1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/nvmem-consumer.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 62 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 65 } 66 } 67 68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 69 { 70 uint32_t wptr; 71 unsigned long flags; 72 73 update_shadow_rptr(gpu, ring); 74 75 spin_lock_irqsave(&ring->preempt_lock, flags); 76 77 /* Copy the shadow to the actual register */ 78 ring->cur = ring->next; 79 80 /* Make sure to wrap wptr if we need to */ 81 wptr = get_wptr(ring); 82 83 spin_unlock_irqrestore(&ring->preempt_lock, flags); 84 85 /* Make sure everything is posted before making a decision */ 86 mb(); 87 88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 89 } 90 91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 92 u64 iova) 93 { 94 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 96 CP_REG_TO_MEM_0_CNT(2) | 97 CP_REG_TO_MEM_0_64B); 98 OUT_RING(ring, lower_32_bits(iova)); 99 OUT_RING(ring, upper_32_bits(iova)); 100 } 101 102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 103 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 104 { 105 phys_addr_t ttbr; 106 u32 asid; 107 u64 memptr = rbmemptr(ring, ttbr0); 108 109 if (ctx->seqno == a6xx_gpu->cur_ctx_seqno) 110 return; 111 112 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 113 return; 114 115 /* Execute the table update */ 116 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 117 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 118 119 OUT_RING(ring, 120 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 121 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 122 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 123 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 124 125 /* 126 * Write the new TTBR0 to the memstore. This is good for debugging. 127 */ 128 OUT_PKT7(ring, CP_MEM_WRITE, 4); 129 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 130 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 131 OUT_RING(ring, lower_32_bits(ttbr)); 132 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 133 134 /* 135 * And finally, trigger a uche flush to be sure there isn't anything 136 * lingering in that part of the GPU 137 */ 138 139 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 140 OUT_RING(ring, 0x31); 141 142 a6xx_gpu->cur_ctx_seqno = ctx->seqno; 143 } 144 145 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 146 { 147 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 148 struct msm_drm_private *priv = gpu->dev->dev_private; 149 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 150 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 151 struct msm_ringbuffer *ring = submit->ring; 152 unsigned int i, ibs = 0; 153 154 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 155 156 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 157 rbmemptr_stats(ring, index, cpcycles_start)); 158 159 /* 160 * For PM4 the GMU register offsets are calculated from the base of the 161 * GPU registers so we need to add 0x1a800 to the register value on A630 162 * to get the right value from PM4. 163 */ 164 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 165 rbmemptr_stats(ring, index, alwayson_start)); 166 167 /* Invalidate CCU depth and color */ 168 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 169 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 170 171 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 172 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 173 174 /* Submit the commands */ 175 for (i = 0; i < submit->nr_cmds; i++) { 176 switch (submit->cmd[i].type) { 177 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 178 break; 179 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 180 if (priv->lastctx == submit->queue->ctx) 181 break; 182 fallthrough; 183 case MSM_SUBMIT_CMD_BUF: 184 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 185 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 186 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 187 OUT_RING(ring, submit->cmd[i].size); 188 ibs++; 189 break; 190 } 191 192 /* 193 * Periodically update shadow-wptr if needed, so that we 194 * can see partial progress of submits with large # of 195 * cmds.. otherwise we could needlessly stall waiting for 196 * ringbuffer state, simply due to looking at a shadow 197 * rptr value that has not been updated 198 */ 199 if ((ibs % 32) == 0) 200 update_shadow_rptr(gpu, ring); 201 } 202 203 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 204 rbmemptr_stats(ring, index, cpcycles_end)); 205 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 206 rbmemptr_stats(ring, index, alwayson_end)); 207 208 /* Write the fence to the scratch register */ 209 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 210 OUT_RING(ring, submit->seqno); 211 212 /* 213 * Execute a CACHE_FLUSH_TS event. This will ensure that the 214 * timestamp is written to the memory and then triggers the interrupt 215 */ 216 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 217 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 218 CP_EVENT_WRITE_0_IRQ); 219 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 220 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 221 OUT_RING(ring, submit->seqno); 222 223 trace_msm_gpu_submit_flush(submit, 224 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 225 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI)); 226 227 a6xx_flush(gpu, ring); 228 } 229 230 const struct adreno_reglist a630_hwcg[] = { 231 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 232 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 233 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 234 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 235 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 236 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 237 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 238 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 239 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 240 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 241 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 242 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 243 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 244 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 245 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 246 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 247 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 248 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 249 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 250 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 251 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 252 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 253 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 254 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 255 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 256 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 257 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 258 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 259 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 260 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 261 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 262 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 263 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 264 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 265 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 266 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 267 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 268 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 269 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 270 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 271 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 272 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 273 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 274 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 275 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 276 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 277 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 278 