 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 488 const struct adreno_reglist *reg; 489 unsigned int i; 490 u32 val, clock_cntl_on; 491 492 if (!adreno_gpu->info->hwcg) 493 return; 494 495 if (adreno_is_a630(adreno_gpu)) 496 clock_cntl_on = 0x8aa8aa02; 497 else 498 clock_cntl_on = 0x8aa8aa82; 499 500 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 501 502 /* Don't re-program the registers if they are already correct */ 503 if ((!state && !val) || (state && (val == clock_cntl_on))) 504 return; 505 506 /* Disable SP clock before programming HWCG registers */ 507 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 508 509 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 510 gpu_write(gpu, reg->offset, state ? reg->value : 0); 511 512 /* Enable SP clock */ 513 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 514 515 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 516 } 517 518 /* For a615, a616, a618, A619, a630, a640 and a680 */ 519 static const u32 a6xx_protect[] = { 520 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 521 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 522 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 523 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 524 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 525 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 526 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 527 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 528 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 529 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 530 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 531 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 532 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 533 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 534 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 535 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 536 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 537 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 538 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 539 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 540 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 541 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 542 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 543 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 544 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 545 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 546 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 547 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 548 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 549 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 550 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 551 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 552 }; 553 554 /* These are for a620 and a650 */ 555 static const u32 a650_protect[] = { 556 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 557 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 558 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 559 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 560 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 561 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 562 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 563 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 564 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 565 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 566 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 567 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 568 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 569 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 570 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 571 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 572 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 573 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 574 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 575 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 576 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 577 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 578 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 579 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 580 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 581 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 582 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 583 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 584 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 585 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 586 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 587 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 588 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 589 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 590 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 591 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 592 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 593 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 594 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 595 }; 596 597 /* These are for a635 and a660 */ 598 static const u32 a660_protect[] = { 599 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 600 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 601 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 602 