1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/nvmem-consumer.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 uint32_t wptr; 60 unsigned long flags; 61 62 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 63 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 64 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 65 66 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 67 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 68 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 69 } 70 71 spin_lock_irqsave(&ring->preempt_lock, flags); 72 73 /* Copy the shadow to the actual register */ 74 ring->cur = ring->next; 75 76 /* Make sure to wrap wptr if we need to */ 77 wptr = get_wptr(ring); 78 79 spin_unlock_irqrestore(&ring->preempt_lock, flags); 80 81 /* Make sure everything is posted before making a decision */ 82 mb(); 83 84 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 85 } 86 87 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 88 u64 iova) 89 { 90 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 91 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 92 CP_REG_TO_MEM_0_CNT(2) | 93 CP_REG_TO_MEM_0_64B); 94 OUT_RING(ring, lower_32_bits(iova)); 95 OUT_RING(ring, upper_32_bits(iova)); 96 } 97 98 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 99 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 100 { 101 phys_addr_t ttbr; 102 u32 asid; 103 u64 memptr = rbmemptr(ring, ttbr0); 104 105 if (ctx == a6xx_gpu->cur_ctx) 106 return; 107 108 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 109 return; 110 111 /* Execute the table update */ 112 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 113 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 114 115 OUT_RING(ring, 116 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 117 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 118 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 119 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 120 121 /* 122 * Write the new TTBR0 to the memstore. This is good for debugging. 123 */ 124 OUT_PKT7(ring, CP_MEM_WRITE, 4); 125 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 126 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 127 OUT_RING(ring, lower_32_bits(ttbr)); 128 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 129 130 /* 131 * And finally, trigger a uche flush to be sure there isn't anything 132 * lingering in that part of the GPU 133 */ 134 135 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 136 OUT_RING(ring, 0x31); 137 138 a6xx_gpu->cur_ctx = ctx; 139 } 140 141 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 142 { 143 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 144 struct msm_drm_private *priv = gpu->dev->dev_private; 145 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 146 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 147 struct msm_ringbuffer *ring = submit->ring; 148 unsigned int i; 149 150 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 151 152 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 153 rbmemptr_stats(ring, index, cpcycles_start)); 154 155 /* 156 * For PM4 the GMU register offsets are calculated from the base of the 157 * GPU registers so we need to add 0x1a800 to the register value on A630 158 * to get the right value from PM4. 159 */ 160 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 161 rbmemptr_stats(ring, index, alwayson_start)); 162 163 /* Invalidate CCU depth and color */ 164 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 165 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 166 167 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 168 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 169 170 /* Submit the commands */ 171 for (i = 0; i < submit->nr_cmds; i++) { 172 switch (submit->cmd[i].type) { 173 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 174 break; 175 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 176 if (priv->lastctx == submit->queue->ctx) 177 break; 178 fallthrough; 179 case MSM_SUBMIT_CMD_BUF: 180 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 181 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 182 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 183 OUT_RING(ring, submit->cmd[i].size); 184 break; 185 } 186 } 187 188 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 189 rbmemptr_stats(ring, index, cpcycles_end)); 190 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 191 rbmemptr_stats(ring, index, alwayson_end)); 192 193 /* Write the fence to the scratch register */ 194 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 195 OUT_RING(ring, submit->seqno); 196 197 /* 198 * Execute a CACHE_FLUSH_TS event. This will ensure that the 199 * timestamp is written to the memory and then triggers the interrupt 200 */ 201 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 202 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 203 CP_EVENT_WRITE_0_IRQ); 204 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 205 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 206 OUT_RING(ring, submit->seqno); 207 208 trace_msm_gpu_submit_flush(submit, 209 gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L, 210 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H)); 211 212 a6xx_flush(gpu, ring); 213 } 214 215 const struct adreno_reglist a630_hwcg[] = { 216 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 217 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 218 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 219 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 220 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 221 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 222 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 223 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 224 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 225 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 226 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 227 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 228 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 229 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 230 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 231 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 232 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 233 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 