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 279 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 280 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 281 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 282 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 283 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 284 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 285 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 286 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 287 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 288 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 289 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 290 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 291 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 292 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 293 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 294 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 295 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 296 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 297 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 298 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 299 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 300 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 301 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 302 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 303 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 304 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 305 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 306 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 307 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 308 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 309 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 310 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 311 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 312 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 313 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 314 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 315 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 316 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 317 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 318 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 319 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 320 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 321 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 322 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 323 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 324 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 325 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 326 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 327 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 328 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 329 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 330 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 331 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 332 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 333 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 334 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 335 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 336 {}, 337 }; 338 339 const struct adreno_reglist a640_hwcg[] = { 340 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 341 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 342 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 343 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 344 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 345 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 346 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 347 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 348 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 349 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 350 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 351 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 352 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 353 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 354 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 355 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 356 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 357 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 358 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 359 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 360 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 361 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 362 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 363 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 364 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 365 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 366 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 367 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 368 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 369 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 370 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 371 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 372 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 373 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 374 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 375 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 376 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 377 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 378 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 379 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 380 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 381 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 382 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 383 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 384 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 385 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 386 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 387 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 388 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 389 {}, 390 }; 391 392 const struct adreno_reglist a650_hwcg[] = { 393 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 394 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 395 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 396 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 397 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 398 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 399 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 400 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 401 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 402 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 403 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 404 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 405 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 406 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 407 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 408 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 409 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 410 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 411 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 412 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 413 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 414 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 415 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 416 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 417 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 418 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 419 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 421 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 422 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 423 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 424 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 426 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 427 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 428 