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 603 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 604 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 605 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 606 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 607 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 608 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 609 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 610 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 611 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 612 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 613 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 614 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 615 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 616 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 617 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 618 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 619 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 620 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 621 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 622 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 623 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 624 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 625 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 626 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 627 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 628 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 629 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 630 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 631 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 632 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 633 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 634 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 635 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 636 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 637 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 638 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 639 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 640 }; 641 642 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 643 { 644 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 645 const u32 *regs = a6xx_protect; 646 unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32; 647 648 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 649 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 650 651 if (adreno_is_a650(adreno_gpu)) { 652 regs = a650_protect; 653 count = ARRAY_SIZE(a650_protect); 654 count_max = 48; 655 } else if (adreno_is_a660(adreno_gpu)) { 656 regs = a660_protect; 657 count = ARRAY_SIZE(a660_protect); 658 count_max = 48; 659 } 660 661 /* 662 * Enable access protection to privileged registers, fault on an access 663 * protect violation and select the last span to protect from the start 664 * address all the way to the end of the register address space 665 */ 666 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3)); 667 668 for (i = 0; i < count - 1; i++) 669 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 670 /* last CP_PROTECT to have "infinite" length on the last entry */ 671 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 672 } 673 674 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 675 { 676 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 677 u32 lower_bit = 2; 678 u32 amsbc = 0; 679 u32 rgb565_predicator = 0; 680 u32 uavflagprd_inv = 0; 681 682 /* a618 is using the hw default values */ 683 if (adreno_is_a618(adreno_gpu)) 684 return; 685 686 if (adreno_is_a640(adreno_gpu)) 687 amsbc = 1; 688 689 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { 690 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 691 lower_bit = 3; 692 amsbc = 1; 693 rgb565_predicator = 1; 694 uavflagprd_inv = 2; 695 } 696 697 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 698 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1); 699 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1); 700 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 701 uavflagprd_inv << 4 | lower_bit << 1); 702 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21); 703 } 704 705 static int a6xx_cp_init(struct msm_gpu *gpu) 706 { 707 struct msm_ringbuffer *ring = gpu->rb[0]; 708 709 OUT_PKT7(ring, CP_ME_INIT, 8); 710 711 OUT_RING(ring, 0x0000002f); 712 713 /* Enable multiple hardware contexts */ 714 OUT_RING(ring, 0x00000003); 715 716 /* Enable error detection */ 717 OUT_RING(ring, 0x20000000); 718 719 /* Don't enable header dump */ 720 OUT_RING(ring, 0x00000000); 721 OUT_RING(ring, 0x00000000); 722 723 /* No workarounds enabled */ 724 OUT_RING(ring, 0x00000000); 725 726 /* Pad rest of the cmds with 0's */ 727 OUT_RING(ring, 0x00000000); 728 OUT_RING(ring, 0x00000000); 729 730 a6xx_flush(gpu, ring); 731 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 732 } 733 734 /* 735 * Check that the microcode version is new enough to include several key 736 * security fixes. Return true if the ucode is safe. 737 */ 738 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 739 struct drm_gem_object *obj) 740 { 741 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 742 struct msm_gpu *gpu = &adreno_gpu->base; 743 u32 *buf = msm_gem_get_vaddr(obj); 744 bool ret = false; 745 746 if (IS_ERR(buf)) 747 return false; 748 749 /* 750 * Targets up to a640 (a618, a630 and a640) need to check for a 751 * microcode version that is patched to support the whereami opcode or 752 * one that is new enough to include it by default. 