234 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 235 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 236 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 237 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 238 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 239 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 240 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 241 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 242 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 243 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 244 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 245 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 246 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 247 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 248 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 249 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 250 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 251 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 252 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 253 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 254 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 255 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 256 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 257 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 258 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 259 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 260 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 261 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 262 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 263 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 264 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 265 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 266 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 267 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 268 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 269 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 270 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 271 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 272 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 273 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 274 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 275 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 276 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 277 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 278 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 279 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 280 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 281 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 282 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 283 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 284 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 285 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 286 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 287 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 288 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 289 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 290 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 291 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 293 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 297 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 301 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 302 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 303 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 304 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 305 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 306 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 307 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 308 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 309 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 310 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 311 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 312 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 313 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 314 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 315 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 316 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 317 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 318 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 319 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 320 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 321 {}, 322 }; 323 324 const struct adreno_reglist a640_hwcg[] = { 325 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 326 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 327 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 328 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 329 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 330 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 331 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 332 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 333 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 334 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 335 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 336 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 337 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 338 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 339 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 340 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 341 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 342 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 343 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 344 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 345 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 346 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 347 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 348 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 349 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 350 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 351 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 352 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 353 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 354 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 355 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 356 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 357 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 358 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 359 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 360 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 361 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 362 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 363 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 364 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 365 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 366 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 367 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 368 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 369 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 370 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 371 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 372 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 373 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 374 {}, 375 }; 376 377 const struct adreno_reglist a650_hwcg[] = { 378 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 379 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 380 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 381 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 382 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 383 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 384 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 385 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 386 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 387 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 388 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 389 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 390 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 391 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 392 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 393 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 394 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 395 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 396 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 397 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 398 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 399 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 400 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 401 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 403 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 404 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 405 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 406 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 407 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 408 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 409 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 410 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 411 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 412 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 413 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 414 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 415 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 416 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 417 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 418 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 419 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 421 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 422 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 423 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 424 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 426 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 427 {}, 428 }; 429 430 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 431 { 432 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 433 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 434 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 435 const struct adreno_reglist *reg; 436 unsigned int i; 437 u32 val, clock_cntl_on; 438 439 if (!adreno_gpu->info->hwcg) 440 return; 441 442 if (adreno_is_a630(adreno_gpu)) 443 clock_cntl_on = 0x8aa8aa02; 444 else 445 clock_cntl_on = 0x8aa8aa82; 446 447 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 448 449 /* Don't re-program the registers if they are already correct */ 450 if ((!state && !val) || (state && (val == clock_cntl_on))) 451 return; 452 453 /* Disable SP clock before programming HWCG registers */ 454 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 455 456 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 457 gpu_write(gpu, reg->offset, state ? reg->value : 0); 458 459 /* Enable SP clock */ 460 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 461 462 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 463 } 464 465 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 466 { 467 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 468 u32 lower_bit = 2; 469 u32 amsbc = 0; 470 u32 rgb565_predicator = 0; 471 u32 uavflagprd_inv = 0; 472 473 /* a618 is using the hw default values */ 474 if (adreno_is_a618(adreno_gpu)) 475 return; 476 477 if (adreno_is_a640(adreno_gpu)) 478 amsbc = 1; 479 480 if (adreno_is_a650(adreno_gpu)) { 481 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 482 lower_bit = 3; 483 amsbc = 1; 484 rgb565_predicator = 1; 485 uavflagprd_inv = 2; 486 } 487 488 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 489 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1); 490 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1); 491 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 492 uavflagprd_inv >> 4 | lower_bit << 1); 493 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21); 494 } 495 496 static int a6xx_cp_init(struct msm_gpu *gpu) 497 { 498 struct msm_ringbuffer *ring = gpu->rb[0]; 499 500 OUT_PKT7(ring, CP_ME_INIT, 8); 501 502 OUT_RING(ring, 0x0000002f); 503 504 /* Enable multiple hardware contexts */ 505 OUT_RING(ring, 0x00000003); 506 507 /* Enable error detection */ 508 OUT_RING(ring, 0x20000000); 509 510 /* Don't enable header dump */ 511 OUT_RING(ring, 0x00000000); 512 OUT_RING(ring, 0x00000000); 513 514 /* No workarounds enabled */ 515 OUT_RING(ring, 0x00000000); 516 517 /* Pad rest of the cmds with 0's */ 518 OUT_RING(ring, 0x00000000); 519 OUT_RING(ring, 0x00000000); 520 521 a6xx_flush(gpu, ring); 522 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 523 } 524 525 /* 526 * Check that the microcode version is new enough to include several key 527 * security fixes. Return true if the ucode is safe. 528 */ 529 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 530 struct drm_gem_object *obj) 531 { 532 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 533 struct msm_gpu *gpu = &adreno_gpu->base; 534 u32 *buf = msm_gem_get_vaddr(obj); 535 bool ret = false; 536 537 if (IS_ERR(buf)) 538 return false; 539 540 /* 541 * Targets up to a640 (a618, a630 and a640) need to check for a 542 * microcode version that is patched to support the whereami opcode or 543 * one that is new enough to include it by default. 