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 429 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 430 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 431 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 432 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 433 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 434 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 435 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 436 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 437 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 438 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 439 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 440 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 441 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 442 {}, 443 }; 444 445 const struct adreno_reglist a660_hwcg[] = { 446 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 447 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 448 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 449 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 450 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 451 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 452 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 453 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 454 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 455 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 456 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 457 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 458 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 459 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 460 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 461 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 462 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 463 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 464 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 465 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 466 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 467 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 468 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 469 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 470 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 471 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 472 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 473 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 474 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 475 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 476 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 477 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 478 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 479 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 480 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 481 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 482 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 483 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 484 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 485 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 486 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 487 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 488 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 489 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 490 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 491 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 492 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 493 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 494 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 495 {}, 496 }; 497 498 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 499 { 500 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 501 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 502 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 503 const struct adreno_reglist *reg; 504 unsigned int i; 505 u32 val, clock_cntl_on; 506 507 if (!adreno_gpu->info->hwcg) 508 return; 509 510 if (adreno_is_a630(adreno_gpu)) 511 clock_cntl_on = 0x8aa8aa02; 512 else 513 clock_cntl_on = 0x8aa8aa82; 514 515 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 516 517 /* Don't re-program the registers if they are already correct */ 518 if ((!state && !val) || (state && (val == clock_cntl_on))) 519 return; 520 521 /* Disable SP clock before programming HWCG registers */ 522 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 523 524 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 525 gpu_write(gpu, reg->offset, state ? reg->value : 0); 526 527 /* Enable SP clock */ 528 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 529 530 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 531 } 532 533 /* For a615, a616, a618, A619, a630, a640 and a680 */ 534 static const u32 a6xx_protect[] = { 535 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 536 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 537 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 538 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 539 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 540 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 541 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 542 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 543 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 544 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 545 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 546 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 547 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 548 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 549 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 550 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 551 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 552 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 553 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 554 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 555 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 556 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 557 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 558 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 559 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 560 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 561 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 562 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 563 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 564 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 565 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 566 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 567 }; 568 569 /* These are for a620 and a650 */ 570 static const u32 a650_protect[] = { 571 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 572 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 573 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 574 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 575 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 576 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 577 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 578 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 579 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 580 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 581 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 582 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 583 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 584 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 585 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 586 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 587 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 588 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 589 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 590 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 591 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 592 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 593 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 594 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 595 