753 * 754 * a650 tier targets don't need whereami but still need to be 755 * equal to or newer than 0.95 for other security fixes 756 * 757 * a660 targets have all the critical security fixes from the start 758 */ 759 if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) || 760 adreno_is_a640(adreno_gpu)) { 761 /* 762 * If the lowest nibble is 0xa that is an indication that this 763 * microcode has been patched. The actual version is in dword 764 * [3] but we only care about the patchlevel which is the lowest 765 * nibble of dword [3] 766 * 767 * Otherwise check that the firmware is greater than or equal 768 * to 1.90 which was the first version that had this fix built 769 * in 770 */ 771 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 772 (buf[0] & 0xfff) >= 0x190) { 773 a6xx_gpu->has_whereami = true; 774 ret = true; 775 goto out; 776 } 777 778 DRM_DEV_ERROR(&gpu->pdev->dev, 779 "a630 SQE ucode is too old. Have version %x need at least %x\n", 780 buf[0] & 0xfff, 0x190); 781 } else if (adreno_is_a650(adreno_gpu)) { 782 if ((buf[0] & 0xfff) >= 0x095) { 783 ret = true; 784 goto out; 785 } 786 787 DRM_DEV_ERROR(&gpu->pdev->dev, 788 "a650 SQE ucode is too old. Have version %x need at least %x\n", 789 buf[0] & 0xfff, 0x095); 790 } else if (adreno_is_a660(adreno_gpu)) { 791 ret = true; 792 } else { 793 DRM_DEV_ERROR(&gpu->pdev->dev, 794 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 795 } 796 out: 797 msm_gem_put_vaddr(obj); 798 return ret; 799 } 800 801 static int a6xx_ucode_init(struct msm_gpu *gpu) 802 { 803 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 804 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 805 806 if (!a6xx_gpu->sqe_bo) { 807 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 808 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 809 810 if (IS_ERR(a6xx_gpu->sqe_bo)) { 811 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 812 813 a6xx_gpu->sqe_bo = NULL; 814 DRM_DEV_ERROR(&gpu->pdev->dev, 815 "Could not allocate SQE ucode: %d\n", ret); 816 817 return ret; 818 } 819 820 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 821 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 822 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 823 drm_gem_object_put(a6xx_gpu->sqe_bo); 824 825 a6xx_gpu->sqe_bo = NULL; 826 return -EPERM; 827 } 828 } 829 830 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, 831 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova); 832 833 return 0; 834 } 835 836 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 837 { 838 static bool loaded; 839 int ret; 840 841 if (loaded) 842 return 0; 843 844 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 845 846 loaded = !ret; 847 return ret; 848 } 849 850 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 851 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 852 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 853 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 854 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 855 A6XX_RBBM_INT_0_MASK_CP_RB | \ 856 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 857 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 858 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 859 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 860 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 861 862 static int a6xx_hw_init(struct msm_gpu *gpu) 863 { 864 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 865 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 866 int ret; 867 868 /* Make sure the GMU keeps the GPU on while we set it up */ 869 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 870 871 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 872 873 /* 874 * Disable the trusted memory range - we don't actually supported secure 875 * memory rendering at this point in time and we don't want to block off 876 * part of the virtual memory space. 877 */ 878 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 879 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 880 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 881 882 /* Turn on 64 bit addressing for all blocks */ 883 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 884 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 885 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 886 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 887 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 888 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 889 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 890 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 891 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 892 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 893 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 894 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 895 896 /* enable hardware clockgating */ 897 a6xx_set_hwcg(gpu, true); 898 899 /* VBIF/GBIF start*/ 900 if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { 901 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 902 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 903 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 904 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 905 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 906 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 907 } else { 908 