544 */ 545 if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) || 546 adreno_is_a640(adreno_gpu)) { 547 /* 548 * If the lowest nibble is 0xa that is an indication that this 549 * microcode has been patched. The actual version is in dword 550 * [3] but we only care about the patchlevel which is the lowest 551 * nibble of dword [3] 552 * 553 * Otherwise check that the firmware is greater than or equal 554 * to 1.90 which was the first version that had this fix built 555 * in 556 */ 557 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 558 (buf[0] & 0xfff) >= 0x190) { 559 a6xx_gpu->has_whereami = true; 560 ret = true; 561 goto out; 562 } 563 564 DRM_DEV_ERROR(&gpu->pdev->dev, 565 "a630 SQE ucode is too old. Have version %x need at least %x\n", 566 buf[0] & 0xfff, 0x190); 567 } else { 568 /* 569 * a650 tier targets don't need whereami but still need to be 570 * equal to or newer than 0.95 for other security fixes 571 */ 572 if (adreno_is_a650(adreno_gpu)) { 573 if ((buf[0] & 0xfff) >= 0x095) { 574 ret = true; 575 goto out; 576 } 577 578 DRM_DEV_ERROR(&gpu->pdev->dev, 579 "a650 SQE ucode is too old. Have version %x need at least %x\n", 580 buf[0] & 0xfff, 0x095); 581 } 582 583 /* 584 * When a660 is added those targets should return true here 585 * since those have all the critical security fixes built in 586 * from the start 587 */ 588 } 589 out: 590 msm_gem_put_vaddr(obj); 591 return ret; 592 } 593 594 static int a6xx_ucode_init(struct msm_gpu *gpu) 595 { 596 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 597 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 598 599 if (!a6xx_gpu->sqe_bo) { 600 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 601 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 602 603 if (IS_ERR(a6xx_gpu->sqe_bo)) { 604 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 605 606 a6xx_gpu->sqe_bo = NULL; 607 DRM_DEV_ERROR(&gpu->pdev->dev, 608 "Could not allocate SQE ucode: %d\n", ret); 609 610 return ret; 611 } 612 613 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 614 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 615 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 616 drm_gem_object_put(a6xx_gpu->sqe_bo); 617 618 a6xx_gpu->sqe_bo = NULL; 619 return -EPERM; 620 } 621 } 622 623 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO, 624 REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova); 625 626 return 0; 627 } 628 629 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 630 { 631 static bool loaded; 632 int ret; 633 634 if (loaded) 635 return 0; 636 637 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 638 639 loaded = !ret; 640 return ret; 641 } 642 643 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 644 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 645 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 646 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 647 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 648 A6XX_RBBM_INT_0_MASK_CP_RB | \ 649 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 650 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 651 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 652 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 653 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 654 655 static int a6xx_hw_init(struct msm_gpu *gpu) 656 { 657 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 658 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 659 int ret; 660 661 /* Make sure the GMU keeps the GPU on while we set it up */ 662 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 663 664 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 665 666 /* 667 * Disable the trusted memory range - we don't actually supported secure 668 * memory rendering at this point in time and we don't want to block off 669 * part of the virtual memory space. 670 */ 671 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 672 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 673 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 674 675 /* Turn on 64 bit addressing for all blocks */ 676 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 677 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 678 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 679 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 680 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 681 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 682 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 683 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 684 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 685 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 686 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 687 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 688 689 /* enable hardware clockgating */ 690 a6xx_set_hwcg(gpu, true); 691 692 /* VBIF/GBIF start*/ 693 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) { 694 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 695 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 696 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 697 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 698 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 699 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 700 } else { 701 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 702 } 703 704 if (adreno_is_a630(adreno_gpu)) 705 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 706 707 /* Make all blocks contribute to the GPU BUSY