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 596 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 597 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 598 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 599 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 600 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 601 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 602 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 603 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 604 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 605 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 606 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 607 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 608 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 609 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 610 }; 611 612 /* These are for a635 and a660 */ 613 static const u32 a660_protect[] = { 614 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 615 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 616 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 617 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 618 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 619 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 620 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 621 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 622 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 623 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 624 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 625 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 626 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 627 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 628 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 629 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 630 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 631 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 632 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 633 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 634 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 635 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 636 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 637 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 638 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 639 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 640 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 641 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 642 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 643 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 644 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 645 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 646 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 647 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 648 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 649 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 650 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 651 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 652 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 653 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 654 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 655 }; 656 657 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 658 { 659 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 660 const u32 *regs = a6xx_protect; 661 unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32; 662 663 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 664 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 665 666 if (adreno_is_a650(adreno_gpu)) { 667 regs = a650_protect; 668 count = ARRAY_SIZE(a650_protect); 669 count_max = 48; 670 } else if (adreno_is_a660_family(adreno_gpu)) { 671 regs = a660_protect; 672 count = ARRAY_SIZE(a660_protect); 673 count_max = 48; 674 } 675 676 /* 677 * Enable access protection to privileged registers, fault on an access 678 * protect violation and select the last span to protect from the start 679 * address all the way to the end of the register address space 680 */ 681 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3)); 682 683 for (i = 0; i < count - 1; i++) 684 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 685 /* last CP_PROTECT to have "infinite" length on the last entry */ 686 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 687 } 688 689 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 690 { 691 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 692 u32 lower_bit = 2; 693 u32 amsbc = 0; 694 u32 rgb565_predicator = 0; 695 u32 uavflagprd_inv = 0; 696 697 /* a618 is using the hw default values */ 698 if (adreno_is_a618(adreno_gpu)) 699 return; 700 701 if (adreno_is_a640_family(adreno_gpu)) 702 amsbc = 1; 703 704 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) { 705 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 706 lower_bit = 3; 707 amsbc = 1; 708 rgb565_predicator = 1; 709 uavflagprd_inv = 2; 710 } 711 712 if (adreno_is_7c3(adreno_gpu)) { 713 lower_bit = 1; 714 amsbc = 1; 715 rgb565_predicator = 1; 716 uavflagprd_inv = 2; 717 } 718 719 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 720 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1); 721 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1); 722 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 723 uavflagprd_inv << 4 | lower_bit << 1); 724 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21); 725 } 726 727 static int a6xx_cp_init(struct msm_gpu *gpu) 728 { 729 struct msm_ringbuffer *ring = gpu->rb[0]; 730 731 OUT_PKT7(ring, CP_ME_INIT, 8); 732 733 OUT_RING(ring, 0x0000002f); 734 735 /* Enable multiple hardware contexts */ 736 OUT_RING(ring, 0x00000003); 737 738 /* Enable error detection */ 739 OUT_RING(ring, 0x20000000); 740 741 /* Don't enable header dump */ 742 OUT_RING(ring, 0x00000000); 743 OUT_RING(ring, 0x00000000); 744 745 /* No workarounds enabled */ 746 OUT_RING(ring, 0x00000000); 747 748 /* Pad rest of the cmds with 0's */ 749 OUT_RING(ring, 0x00000000); 750 OUT_RING(ring, 0x00000000); 751 752 a6xx_flush(gpu, ring); 753 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 754 } 755 756 /* 757 * Check that the microcode version is new enough to include several key 758 * security fixes. Return true if the ucode is safe. 759 */ 760 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 761 struct drm_gem_object *obj) 762 { 763 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 764 struct msm_gpu *gpu = &adreno_gpu->base; 765 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 766 u32 *buf = msm_gem_get_vaddr(obj); 767 bool ret = false; 768 769 if (IS_ERR(buf)) 770 return false; 771 772 /* 773 * Targets up to a640 (a618, a630 and a640) need to check for a 774 * microcode version that is patched to support the whereami opcode or 775 * one that is new enough to include it by default. 776 * 777 * a650 tier targets don't need whereami but still need to be 778 * equal to or newer than 0.95 for other security fixes 779 * 780 * a660 targets have all the critical security fixes from the start 781 */ 782 if (!strcmp(sqe_name, "a630_sqe.fw")) { 783 /* 784 * If the lowest nibble is 0xa that is an indication that this 785 * microcode has been patched. The actual version is in dword 786 * [3] but we only care about the patchlevel which is the lowest 787 * nibble of dword [3] 788 * 789 * Otherwise check that the firmware is greater than or equal 790 * to 1.90 which was the first version that had this fix built 791 * in 792 */ 793 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 794 (buf[0] & 0xfff) >= 0x190) { 795 a6xx_gpu->has_whereami = true; 796 ret = true; 797 goto out; 798 } 799 800 DRM_DEV_ERROR(&gpu->pdev->dev, 801 "a630 SQE ucode is too old. Have version %x need at least %x\n", 802 buf[0] & 0xfff, 0x190); 803 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 804 if ((buf[0] & 0xfff) >= 0x095) { 805 ret = true; 806 goto out; 807 } 808 809 DRM_DEV_ERROR(&gpu->pdev->dev, 810 "a650 SQE ucode is too old. Have version %x need at least %x\n", 811 buf[0] & 0xfff, 0x095); 812 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 813 ret = true; 814 } else { 815 DRM_DEV_ERROR(&gpu->pdev->dev, 816 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 817 } 818 out: 819 msm_gem_put_vaddr(obj); 820 return ret; 821 } 822 823 static int a6xx_ucode_init(struct msm_gpu *gpu) 824 { 825 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 826 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 827 828 if (!a6xx_gpu->sqe_bo) { 829 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 830 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 831 832 if (IS_ERR(a6xx_gpu->sqe_bo)) { 833 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 834 835 a6xx_gpu->sqe_bo = NULL; 836 DRM_DEV_ERROR(&gpu->pdev->dev, 837 "Could not allocate SQE ucode: %d\n", ret); 838 839 return ret; 840 } 841 842 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 843 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 844 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 845 drm_gem_object_put(a6xx_gpu->sqe_bo); 846 847 a6xx_gpu->sqe_bo = NULL; 848 return -EPERM; 849 } 850 } 851 852 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, 853 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova); 854 855 return 0; 856 } 857 858 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 859 { 860 static bool loaded; 861 int ret; 862 863 if (loaded) 864 return 0; 865 866 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 867 868 loaded = !ret; 869 return ret; 870 } 871 872 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 873 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 874 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 875 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 876 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 877 A6XX_RBBM_INT_0_MASK_CP_RB | \ 878 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 879 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 880 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 881 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 882 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 883 884 static int hw_init(struct msm_gpu *gpu) 885 { 886 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 887 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 888 int ret; 889 890 /* Make sure the GMU keeps the GPU on while we set it up */ 891 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 892 893 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 894 895 /* 896 * Disable the trusted memory range - we don't actually supported secure 897 * memory rendering at this point in time and we don't want to block off 898 * part of the virtual memory space. 899 */ 900 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 901 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 902 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 903 904 /* Turn on 64 bit addressing for all blocks */ 905 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 906 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 907 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 908 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 909 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 910 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 911 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 912 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 913 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 914 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 915 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 916 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 917 918 /* enable hardware clockgating */ 919 a6xx_set_hwcg(gpu, true); 920 921 /* VBIF/GBIF start*/ 922 if (adreno_is_a640_family(adreno_gpu) || 923 adreno_is_a650_family(adreno_gpu)) { 924 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 925 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 926 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 927 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 928 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 929 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 930 } else { 931 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 932 } 933 934 if (adreno_is_a630(adreno_gpu)) 935 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 936 937 /* Make all blocks contribute to the GPU BUSY perf counter */ 938 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 939 940 /* Disable L2 bypass in the UCHE */ 941 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 942 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 943 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 944 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 945 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 946 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 947 948 if (!adreno_is_a650_family(adreno_gpu)) { 949 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 950 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 951 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 952 953 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 954 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 955 0x00100000 + adreno_gpu->gmem - 1); 956 } 957 958 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 959 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 960 961 if (adreno_is_a640_family(adreno_gpu) || 962 adreno_is_a650_family(adreno_gpu)) 963 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 964 else 965 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 966 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 967 968 if (adreno_is_a660_family(adreno_gpu)) 969 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 970 971 /* Setting the mem pool size */ 972 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 973 974 /* Setting the primFifo thresholds default values, 975 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 976 */ 977 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 978 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 979 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 980 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 981 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 982 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 983 else 984 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 985 986 /* Set the AHB default slave response to "ERROR" */ 987 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 988 989 /* Turn on performance counters */ 990 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 991 992 /* Select CP0 to always count cycles */ 993 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 994 995 a6xx_set_ubwc_config(gpu); 996 997 /* Enable fault detection */ 998 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 999 (1 << 30) | 0x1fffff); 1000 1001 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 1002 1003 /* Set weights for bicubic filtering */ 1004 if (adreno_is_a650_family(adreno_gpu)) { 1005 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1006 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1007 0x3fe05ff4); 1008 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1009 0x3fa0ebee); 1010 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1011 0x3f5193ed); 1012 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1013 0x3f0243f0); 1014 } 1015 1016 /* Protect registers from the CP */ 1017 a6xx_set_cp_protect(gpu); 1018 1019 if (adreno_is_a660_family(adreno_gpu)) { 1020 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1021 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1022 } 1023 1024 /* Set dualQ + disable afull for A660 GPU */ 1025 if (adreno_is_a660(adreno_gpu)) 1026 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1027 1028 /* Enable expanded apriv for targets that support it */ 1029 if (gpu->hw_apriv) { 1030 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1031 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 1032 } 1033 1034 /* Enable interrupts */ 1035 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 1036 1037 ret = adreno_hw_init(gpu); 1038 if (ret) 1039 goto out; 1040 1041 ret = a6xx_ucode_init(gpu); 1042 if (ret) 1043 goto out; 1044 1045 /* Set the ringbuffer address */ 1046 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI, 1047 gpu->rb[0]->iova); 