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 909 } 910 911 if (adreno_is_a630(adreno_gpu)) 912 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 913 914 /* Make all blocks contribute to the GPU BUSY perf counter */ 915 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 916 917 /* Disable L2 bypass in the UCHE */ 918 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 919 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 920 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 921 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 922 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 923 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 924 925 if (!adreno_is_a650_family(adreno_gpu)) { 926 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 927 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 928 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 929 930 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 931 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 932 0x00100000 + adreno_gpu->gmem - 1); 933 } 934 935 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 936 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 937 938 if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) 939 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 940 else 941 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 942 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 943 944 if (adreno_is_a660(adreno_gpu)) 945 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 946 947 /* Setting the mem pool size */ 948 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 949 950 /* Setting the primFifo thresholds default values, 951 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 952 */ 953 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 954 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 955 else if (adreno_is_a640(adreno_gpu)) 956 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 957 else 958 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 959 960 /* Set the AHB default slave response to "ERROR" */ 961 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 962 963 /* Turn on performance counters */ 964 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 965 966 /* Select CP0 to always count cycles */ 967 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 968 969 a6xx_set_ubwc_config(gpu); 970 971 /* Enable fault detection */ 972 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 973 (1 << 30) | 0x1fffff); 974 975 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 976 977 /* Set weights for bicubic filtering */ 978 if (adreno_is_a650_family(adreno_gpu)) { 979 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 980 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 981 0x3fe05ff4); 982 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 983 0x3fa0ebee); 984 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 985 0x3f5193ed); 986 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 987 0x3f0243f0); 988 } 989 990 /* Protect registers from the CP */ 991 a6xx_set_cp_protect(gpu); 992 993 if (adreno_is_a660(adreno_gpu)) { 994 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 995 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 996 /* Set dualQ + disable afull for A660 GPU but not for A635 */ 997 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 998 } 999 1000 /* Enable expanded apriv for targets that support it */ 1001 if (gpu->hw_apriv) { 1002 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1003 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 1004 } 1005 1006 /* Enable interrupts */ 1007 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 1008 1009 ret = adreno_hw_init(gpu); 1010 if (ret) 1011 goto out; 1012 1013 ret = a6xx_ucode_init(gpu); 1014 if (ret) 1015 goto out; 1016 1017 /* Set the ringbuffer address */ 1018 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI, 1019 gpu->rb[0]->iova); 1020 1021 /* Targets that support extended APRIV can use the RPTR shadow from 1022 * hardware but all the other ones need to disable the feature. Targets 1023 * that support the WHERE_AM_I opcode can use that instead 1024 */ 1025 if (adreno_gpu->base.hw_apriv) 1026 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1027 else 1028 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1029 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1030 1031 /* 1032 * Expanded APRIV and targets that support WHERE_AM_I both need a 1033 * privileged buffer to store the RPTR shadow 1034 */ 1035 1036 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) { 1037 if (!a6xx_gpu->shadow_bo) { 1038 a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev, 1039 sizeof(u32) * gpu->nr_rings, 1040 MSM_BO_WC | MSM_BO_MAP_PRIV, 1041 gpu->aspace, &a6xx_gpu->shadow_bo, 1042 &a6xx_gpu->shadow_iova); 1043 1044 if (IS_ERR(a6xx_gpu->shadow)) 1045 return PTR_ERR(a6xx_gpu->shadow); 1046 } 1047 1048 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO, 1049 REG_A6XX_CP_RB_RPTR_ADDR_HI, 1050 shadowptr(a6xx_gpu, gpu->rb[0])); 1051 } 1052 1053 /* Always come up on rb 0 */ 1054 a6xx_gpu->cur_ring = gpu->rb[0]; 1055 1056 a6xx_gpu->cur_ctx = NULL; 1057 1058 /* Enable the SQE_to start the CP engine */ 1059 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1060 1061 ret = a6xx_cp_init(gpu); 1062 if (ret) 1063 goto out; 1064 1065 /* 1066 * Try to load a zap shader into the secure world. If successful 1067 * we can use the CP to switch out of secure mode. If not then we 1068 * have no resource but to try to switch ourselves out manually. If we 1069 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1070 * be blocked and a permissions violation will soon follow. 