perf counter */ 708 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 709 710 /* Disable L2 bypass in the UCHE */ 711 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 712 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 713 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 714 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 715 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 716 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 717 718 if (!adreno_is_a650(adreno_gpu)) { 719 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 720 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 721 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 722 723 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 724 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 725 0x00100000 + adreno_gpu->gmem - 1); 726 } 727 728 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 729 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 730 731 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) 732 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 733 else 734 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 735 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 736 737 /* Setting the mem pool size */ 738 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 739 740 /* Setting the primFifo thresholds default values */ 741 if (adreno_is_a650(adreno_gpu)) 742 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300000); 743 else if (adreno_is_a640(adreno_gpu)) 744 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200000); 745 else 746 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11)); 747 748 /* Set the AHB default slave response to "ERROR" */ 749 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 750 751 /* Turn on performance counters */ 752 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 753 754 /* Select CP0 to always count cycles */ 755 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT); 756 757 a6xx_set_ubwc_config(gpu); 758 759 /* Enable fault detection */ 760 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 761 (1 << 30) | 0x1fffff); 762 763 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 764 765 /* Set weights for bicubic filtering */ 766 if (adreno_is_a650(adreno_gpu)) { 767 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 768 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 769 0x3fe05ff4); 770 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 771 0x3fa0ebee); 772 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 773 0x3f5193ed); 774 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 775 0x3f0243f0); 776 } 777 778 /* Protect registers from the CP */ 779 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003); 780 781 gpu_write(gpu, REG_A6XX_CP_PROTECT(0), 782 A6XX_PROTECT_RDONLY(0x600, 0x51)); 783 gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2)); 784 gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13)); 785 gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8)); 786 gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1)); 787 gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187)); 788 gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810)); 789 gpu_write(gpu, REG_A6XX_CP_PROTECT(7), 790 A6XX_PROTECT_RDONLY(0xfc00, 0x3)); 791 gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0)); 792 gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0)); 793 gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0)); 794 gpu_write(gpu, REG_A6XX_CP_PROTECT(11), 795 A6XX_PROTECT_RDONLY(0x0, 0x4f9)); 796 gpu_write(gpu, REG_A6XX_CP_PROTECT(12), 797 A6XX_PROTECT_RDONLY(0x501, 0xa)); 798 gpu_write(gpu, REG_A6XX_CP_PROTECT(13), 799 A6XX_PROTECT_RDONLY(0x511, 0x44)); 800 gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe)); 801 gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0)); 802 gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf)); 803 gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0)); 804 gpu_write(gpu, REG_A6XX_CP_PROTECT(18), 805 A6XX_PROTECT_RW(0xbe20, 0x11f3)); 806 gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82)); 807 gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8)); 808 gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19)); 809 gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d)); 810 gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76)); 811 gpu_write(gpu, REG_A6XX_CP_PROTECT(24), 812 A6XX_PROTECT_RDONLY(0x980, 0x4)); 813 gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0)); 814 815 /* Enable expanded apriv for targets that support it */ 816 if (gpu->hw_apriv) { 817 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 818 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 819 } 820 821 /* Enable interrupts */ 822 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 823 824 ret = adreno_hw_init(gpu); 825 if (ret) 826 goto out; 827 828 ret = a6xx_ucode_init(gpu); 829 if (ret) 830 goto out; 831 832 /* Set the ringbuffer address */ 833 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI, 834 gpu->rb[0]->iova); 835 836 /* Targets that support extended APRIV can use the RPTR shadow from 837 * hardware but all the other ones need to disable the feature. Targets 838 * that support the WHERE_AM_I opcode can use that instead 839 */ 840 if (adreno_gpu->base.hw_apriv) 841 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 842 else 843 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 844 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 845 846 /* 847 * Expanded APRIV and targets that support WHERE_AM_I both need a 848 * privileged buffer to store the RPTR shadow 849 */ 850 851 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) { 852 if (!a6xx_gpu->shadow_bo) { 853 a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev, 854 sizeof(u32) * gpu->nr_rings, 855 MSM_BO_UNCACHED | MSM_BO_MAP_PRIV, 856 gpu->aspace, &a6xx_gpu->shadow_bo, 857 &a6xx_gpu->shadow_iova); 858 859 if (IS_ERR(a6xx_gpu->shadow)) 860 return PTR_ERR(a6xx_gpu->shadow); 861 } 862 863 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO, 864 REG_A6XX_CP_RB_RPTR_ADDR_HI, 865 shadowptr(a6xx_gpu, gpu->rb[0])); 866 } 867 868 /* Always come up on rb 0 */ 869 a6xx_gpu->cur_ring = gpu->rb[0]; 870 871 a6xx_gpu->cur_ctx = NULL; 872 873 /* Enable the SQE_to start the CP engine */ 874 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 875 876 ret = a6xx_cp_init(gpu); 877 if (ret) 878 goto out; 879 880 /* 881 * Try to load a zap shader into the secure world. If successful 882 * we can use the CP to switch out of secure mode. If not then we 883 * have no resource but to try to switch ourselves out manually. If we 884 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 885 * be blocked and a permissions violation will soon follow. 