1048 1049 /* Targets that support extended APRIV can use the RPTR shadow from 1050 * hardware but all the other ones need to disable the feature. Targets 1051 * that support the WHERE_AM_I opcode can use that instead 1052 */ 1053 if (adreno_gpu->base.hw_apriv) 1054 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1055 else 1056 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1057 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1058 1059 /* 1060 * Expanded APRIV and targets that support WHERE_AM_I both need a 1061 * privileged buffer to store the RPTR shadow 1062 */ 1063 1064 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) { 1065 if (!a6xx_gpu->shadow_bo) { 1066 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1067 sizeof(u32) * gpu->nr_rings, 1068 MSM_BO_WC | MSM_BO_MAP_PRIV, 1069 gpu->aspace, &a6xx_gpu->shadow_bo, 1070 &a6xx_gpu->shadow_iova); 1071 1072 if (IS_ERR(a6xx_gpu->shadow)) 1073 return PTR_ERR(a6xx_gpu->shadow); 1074 } 1075 1076 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO, 1077 REG_A6XX_CP_RB_RPTR_ADDR_HI, 1078 shadowptr(a6xx_gpu, gpu->rb[0])); 1079 } 1080 1081 /* Always come up on rb 0 */ 1082 a6xx_gpu->cur_ring = gpu->rb[0]; 1083 1084 a6xx_gpu->cur_ctx_seqno = 0; 1085 1086 /* Enable the SQE_to start the CP engine */ 1087 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1088 1089 ret = a6xx_cp_init(gpu); 1090 if (ret) 1091 goto out; 1092 1093 /* 1094 * Try to load a zap shader into the secure world. If successful 1095 * we can use the CP to switch out of secure mode. If not then we 1096 * have no resource but to try to switch ourselves out manually. If we 1097 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1098 * be blocked and a permissions violation will soon follow. 1099 */ 1100 ret = a6xx_zap_shader_init(gpu); 1101 if (!ret) { 1102 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1103 OUT_RING(gpu->rb[0], 0x00000000); 1104 1105 a6xx_flush(gpu, gpu->rb[0]); 1106 if (!a6xx_idle(gpu, gpu->rb[0])) 1107 return -EINVAL; 1108 } else if (ret == -ENODEV) { 1109 /* 1110 * This device does not use zap shader (but print a warning 1111 * just in case someone got their dt wrong.. hopefully they 1112 * have a debug UART to realize the error of their ways... 1113 * if you mess this up you are about to crash horribly) 1114 */ 1115 dev_warn_once(gpu->dev->dev, 1116 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1117 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1118 ret = 0; 1119 } else { 1120 return ret; 1121 } 1122 1123 out: 1124 /* 1125 * Tell the GMU that we are done touching the GPU and it can start power 1126 * management 1127 */ 1128 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1129 1130 if (a6xx_gpu->gmu.legacy) { 1131 /* Take the GMU out of its special boot mode */ 1132 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1133 } 1134 1135 return ret; 1136 } 1137 1138 static int a6xx_hw_init(struct msm_gpu *gpu) 1139 { 1140 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1141 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1142 int ret; 1143 1144 mutex_lock(&a6xx_gpu->gmu.lock); 1145 ret = hw_init(gpu); 1146 mutex_unlock(&a6xx_gpu->gmu.lock); 1147 1148 return ret; 1149 } 1150 1151 static void a6xx_dump(struct msm_gpu *gpu) 1152 { 1153 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1154 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1155 adreno_dump(gpu); 1156 } 1157 1158 #define VBIF_RESET_ACK_TIMEOUT 100 1159 #define VBIF_RESET_ACK_MASK 0x00f0 1160 1161 static void a6xx_recover(struct msm_gpu *gpu) 1162 { 1163 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1164 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1165 int i; 1166 1167 adreno_dump_info(gpu); 1168 1169 for (i = 0; i < 8; i++) 1170 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1171 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1172 1173 if (hang_debug) 1174 a6xx_dump(gpu); 1175 1176 /* 1177 * Turn off keep alive that might have been enabled by the hang 1178 * interrupt 1179 */ 1180 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 1181 1182 gpu->funcs->pm_suspend(gpu); 1183 gpu->funcs->pm_resume(gpu); 1184 1185 msm_gpu_hw_init(gpu); 1186 } 1187 1188 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 1189 { 1190 static const char *uche_clients[7] = { 1191 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 1192 }; 1193 u32 val; 1194 1195 if (mid < 1 || mid > 3) 1196 return "UNKNOWN"; 1197 1198 /* 1199 * The source of the data depends on the mid ID read from FSYNR1. 1200 * and the client ID read from the UCHE block 1201 */ 1202 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 1203 1204 /* mid = 3 is most precise and refers to only one block per client */ 1205 if (mid == 3) 1206 return uche_clients[val & 7]; 1207 1208 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 1209 if (mid == 2) 1210 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 1211 1212 /* For mid=1 just return "UCHE" as a catchall for everything else */ 1213 return "UCHE"; 1214 } 1215 1216 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 1217 { 1218 if (id == 0) 1219 return "CP"; 1220 else if (id == 4) 1221 return "CCU"; 1222 else if (id == 6) 1223 return "CDP Prefetch"; 1224 1225 return a6xx_uche_fault_block(gpu, id); 1226 } 1227 1228 #define ARM_SMMU_FSR_TF BIT(1) 1229 #define ARM_SMMU_FSR_PF BIT(3) 1230 #define ARM_SMMU_FSR_EF BIT(4) 1231 1232 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1233 { 1234 struct msm_gpu *gpu = arg; 1235 struct adreno_smmu_fault_info *info = data; 1236 const char *type = "UNKNOWN"; 1237 const char *block; 1238 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate); 1239 1240 /* 1241 * If we aren't going to be resuming later from fault_worker, then do 1242 * it now. 1243 */ 1244 if (!do_devcoredump) { 1245 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu); 1246 } 1247 1248 /* 1249 * Print a default message if we couldn't get the data from the 1250 * adreno-smmu-priv 1251 */ 1252 if (!info) { 1253 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n", 1254 iova, flags, 1255 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1256 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1257 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1258 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1259 1260 return 0; 1261 } 1262 1263 if (info->fsr & ARM_SMMU_FSR_TF) 1264 type = "TRANSLATION"; 1265 else if (info->fsr & ARM_SMMU_FSR_PF) 1266 type = "PERMISSION"; 1267 else if (info->fsr & ARM_SMMU_FSR_EF) 1268 type = "EXTERNAL"; 1269 1270 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 1271 1272 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n", 1273 info->ttbr0, iova, 1274 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ", 1275 type, block, 1276 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 1277 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 1278 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 1279 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 1280 1281 if (do_devcoredump) { 1282 /* Turn off the hangcheck timer to keep it from bothering us */ 1283 del_timer(&gpu->hangcheck_timer); 1284 1285 gpu->fault_info.ttbr0 = info->ttbr0; 1286 gpu->fault_info.iova = iova; 1287 gpu->fault_info.flags = flags; 1288 gpu->fault_info.type = type; 1289 gpu->fault_info.block = block; 1290 1291 kthread_queue_work(gpu->worker, &gpu->fault_work); 1292 } 1293 1294 return 0; 1295 } 1296 1297 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 1298 { 1299 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 1300 1301 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 1302 u32 val; 1303 1304 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 1305 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 1306 dev_err_ratelimited(&gpu->pdev->dev, 1307 "CP | opcode error | possible opcode=0x%8.8X\n", 1308 val); 1309 } 1310 1311 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 1312 dev_err_ratelimited(&gpu->pdev->dev, 1313 "CP ucode error interrupt\n"); 1314 1315 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 1316 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 1317 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 1318 1319 