1071 */ 1072 ret = a6xx_zap_shader_init(gpu); 1073 if (!ret) { 1074 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1075 OUT_RING(gpu->rb[0], 0x00000000); 1076 1077 a6xx_flush(gpu, gpu->rb[0]); 1078 if (!a6xx_idle(gpu, gpu->rb[0])) 1079 return -EINVAL; 1080 } else if (ret == -ENODEV) { 1081 /* 1082 * This device does not use zap shader (but print a warning 1083 * just in case someone got their dt wrong.. hopefully they 1084 * have a debug UART to realize the error of their ways... 1085 * if you mess this up you are about to crash horribly) 1086 */ 1087 dev_warn_once(gpu->dev->dev, 1088 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1089 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1090 ret = 0; 1091 } else { 1092 return ret; 1093 } 1094 1095 out: 1096 /* 1097 * Tell the GMU that we are done touching the GPU and it can start power 1098 * management 1099 */ 1100 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1101 1102 if (a6xx_gpu->gmu.legacy) { 1103 /* Take the GMU out of its special boot mode */ 1104 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1105 } 1106 1107 return ret; 1108 } 1109 1110 static void a6xx_dump(struct msm_gpu *gpu) 1111 { 1112 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1113 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1114 adreno_dump(gpu); 1115 } 1116 1117 #define VBIF_RESET_ACK_TIMEOUT 100 1118 #define VBIF_RESET_ACK_MASK 0x00f0 1119 1120 static void a6xx_recover(struct msm_gpu *gpu) 1121 { 1122 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1123 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1124 int i; 1125 1126 adreno_dump_info(gpu); 1127 1128 for (i = 0; i < 8; i++) 1129 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1130 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1131 1132 if (hang_debug) 1133 a6xx_dump(gpu); 1134 1135 /* 1136 * Turn off keep alive that might have been enabled by the hang 1137 * interrupt 1138 */ 1139 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 1140 1141 gpu->funcs->pm_suspend(gpu); 1142 gpu->funcs->pm_resume(gpu); 1143 1144 msm_gpu_hw_init(gpu); 1145 } 1146 1147 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 1148 { 1149 static const char *uche_clients[7] = { 1150 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 1151 }; 1152 u32 val; 1153 1154 if (mid < 1 || mid > 3) 1155 return "UNKNOWN"; 1156 1157 /* 1158 * The source of the data depends on the mid ID read from FSYNR1. 1159 * and the client ID read from the UCHE block 1160 */ 1161 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 1162 1163 /* mid = 3 is most precise and refers to only one block per client */ 1164 if (mid == 3) 1165 return uche_clients[val & 7]; 1166 1167 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 1168 if (mid == 2) 1169 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 1170 1171 /* For mid=1 just return "UCHE" as a catchall for everything else */ 1172 return "UCHE"; 1173 } 1174 1175 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 1176 { 1177 if (id == 0) 1178 return "CP"; 1179 else if (id == 4) 1180 return "CCU"; 1181 else if (id == 6) 1182 return "CDP Prefetch"; 1183 1184 return a6xx_uche_fault_block(gpu, id); 1185 } 1186 1187 #define ARM_SMMU_FSR_TF BIT(1) 1188 #define ARM_SMMU_FSR_PF BIT(3) 1189 #define ARM_SMMU_FSR_EF BIT(4) 1190 1191 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1192 { 1193 struct msm_gpu *gpu = arg; 1194 struct adreno_smmu_fault_info *info = data; 1195 const char *type = "UNKNOWN"; 1196 const char *block; 1197 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate); 1198 1199 /* 1200 * If we aren't going to be resuming later from fault_worker, then do 1201 * it now. 1202 */ 1203 if (!do_devcoredump) { 1204 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu); 1205 } 1206 1207 /* 1208 * Print a default message if we couldn't get the data from the 1209 * adreno-smmu-priv 1210 */ 1211 if (!info) { 1212 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n", 1213 iova, flags, 1214 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1215 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1216 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1217 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1218 1219 return 0; 1220 } 1221 1222 if (info->fsr & ARM_SMMU_FSR_TF) 1223 type = "TRANSLATION"; 1224 else if (info->fsr & ARM_SMMU_FSR_PF) 1225 type = "PERMISSION"; 1226 else if (info->fsr & ARM_SMMU_FSR_EF) 1227 type = "EXTERNAL"; 1228 1229 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 1230 1231 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n", 1232 info->ttbr0, iova, 1233 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ", 1234 type, block, 1235 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1236 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1237 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1238 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1239 1240 if (do_devcoredump) { 1241 /* Turn off the hangcheck timer to keep it from bothering us */ 1242 del_timer(&gpu->hangcheck_timer); 1243 1244 gpu->fault_info.ttbr0 = info->ttbr0; 1245 gpu->fault_info.iova = iova; 1246 gpu->fault_info.flags = flags; 1247 gpu->fault_info.type = type; 1248 gpu->fault_info.block = block; 1249 1250 