886 */ 887 ret = a6xx_zap_shader_init(gpu); 888 if (!ret) { 889 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 890 OUT_RING(gpu->rb[0], 0x00000000); 891 892 a6xx_flush(gpu, gpu->rb[0]); 893 if (!a6xx_idle(gpu, gpu->rb[0])) 894 return -EINVAL; 895 } else if (ret == -ENODEV) { 896 /* 897 * This device does not use zap shader (but print a warning 898 * just in case someone got their dt wrong.. hopefully they 899 * have a debug UART to realize the error of their ways... 900 * if you mess this up you are about to crash horribly) 901 */ 902 dev_warn_once(gpu->dev->dev, 903 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 904 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 905 ret = 0; 906 } else { 907 return ret; 908 } 909 910 out: 911 /* 912 * Tell the GMU that we are done touching the GPU and it can start power 913 * management 914 */ 915 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 916 917 if (a6xx_gpu->gmu.legacy) { 918 /* Take the GMU out of its special boot mode */ 919 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 920 } 921 922 return ret; 923 } 924 925 static void a6xx_dump(struct msm_gpu *gpu) 926 { 927 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 928 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 929 adreno_dump(gpu); 930 } 931 932 #define VBIF_RESET_ACK_TIMEOUT 100 933 #define VBIF_RESET_ACK_MASK 0x00f0 934 935 static void a6xx_recover(struct msm_gpu *gpu) 936 { 937 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 938 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 939 int i; 940 941 adreno_dump_info(gpu); 942 943 for (i = 0; i < 8; i++) 944 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 945 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 946 947 if (hang_debug) 948 a6xx_dump(gpu); 949 950 /* 951 * Turn off keep alive that might have been enabled by the hang 952 * interrupt 953 */ 954 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 955 956 gpu->funcs->pm_suspend(gpu); 957 gpu->funcs->pm_resume(gpu); 958 959 msm_gpu_hw_init(gpu); 960 } 961 962 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags) 963 { 964 struct msm_gpu *gpu = arg; 965 966 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n", 967 iova, flags, 968 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 969 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 970 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 971 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 972 973 return -EFAULT; 974 } 975 976 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 977 { 978 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 979 980 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 981 u32 val; 982 983 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 984 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 985 dev_err_ratelimited(&gpu->pdev->dev, 986 "CP | opcode error | possible opcode=0x%8.8X\n", 987 val); 988 } 989 990 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 991 dev_err_ratelimited(&gpu->pdev->dev, 992 "CP ucode error interrupt\n"); 993 994 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 995 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 996 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 997 998 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 999 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1000 1001 dev_err_ratelimited(&gpu->pdev->dev, 1002 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1003 val & (1 << 20) ? "READ" : "WRITE", 1004 (val & 0x3ffff), val); 1005 } 1006 1007 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1008 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1009 1010 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1011 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1012 1013 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1014 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1015 1016 } 1017 1018 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1019 { 1020 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1021 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1022 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1023 1024 /* 1025 * Force the GPU to stay on until after we finish 1026 * collecting information 1027 */ 1028 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1029 1030 DRM_DEV_ERROR(&gpu->pdev->dev, 1031 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1032 ring ? ring->id : -1, ring ? ring->seqno : 0, 1033 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1034 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1035 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1036 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 1037 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1038 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 1039 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1040 1041 /* Turn off the hangcheck timer to keep it from bothering us */ 1042 del_timer(&gpu->hangcheck_timer); 1043 1044 kthread_queue_work(gpu->worker, &gpu->recover_work); 1045 } 1046 1047 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1048 { 1049 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1050 1051 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1052 1053 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1054 a6xx_fault_detect_irq(gpu); 1055 1056 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1057 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1058 1059 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1060 a6xx_cp_hw_err_irq(gpu); 1061 1062 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1063 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1064 1065 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1066 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1067 1068 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1069 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1070 1071 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1072 