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1320 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 1321 1322 dev_err_ratelimited(&gpu->pdev->dev, 1323 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1324 val & (1 << 20) ? "READ" : "WRITE", 1325 (val & 0x3ffff), val); 1326 } 1327 1328 if (status & A6XX_CP_INT_CP_AHB_ERROR) 1329 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 1330 1331 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 1332 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 1333 1334 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 1335 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 1336 1337 } 1338 1339 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 1340 { 1341 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1342 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1343 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1344 1345 /* 1346 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1347 * but the fault handler will trigger the devcore dump, and we want 1348 * to otherwise resume normally rather than killing the submit, so 1349 * just bail. 1350 */ 1351 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 1352 return; 1353 1354 /* 1355 * Force the GPU to stay on until after we finish 1356 * collecting information 1357 */ 1358 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 1359 1360 DRM_DEV_ERROR(&gpu->pdev->dev, 1361 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1362 ring ? ring->id : -1, ring ? ring->seqno : 0, 1363 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 1364 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 1365 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 1366 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 1367 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 1368 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 1369 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 1370 1371 /* Turn off the hangcheck timer to keep it from bothering us */ 1372 del_timer(&gpu->hangcheck_timer); 1373 1374 kthread_queue_work(gpu->worker, &gpu->recover_work); 1375 } 1376 1377 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 1378 { 1379 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 1380 1381 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 1382 1383 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 1384 a6xx_fault_detect_irq(gpu); 1385 1386 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 1387 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 1388 1389 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1390 a6xx_cp_hw_err_irq(gpu); 1391 1392 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 1393 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 1394 1395 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1396 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 1397 1398 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1399 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 1400 1401 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 1402 msm_gpu_retire(gpu); 1403 1404 return IRQ_HANDLED; 1405 } 1406 1407 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) 1408 { 1409 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); 1410 } 1411 1412 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) 1413 { 1414 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2)); 1415 } 1416 1417 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 1418 { 1419 llcc_slice_deactivate(a6xx_gpu->llc_slice); 1420 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 1421 } 1422 1423 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 1424 { 1425 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1426 struct msm_gpu *gpu = &adreno_gpu->base; 1427 u32 cntl1_regval = 0; 1428 1429 if (IS_ERR(a6xx_gpu->llc_mmio)) 1430 return; 1431 1432 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 1433 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 1434 1435 gpu_scid &= 0x1f; 1436 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 1437 (gpu_scid << 15) | (gpu_scid << 20); 1438 1439 /* On A660, the SCID programming for UCHE traffic is done in 1440 * A6XX_GBIF_SCACHE_CNTL0[14:10] 1441 */ 1442 if (adreno_is_a660_family(adreno_gpu)) 1443 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 1444 (1 << 8), (gpu_scid << 10) | (1 << 8)); 1445 } 1446 1447 /* 1448 * For targets with a MMU500, activate the slice but don't program the 1449 * register. The XBL will take care of that. 1450 */ 1451 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 1452 if (!a6xx_gpu->have_mmu500) { 1453 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 1454 1455 gpuhtw_scid &= 0x1f; 1456 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 1457 } 1458 } 1459 1460 if (!cntl1_regval) 1461 return; 1462 1463 /* 1464 * Program the slice IDs for the various GPU blocks and GPU MMU 1465 * pagetables 1466 */ 1467 if (!a6xx_gpu->have_mmu500) { 1468 a6xx_llc_write(a6xx_gpu, 1469 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 1470 1471 /* 1472 * Program cacheability overrides to not allocate cache 1473 * lines on a write miss 1474 */ 1475 a6xx_llc_rmw(a6xx_gpu, 1476 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 1477 return; 1478 } 1479 1480 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 1481 } 1482 1483 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 1484 { 1485 llcc_slice_putd(a6xx_gpu->llc_slice); 1486 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 1487 } 1488 1489 static void a6xx_llc_slices_init(struct platform_device *pdev, 1490 struct a6xx_gpu *a6xx_gpu) 1491 { 1492 struct device_node *phandle; 1493 1494 /* 1495 * There is a different programming path for targets with an mmu500 1496 * attached, so detect if that is the case 1497 */ 1498 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 1499 a6xx_gpu->have_mmu500 = (phandle && 1500 of_device_is_compatible(phandle, "arm,mmu-500")); 1501 of_node_put(phandle); 1502 1503 if (a6xx_gpu->have_mmu500) 1504 a6xx_gpu->llc_mmio = NULL; 1505 else 1506 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx"); 1507 1508 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 1509 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 1510 1511 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1512 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 1513 } 1514 1515 static int a6xx_pm_resume(struct msm_gpu *gpu) 1516 { 1517 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1518 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1519 int ret; 1520 1521 gpu->needs_hw_init = true; 1522 1523 trace_msm_gpu_resume(0); 1524 1525 mutex_lock(&a6xx_gpu->gmu.lock); 1526 ret = a6xx_gmu_resume(a6xx_gpu); 1527 mutex_unlock(&a6xx_gpu->gmu.lock); 1528 if (ret) 1529 return ret; 1530 1531 msm_devfreq_resume(gpu); 1532 1533 a6xx_llc_activate(a6xx_gpu); 1534 1535 return 0; 1536 } 1537 1538 static int a6xx_pm_suspend(struct msm_gpu *gpu) 1539 { 1540 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1541 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1542 int i, ret; 1543 1544 trace_msm_gpu_suspend(0); 1545 1546 a6xx_llc_deactivate(a6xx_gpu); 1547 1548 msm_devfreq_suspend(gpu); 1549 1550 mutex_lock(&a6xx_gpu->gmu.lock); 1551 ret = a6xx_gmu_stop(a6xx_gpu); 1552 mutex_unlock(&a6xx_gpu->gmu.lock); 1553 if (ret) 1554 return ret; 1555 1556 if (a6xx_gpu->shadow_bo) 1557 for (i = 0; i < gpu->nr_rings; i++) 1558 a6xx_gpu->shadow[i] = 0; 1559 1560 return 0; 1561 } 1562 1563 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1564 { 1565 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1566 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1567 1568 mutex_lock(&a6xx_gpu->gmu.lock); 1569 1570 /* Force the GPU power on so we can read this register */ 1571 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1572 1573 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO, 1574 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI); 1575 1576 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 1577 1578 mutex_unlock(&a6xx_gpu->gmu.lock); 1579 1580 return 0; 1581 } 1582 1583 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 1584 { 1585 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1586 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1587 