kthread_queue_work(gpu->worker, &gpu->fault_work); 1251 } 1252 1253 return 0; 1254 } 1255 1256 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 1257 { 1258 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 1259 1260 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 1261 u32 val; 1262 1263 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 1264 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 1265 dev_err_ratelimited(&gpu->pdev->dev, 1266 "CP | opcode error | possible opcode=0x%8.8X\n", 1267 val); 1268 } 1269 1270 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 1271 dev_err_ratelimited(&gpu->pdev->dev, 1272 "CP ucode error interrupt\n"); 1273 1274 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 1275 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 1276 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 1277 1278 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1279 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1280 1281 dev_err_ratelimited(&gpu->pdev->dev, 1282 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1283 val & (1 << 20) ? "READ" : "WRITE", 1284 (val & 0x3ffff), val); 1285 } 1286 1287 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1288 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1289 1290 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1291 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1292 1293 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1294 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1295 1296 } 1297 1298 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1299 { 1300 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1301 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1302 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1303 1304 /* 1305 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1306 * but the fault handler will trigger the devcore dump, and we want 1307 * to otherwise resume normally rather than killing the submit, so 1308 * just bail. 1309 */ 1310 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 1311 return; 1312 1313 /* 1314 * Force the GPU to stay on until after we finish 1315 * collecting information 1316 */ 1317 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1318 1319 DRM_DEV_ERROR(&gpu->pdev->dev, 1320 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1321 ring ? ring->id : -1, ring ? ring->seqno : 0, 1322 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1323 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1324 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1325 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 1326 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1327 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 1328 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1329 1330 /* Turn off the hangcheck timer to keep it from bothering us */ 1331 del_timer(&gpu->hangcheck_timer); 1332 1333 kthread_queue_work(gpu->worker, &gpu->recover_work); 1334 } 1335 1336 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1337 { 1338 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1339 1340 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1341 1342 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1343 a6xx_fault_detect_irq(gpu); 1344 1345 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1346 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1347 1348 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1349 a6xx_cp_hw_err_irq(gpu); 1350 1351 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1352 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1353 1354 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1355 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1356 1357 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1358 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1359 1360 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1361 msm_gpu_retire(gpu); 1362 1363 return IRQ_HANDLED; 1364 } 1365 1366 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) 1367 { 1368 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); 1369 } 1370 1371 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) 1372 { 1373 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); 1374 } 1375 1376 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1377 { 1378 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1379 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1380 } 1381 1382 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1383 { 1384 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1385 struct msm_gpu *gpu = &adreno_gpu->base; 1386 u32 cntl1_regval = 0; 1387 1388 if (IS_ERR(a6xx_gpu->llc_mmio)) 1389 return; 1390 1391 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1392 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1393 1394 gpu_scid &= 0x1f; 1395 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1396 (gpu_scid << 15) | (gpu_scid << 20); 1397 } 1398 1399 /* 1400 * For targets with a MMU500, activate the slice but don't program the 1401 * register. The XBL will take care of that. 1402 */ 1403 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1404 if (!a6xx_gpu->have_mmu500) { 1405 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1406 1407 gpuhtw_scid &= 0x1f; 1408 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1409 } 1410 } 1411 1412 if (cntl1_regval) { 1413 /* 1414 * Program the slice IDs for the various GPU blocks and GPU MMU 1415 * pagetables 1416 */ 1417 if (a6xx_gpu->have_mmu500) 