msm_gpu_retire(gpu); 1073 1074 return IRQ_HANDLED; 1075 } 1076 1077 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) 1078 { 1079 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); 1080 } 1081 1082 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) 1083 { 1084 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); 1085 } 1086 1087 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1088 { 1089 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1090 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1091 } 1092 1093 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1094 { 1095 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1096 struct msm_gpu *gpu = &adreno_gpu->base; 1097 u32 cntl1_regval = 0; 1098 1099 if (IS_ERR(a6xx_gpu->llc_mmio)) 1100 return; 1101 1102 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1103 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1104 1105 gpu_scid &= 0x1f; 1106 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1107 (gpu_scid << 15) | (gpu_scid << 20); 1108 } 1109 1110 /* 1111 * For targets with a MMU500, activate the slice but don't program the 1112 * register. The XBL will take care of that. 1113 */ 1114 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1115 if (!a6xx_gpu->have_mmu500) { 1116 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1117 1118 gpuhtw_scid &= 0x1f; 1119 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1120 } 1121 } 1122 1123 if (cntl1_regval) { 1124 /* 1125 * Program the slice IDs for the various GPU blocks and GPU MMU 1126 * pagetables 1127 */ 1128 if (a6xx_gpu->have_mmu500) 1129 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), 1130 cntl1_regval); 1131 else { 1132 a6xx_llc_write(a6xx_gpu, 1133 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1134 1135 /* 1136 * Program cacheability overrides to not allocate cache 1137 * lines on a write miss 1138 */ 1139 a6xx_llc_rmw(a6xx_gpu, 1140 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1141 } 1142 } 1143 } 1144 1145 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1146 { 1147 llcc_slice_putd(a6xx_gpu->llc_slice); 1148 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1149 } 1150 1151 static void a6xx_llc_slices_init(struct platform_device *pdev, 1152 struct a6xx_gpu *a6xx_gpu) 1153 { 1154 struct device_node *phandle; 1155 1156 /* 1157 * There is a different programming path for targets with an mmu500 1158 * attached, so detect if that is the case 1159 */ 1160 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1161 a6xx_gpu->have_mmu500 = (phandle && 1162 of_device_is_compatible(phandle, "arm,mmu-500")); 1163 of_node_put(phandle); 1164 1165 if (a6xx_gpu->have_mmu500) 1166 a6xx_gpu->llc_mmio = NULL; 1167 else 1168 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx"); 1169 1170 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1171 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1172 1173 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1174 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1175 } 1176 1177 static int a6xx_pm_resume(struct msm_gpu *gpu) 1178 { 1179 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1180 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1181 int ret; 1182 1183 gpu->needs_hw_init = true; 1184 1185 trace_msm_gpu_resume(0); 1186 1187 ret = a6xx_gmu_resume(a6xx_gpu); 1188 if (ret) 1189 return ret; 1190 1191 msm_gpu_resume_devfreq(gpu); 1192 1193 a6xx_llc_activate(a6xx_gpu); 1194 1195 return 0; 1196 } 1197 1198 static int a6xx_pm_suspend(struct msm_gpu *gpu) 1199 { 1200 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1201 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1202 int i, ret; 1203 1204 trace_msm_gpu_suspend(0); 1205 1206 a6xx_llc_deactivate(a6xx_gpu); 1207 1208 devfreq_suspend_device(gpu->devfreq.devfreq); 1209 1210 ret = a6xx_gmu_stop(a6xx_gpu); 1211 if (ret) 1212 return ret; 1213 1214 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1215 for (i = 0; i < gpu->nr_rings; i++) 1216 a6xx_gpu->shadow[i] = 0; 1217 1218 return 0; 1219 } 1220 1221 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1222 { 1223 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1224 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1225 static DEFINE_MUTEX(perfcounter_oob); 1226 1227 mutex_lock(&perfcounter_oob); 1228 1229 /* Force the GPU power on so we can read this register */ 1230 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1231 1232 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 1233 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI); 1234 1235 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1236 mutex_unlock(&perfcounter_oob); 1237 return 0; 1238 } 1239 1240 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 1241 { 1242 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1243 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1244 1245 return a6xx_gpu->cur_ring; 1246 } 1247 1248 static void a6xx_destroy(struct msm_gpu *gpu) 1249 { 1250 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1251 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1252 1253 if (a6xx_gpu->sqe_bo) { 1254 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1255 drm_gem_object_put(a6xx_gpu->sqe_bo); 1256 } 1257 1258 if (a6xx_gpu->shadow_bo) { 1259 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 1260 drm_gem_object_put(a6xx_gpu->shadow_bo); 1261 } 1262 1263 a6xx_llc_slices_destroy(a6xx_gpu); 1264 1265 a6xx_gmu_remove(a6xx_gpu); 1266 1267 adreno_gpu_cleanup(adreno_gpu); 1268 1269 if (a6xx_gpu->opp_table) 1270 dev_pm_opp_put_supported_hw(a6xx_gpu->opp_table); 1271 1272 kfree(a6xx_gpu); 1273 } 1274 1275 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 1276 { 1277 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1278 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1279 u64 busy_cycles, busy_time; 1280 1281 1282 /* Only read the gpu busy if the hardware is already active */ 1283 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0) 1284 return 0; 1285 1286 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 1287 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 1288 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 1289 1290 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 1291 do_div(busy_time, 192); 1292 1293 gpu->devfreq.busy_cycles = busy_cycles; 1294 1295 pm_runtime_put(a6xx_gpu->gmu.dev); 1296 1297 if (WARN_ON(busy_time > ~0LU)) 1298 return ~0LU; 1299 1300 return (unsigned long)busy_time; 1301 } 1302 1303 static struct msm_gem_address_space * 1304 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 1305 { 1306 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1307 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1308 struct iommu_domain *iommu; 1309 struct msm_mmu *mmu; 1310 struct msm_gem_address_space *aspace; 1311 u64 start, size; 1312 1313 iommu = iommu_domain_alloc(&platform_bus_type); 1314 if (!iommu) 1315 return NULL; 1316 1317 /* 1318 * This allows GPU to set the bus attributes required to use system 1319 * cache on behalf of the iommu page table walker. 