1418 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), 1419 cntl1_regval); 1420 else { 1421 a6xx_llc_write(a6xx_gpu, 1422 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1423 1424 /* 1425 * Program cacheability overrides to not allocate cache 1426 * lines on a write miss 1427 */ 1428 a6xx_llc_rmw(a6xx_gpu, 1429 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1430 } 1431 } 1432 } 1433 1434 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1435 { 1436 llcc_slice_putd(a6xx_gpu->llc_slice); 1437 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1438 } 1439 1440 static void a6xx_llc_slices_init(struct platform_device *pdev, 1441 struct a6xx_gpu *a6xx_gpu) 1442 { 1443 struct device_node *phandle; 1444 1445 /* 1446 * There is a different programming path for targets with an mmu500 1447 * attached, so detect if that is the case 1448 */ 1449 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1450 a6xx_gpu->have_mmu500 = (phandle && 1451 of_device_is_compatible(phandle, "arm,mmu-500")); 1452 of_node_put(phandle); 1453 1454 if (a6xx_gpu->have_mmu500) 1455 a6xx_gpu->llc_mmio = NULL; 1456 else 1457 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx"); 1458 1459 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1460 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1461 1462 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1463 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1464 } 1465 1466 static int a6xx_pm_resume(struct msm_gpu *gpu) 1467 { 1468 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1469 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1470 int ret; 1471 1472 gpu->needs_hw_init = true; 1473 1474 trace_msm_gpu_resume(0); 1475 1476 ret = a6xx_gmu_resume(a6xx_gpu); 1477 if (ret) 1478 return ret; 1479 1480 msm_gpu_resume_devfreq(gpu); 1481 1482 a6xx_llc_activate(a6xx_gpu); 1483 1484 return 0; 1485 } 1486 1487 static int a6xx_pm_suspend(struct msm_gpu *gpu) 1488 { 1489 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1490 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1491 int i, ret; 1492 1493 trace_msm_gpu_suspend(0); 1494 1495 a6xx_llc_deactivate(a6xx_gpu); 1496 1497 devfreq_suspend_device(gpu->devfreq.devfreq); 1498 1499 ret = a6xx_gmu_stop(a6xx_gpu); 1500 if (ret) 1501 return ret; 1502 1503 if (a6xx_gpu->shadow_bo) 1504 for (i = 0; i < gpu->nr_rings; i++) 1505 a6xx_gpu->shadow[i] = 0; 1506 1507 return 0; 1508 } 1509 1510 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1511 { 1512 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1513 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1514 static DEFINE_MUTEX(perfcounter_oob); 1515 1516 mutex_lock(&perfcounter_oob); 1517 1518 /* Force the GPU power on so we can read this register */ 1519 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1520 1521 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 1522 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI); 1523 1524 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1525 mutex_unlock(&perfcounter_oob); 1526 return 0; 1527 } 1528 1529 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 1530 { 1531 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1532 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1533 1534 return a6xx_gpu->cur_ring; 1535 } 1536 1537 static void a6xx_destroy(struct msm_gpu *gpu) 1538 { 1539 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1540 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1541 1542 if (a6xx_gpu->sqe_bo) { 1543 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1544 drm_gem_object_put(a6xx_gpu->sqe_bo); 1545 } 1546 1547 if (a6xx_gpu->shadow_bo) { 1548 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 1549 drm_gem_object_put(a6xx_gpu->shadow_bo); 1550 } 1551 1552 a6xx_llc_slices_destroy(a6xx_gpu); 1553 1554 a6xx_gmu_remove(a6xx_gpu); 1555 1556 adreno_gpu_cleanup(adreno_gpu); 1557 1558 kfree(a6xx_gpu); 1559 } 1560 1561 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 1562 { 1563 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1564 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1565 u64 busy_cycles, busy_time; 1566 1567 1568 /* Only read the gpu busy if the hardware is already active */ 1569 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0) 1570 return 0; 1571 1572 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 1573 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 1574 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 1575 1576 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 1577 do_div(busy_time, 192); 1578 1579 gpu->devfreq.busy_cycles = busy_cycles; 1580 1581 pm_runtime_put(a6xx_gpu->gmu.dev); 1582 1583 if (WARN_ON(busy_time > ~0LU)) 1584 return ~0LU; 1585 1586 return (unsigned long)busy_time; 1587 } 1588 1589 static struct msm_gem_address_space * 1590 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 1591 { 1592 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1593 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1594 struct iommu_domain *iommu; 1595 struct msm_mmu *mmu; 1596 struct msm_gem_address_space *aspace; 1597 u64 start, size; 1598 1599 iommu = iommu_domain_alloc(&platform_bus_type); 1600 if (!iommu) 1601 return NULL; 1602 1603 /* 1604 * This allows GPU to set the bus attributes required to use system 1605 * cache on behalf of the iommu page table walker. 1606 */ 1607 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1608 adreno_set_llc_attributes(iommu); 1609 1610 mmu = msm_iommu_new(&pdev->dev, iommu); 1611 if (IS_ERR(mmu)) { 1612 iommu_domain_free(iommu); 1613 return ERR_CAST(mmu); 1614 } 1615 1616 /* 1617 * Use the aperture start or SZ_16M, whichever is greater. This will 1618 * ensure that we align with the allocated pagetable range while still 1619 * allowing room in the lower 32 bits for GMEM and whatnot 1620 */ 1621 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 1622 size = iommu->geometry.aperture_end - start + 1; 1623 1624 aspace = msm_gem_address_space_create(mmu, "gpu", 1625 start & GENMASK_ULL(48, 0), size); 1626 1627 if (IS_ERR(aspace) && !IS_ERR(mmu)) 1628 mmu->funcs->destroy(mmu); 1629 1630 return aspace; 1631 } 1632 1633 static struct msm_gem_address_space * 1634 a6xx_create_private_address_space(struct msm_gpu *gpu) 1635 { 1636 struct msm_mmu *mmu; 1637 1638 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 1639 1640 if (IS_ERR(mmu)) 1641 return ERR_CAST(mmu); 1642 1643 return msm_gem_address_space_create(mmu, 1644 "gpu", 0x100000000ULL, 0x1ffffffffULL); 1645 } 1646 1647 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1648 { 1649 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1650 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1651 1652 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1653 return a6xx_gpu->shadow[ring->id]; 1654 1655 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 1656 } 1657 1658 static u32 a618_get_speed_bin(u32 fuse) 1659 { 1660 if (fuse == 0) 1661 return 0; 1662 else if (fuse == 169) 1663 return 1; 1664 else if (fuse == 174) 1665 return 2; 1666 1667 return UINT_MAX; 1668 } 1669 1670 static u32 fuse_to_supp_hw(struct device *dev, u32 revn, u32 fuse) 1671 { 1672 u32 val = UINT_MAX; 1673 1674 if (revn == 618) 1675 val = a618_get_speed_bin(fuse); 1676 1677 if (val == UINT_MAX) { 1678 DRM_DEV_ERROR(dev, 1679 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware", 1680 fuse); 1681 return UINT_MAX; 1682 } 1683 1684 return (1 << val); 1685 } 1686 1687 static int a6xx_set_supported_hw(struct device *dev, struct a6xx_gpu *a6xx_gpu, 1688 u32 revn) 1689 { 1690 u32 supp_hw = UINT_MAX; 1691 u16 speedbin; 1692 int ret; 1693 1694 ret = nvmem_cell_read_u16(dev, "speed_bin", &speedbin); 1695 /* 1696 * -ENOENT means that the platform doesn't support speedbin which is 1697 * fine 1698 */ 1699 if (ret == -ENOENT) { 1700 return 0; 1701 } else if (ret) { 1702 DRM_DEV_ERROR(dev, 1703 "failed to read speed-bin (%d). Some OPPs may not be supported by hardware", 1704 ret); 1705 goto done; 1706 } 1707 speedbin = le16_to_cpu(speedbin); 1708 1709 supp_hw = fuse_to_supp_hw(dev, revn, speedbin); 1710 1711 done: 1712 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 1713 if (ret) 1714 return ret; 1715 1716 return 0; 1717 } 1718 1719 static const struct adreno_gpu_funcs funcs = { 1720 .base = { 1721 .get_param = adreno_get_param, 1722 .hw_init = a6xx_hw_init, 1723 .pm_suspend = a6xx_pm_suspend, 1724 .pm_resume = a6xx_pm_resume, 1725 .recover = a6xx_recover, 1726 .submit = a6xx_submit, 1727 .active_ring = a6xx_active_ring, 1728 .irq = a6xx_irq, 1729 .destroy = a6xx_destroy, 1730 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1731 .show = a6xx_show, 1732 #endif 1733 .gpu_busy = a6xx_gpu_busy, 1734 .gpu_get_freq = a6xx_gmu_get_freq, 1735 .gpu_set_freq = a6xx_gmu_set_freq, 1736 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1737 .gpu_state_get = a6xx_gpu_state_get, 1738 .gpu_state_put = a6xx_gpu_state_put, 1739 #endif 1740 .create_address_space = a6xx_create_address_space, 1741 .create_private_address_space = a6xx_create_private_address_space, 1742 .get_rptr = a6xx_get_rptr, 1743 }, 1744 .get_timestamp = a6xx_get_timestamp, 1745 }; 1746 1747 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 1748 { 1749 struct msm_drm_private *priv = dev->dev_private; 1750 struct platform_device *pdev = priv->gpu_pdev; 1751 struct adreno_platform_config *config = pdev->dev.platform_data; 1752 const struct adreno_info *info; 1753 struct device_node *node; 1754 struct a6xx_gpu *a6xx_gpu; 1755 struct adreno_gpu *adreno_gpu; 1756 struct msm_gpu *gpu; 1757 int ret; 1758 1759 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 1760 if (!a6xx_gpu) 1761 return ERR_PTR(-ENOMEM); 1762 1763 adreno_gpu = &a6xx_gpu->base; 1764 gpu = &adreno_gpu->base; 1765 1766 adreno_gpu->registers = NULL; 1767 1768 /* 1769 * We need to know the platform type before calling into adreno_gpu_init 1770 * so that the hw_apriv flag can be correctly set. Snoop into the info 1771 * and grab the revision number 1772 */ 1773 info = adreno_info(config->rev); 1774 1775 if (info && (info->revn == 650 || info->revn == 660)) 1776 adreno_gpu->base.hw_apriv = true; 1777 1778 a6xx_llc_slices_init(pdev, a6xx_gpu); 1779 1780 ret = a6xx_set_supported_hw(&pdev->dev, a6xx_gpu, info->revn); 1781 if (ret) { 1782 a6xx_destroy(&(a6xx_gpu->base.base)); 1783 return ERR_PTR(ret); 1784 } 1785 1786 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 1787 if (ret) { 1788 a6xx_destroy(&(a6xx_gpu->base.base)); 1789 return ERR_PTR(ret); 1790 } 1791 1792 /* Check if there is a GMU phandle and set it up */ 1793 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 1794 1795 /* FIXME: How do we gracefully handle this? */ 1796 BUG_ON(!node); 1797 1798 ret = a6xx_gmu_init(a6xx_gpu, node); 1799 if (ret) { 1800 a6xx_destroy(&(a6xx_gpu->base.base)); 1801 return ERR_PTR(ret); 1802 } 1803 1804 if (gpu->aspace) 1805 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 1806 a6xx_fault_handler); 1807 1808 return gpu; 1809 } 1810