1320 */ 1321 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1322 adreno_set_llc_attributes(iommu); 1323 1324 mmu = msm_iommu_new(&pdev->dev, iommu); 1325 if (IS_ERR(mmu)) { 1326 iommu_domain_free(iommu); 1327 return ERR_CAST(mmu); 1328 } 1329 1330 /* 1331 * Use the aperture start or SZ_16M, whichever is greater. This will 1332 * ensure that we align with the allocated pagetable range while still 1333 * allowing room in the lower 32 bits for GMEM and whatnot 1334 */ 1335 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 1336 size = iommu->geometry.aperture_end - start + 1; 1337 1338 aspace = msm_gem_address_space_create(mmu, "gpu", 1339 start & GENMASK_ULL(48, 0), size); 1340 1341 if (IS_ERR(aspace) && !IS_ERR(mmu)) 1342 mmu->funcs->destroy(mmu); 1343 1344 return aspace; 1345 } 1346 1347 static struct msm_gem_address_space * 1348 a6xx_create_private_address_space(struct msm_gpu *gpu) 1349 { 1350 struct msm_mmu *mmu; 1351 1352 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 1353 1354 if (IS_ERR(mmu)) 1355 return ERR_CAST(mmu); 1356 1357 return msm_gem_address_space_create(mmu, 1358 "gpu", 0x100000000ULL, 0x1ffffffffULL); 1359 } 1360 1361 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1362 { 1363 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1364 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1365 1366 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1367 return a6xx_gpu->shadow[ring->id]; 1368 1369 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 1370 } 1371 1372 static u32 a618_get_speed_bin(u32 fuse) 1373 { 1374 if (fuse == 0) 1375 return 0; 1376 else if (fuse == 169) 1377 return 1; 1378 else if (fuse == 174) 1379 return 2; 1380 1381 return UINT_MAX; 1382 } 1383 1384 static u32 fuse_to_supp_hw(struct device *dev, u32 revn, u32 fuse) 1385 { 1386 u32 val = UINT_MAX; 1387 1388 if (revn == 618) 1389 val = a618_get_speed_bin(fuse); 1390 1391 if (val == UINT_MAX) { 1392 DRM_DEV_ERROR(dev, 1393 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware", 1394 fuse); 1395 return UINT_MAX; 1396 } 1397 1398 return (1 << val); 1399 } 1400 1401 static int a6xx_set_supported_hw(struct device *dev, struct a6xx_gpu *a6xx_gpu, 1402 u32 revn) 1403 { 1404 struct opp_table *opp_table; 1405 u32 supp_hw = UINT_MAX; 1406 u16 speedbin; 1407 int ret; 1408 1409 ret = nvmem_cell_read_u16(dev, "speed_bin", &speedbin); 1410 /* 1411 * -ENOENT means that the platform doesn't support speedbin which is 1412 * fine 1413 */ 1414 if (ret == -ENOENT) { 1415 return 0; 1416 } else if (ret) { 1417 DRM_DEV_ERROR(dev, 1418 "failed to read speed-bin (%d). Some OPPs may not be supported by hardware", 1419 ret); 1420 goto done; 1421 } 1422 speedbin = le16_to_cpu(speedbin); 1423 1424 supp_hw = fuse_to_supp_hw(dev, revn, speedbin); 1425 1426 done: 1427 opp_table = dev_pm_opp_set_supported_hw(dev, &supp_hw, 1); 1428 if (IS_ERR(opp_table)) 1429 return PTR_ERR(opp_table); 1430 1431 a6xx_gpu->opp_table = opp_table; 1432 return 0; 1433 } 1434 1435 static const struct adreno_gpu_funcs funcs = { 1436 .base = { 1437 .get_param = adreno_get_param, 1438 .hw_init = a6xx_hw_init, 1439 .pm_suspend = a6xx_pm_suspend, 1440 .pm_resume = a6xx_pm_resume, 1441 .recover = a6xx_recover, 1442 .submit = a6xx_submit, 1443 .active_ring = a6xx_active_ring, 1444 .irq = a6xx_irq, 1445 .destroy = a6xx_destroy, 1446 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1447 .show = a6xx_show, 1448 #endif 1449 .gpu_busy = a6xx_gpu_busy, 1450 .gpu_get_freq = a6xx_gmu_get_freq, 1451 .gpu_set_freq = a6xx_gmu_set_freq, 1452 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1453 .gpu_state_get = a6xx_gpu_state_get, 1454 .gpu_state_put = a6xx_gpu_state_put, 1455 #endif 1456 .create_address_space = a6xx_create_address_space, 1457 .create_private_address_space = a6xx_create_private_address_space, 1458 .get_rptr = a6xx_get_rptr, 1459 }, 1460 .get_timestamp = a6xx_get_timestamp, 1461 }; 1462 1463 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 1464 { 1465 struct msm_drm_private *priv = dev->dev_private; 1466 struct platform_device *pdev = priv->gpu_pdev; 1467 struct adreno_platform_config *config = pdev->dev.platform_data; 1468 const struct adreno_info *info; 1469 struct device_node *node; 1470 struct a6xx_gpu *a6xx_gpu; 1471 struct adreno_gpu *adreno_gpu; 1472 struct msm_gpu *gpu; 1473 int ret; 1474 1475 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 1476 if (!a6xx_gpu) 1477 return ERR_PTR(-ENOMEM); 1478 1479 adreno_gpu = &a6xx_gpu->base; 1480 gpu = &adreno_gpu->base; 1481 1482 adreno_gpu->registers = NULL; 1483 1484 /* 1485 * We need to know the platform type before calling into adreno_gpu_init 1486 * so that the hw_apriv flag can be correctly set. Snoop into the info 1487 * and grab the revision number 1488 */ 1489 info = adreno_info(config->rev); 1490 1491 if (info && info->revn == 650) 1492 adreno_gpu->base.hw_apriv = true; 1493 1494 a6xx_llc_slices_init(pdev, a6xx_gpu); 1495 1496 ret = a6xx_set_supported_hw(&pdev->dev, a6xx_gpu, info->revn); 1497 if (ret) { 1498 a6xx_destroy(&(a6xx_gpu->base.base)); 1499 return ERR_PTR(ret); 1500 } 1501 1502 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 1503 if (ret) { 1504 a6xx_destroy(&(a6xx_gpu->base.base)); 1505 return ERR_PTR(ret); 1506 } 1507 1508 /* Check if there is a GMU phandle and set it up */ 1509 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 1510 1511 /* FIXME: How do we gracefully handle this? */ 1512 BUG_ON(!node); 1513 1514 ret = a6xx_gmu_init(a6xx_gpu, node); 1515 if (ret) { 1516 a6xx_destroy(&(a6xx_gpu->base.base)); 1517 return ERR_PTR(ret); 1518 } 1519 1520 if (gpu->aspace) 1521 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 1522 a6xx_fault_handler); 1523 1524 return gpu; 1525 } 1526