1588 return a6xx_gpu->cur_ring; 1589 } 1590 1591 static void a6xx_destroy(struct msm_gpu *gpu) 1592 { 1593 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1594 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1595 1596 if (a6xx_gpu->sqe_bo) { 1597 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1598 drm_gem_object_put(a6xx_gpu->sqe_bo); 1599 } 1600 1601 if (a6xx_gpu->shadow_bo) { 1602 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 1603 drm_gem_object_put(a6xx_gpu->shadow_bo); 1604 } 1605 1606 a6xx_llc_slices_destroy(a6xx_gpu); 1607 1608 a6xx_gmu_remove(a6xx_gpu); 1609 1610 adreno_gpu_cleanup(adreno_gpu); 1611 1612 kfree(a6xx_gpu); 1613 } 1614 1615 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 1616 { 1617 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1618 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1619 u64 busy_cycles, busy_time; 1620 1621 1622 /* Only read the gpu busy if the hardware is already active */ 1623 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0) 1624 return 0; 1625 1626 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 1627 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 1628 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 1629 1630 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 1631 do_div(busy_time, 192); 1632 1633 gpu->devfreq.busy_cycles = busy_cycles; 1634 1635 pm_runtime_put(a6xx_gpu->gmu.dev); 1636 1637 if (WARN_ON(busy_time > ~0LU)) 1638 return ~0LU; 1639 1640 return (unsigned long)busy_time; 1641 } 1642 1643 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp) 1644 { 1645 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1646 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1647 1648 mutex_lock(&a6xx_gpu->gmu.lock); 1649 a6xx_gmu_set_freq(gpu, opp); 1650 mutex_unlock(&a6xx_gpu->gmu.lock); 1651 } 1652 1653 static struct msm_gem_address_space * 1654 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 1655 { 1656 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1657 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1658 struct iommu_domain *iommu; 1659 struct msm_mmu *mmu; 1660 struct msm_gem_address_space *aspace; 1661 u64 start, size; 1662 1663 iommu = iommu_domain_alloc(&platform_bus_type); 1664 if (!iommu) 1665 return NULL; 1666 1667 /* 1668 * This allows GPU to set the bus attributes required to use system 1669 * cache on behalf of the iommu page table walker. 1670 */ 1671 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 1672 adreno_set_llc_attributes(iommu); 1673 1674 mmu = msm_iommu_new(&pdev->dev, iommu); 1675 if (IS_ERR(mmu)) { 1676 iommu_domain_free(iommu); 1677 return ERR_CAST(mmu); 1678 } 1679 1680 /* 1681 * Use the aperture start or SZ_16M, whichever is greater. This will 1682 * ensure that we align with the allocated pagetable range while still 1683 * allowing room in the lower 32 bits for GMEM and whatnot 1684 */ 1685 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); 1686 size = iommu->geometry.aperture_end - start + 1; 1687 1688 aspace = msm_gem_address_space_create(mmu, "gpu", 1689 start & GENMASK_ULL(48, 0), size); 1690 1691 if (IS_ERR(aspace) && !IS_ERR(mmu)) 1692 mmu->funcs->destroy(mmu); 1693 1694 return aspace; 1695 } 1696 1697 static struct msm_gem_address_space * 1698 a6xx_create_private_address_space(struct msm_gpu *gpu) 1699 { 1700 struct msm_mmu *mmu; 1701 1702 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 1703 1704 if (IS_ERR(mmu)) 1705 return ERR_CAST(mmu); 1706 1707 return msm_gem_address_space_create(mmu, 1708 "gpu", 0x100000000ULL, 0x1ffffffffULL); 1709 } 1710 1711 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1712 { 1713 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1714 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1715 1716 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 1717 return a6xx_gpu->shadow[ring->id]; 1718 1719 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 1720 } 1721 1722 static u32 a618_get_speed_bin(u32 fuse) 1723 { 1724 if (fuse == 0) 1725 return 0; 1726 else if (fuse == 169) 1727 return 1; 1728 else if (fuse == 174) 1729 return 2; 1730 1731 return UINT_MAX; 1732 } 1733 1734 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse) 1735 { 1736 u32 val = UINT_MAX; 1737 1738 if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev)) 1739 val = a618_get_speed_bin(fuse); 1740 1741 if (val == UINT_MAX) { 1742 DRM_DEV_ERROR(dev, 1743 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware", 1744 fuse); 1745 return UINT_MAX; 1746 } 1747 1748 return (1 << val); 1749 } 1750 1751 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev) 1752 { 1753 u32 supp_hw = UINT_MAX; 1754 u32 speedbin; 1755 int ret; 1756 1757 ret = nvmem_cell_read_variable_le_u32(dev, "speed_bin", &speedbin); 1758 /* 1759 * -ENOENT means that the platform doesn't support speedbin which is 1760 * fine 1761 */ 1762 if (ret == -ENOENT) { 1763 return 0; 1764 } else if (ret) { 1765 DRM_DEV_ERROR(dev, 1766 "failed to read speed-bin (%d). Some OPPs may not be supported by hardware", 1767 ret); 1768 goto done; 1769 } 1770 1771 supp_hw = fuse_to_supp_hw(dev, rev, speedbin); 1772 1773 done: 1774 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 1775 if (ret) 1776 return ret; 1777 1778 return 0; 1779 } 1780 1781 static const struct adreno_gpu_funcs funcs = { 1782 .base = { 1783 .get_param = adreno_get_param, 1784 .hw_init = a6xx_hw_init, 1785 .pm_suspend = a6xx_pm_suspend, 1786 .pm_resume = a6xx_pm_resume, 1787 .recover = a6xx_recover, 1788 .submit = a6xx_submit, 1789 .active_ring = a6xx_active_ring, 1790 .irq = a6xx_irq, 1791 .destroy = a6xx_destroy, 1792 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1793 .show = a6xx_show, 1794 #endif 1795 .gpu_busy = a6xx_gpu_busy, 1796 .gpu_get_freq = a6xx_gmu_get_freq, 1797 .gpu_set_freq = a6xx_gpu_set_freq, 1798 #if defined(CONFIG_DRM_MSM_GPU_STATE) 1799 .gpu_state_get = a6xx_gpu_state_get, 1800 .gpu_state_put = a6xx_gpu_state_put, 1801 #endif 1802 .create_address_space = a6xx_create_address_space, 1803 .create_private_address_space = a6xx_create_private_address_space, 1804 .get_rptr = a6xx_get_rptr, 1805 }, 1806 .get_timestamp = a6xx_get_timestamp, 1807 }; 1808 1809 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 1810 { 1811 struct msm_drm_private *priv = dev->dev_private; 1812 struct platform_device *pdev = priv->gpu_pdev; 1813 struct adreno_platform_config *config = pdev->dev.platform_data; 1814 const struct adreno_info *info; 1815 struct device_node *node; 1816 struct a6xx_gpu *a6xx_gpu; 1817 struct adreno_gpu *adreno_gpu; 1818 struct msm_gpu *gpu; 1819 int ret; 1820 1821 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 1822 if (!a6xx_gpu) 1823 return ERR_PTR(-ENOMEM); 1824 1825 adreno_gpu = &a6xx_gpu->base; 1826 gpu = &adreno_gpu->base; 1827 1828 adreno_gpu->registers = NULL; 1829 1830 /* 1831 * We need to know the platform type before calling into adreno_gpu_init 1832 * so that the hw_apriv flag can be correctly set. Snoop into the info 1833 * and grab the revision number 1834 */ 1835 info = adreno_info(config->rev); 1836 1837 if (info && (info->revn == 650 || info->revn == 660 || 1838 adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev))) 1839 adreno_gpu->base.hw_apriv = true; 1840 1841 /* 1842 * For now only clamp to idle freq for devices where this is known not 1843 * to cause power supply issues: 1844 */ 1845 if (info && (info->revn == 618)) 1846 gpu->clamp_to_idle = true; 1847 1848 a6xx_llc_slices_init(pdev, a6xx_gpu); 1849 1850 ret = a6xx_set_supported_hw(&pdev->dev, config->rev); 1851 if (ret) { 1852 a6xx_destroy(&(a6xx_gpu->base.base)); 1853 return ERR_PTR(ret); 1854 } 1855 1856 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 1857 if (ret) { 1858 a6xx_destroy(&(a6xx_gpu->base.base)); 1859 return ERR_PTR(ret); 1860 } 1861 1862 /* Check if there is a GMU phandle and set it up */ 1863 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 1864 1865 /* FIXME: How do we gracefully handle this? */ 1866 BUG_ON(!node); 1867 1868 ret = a6xx_gmu_init(a6xx_gpu, node); 1869 if (ret) { 1870 a6xx_destroy(&(a6xx_gpu->base.base)); 1871 return ERR_PTR(ret); 1872 } 1873 1874 if (gpu->aspace) 1875 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 1876 a6xx_fault_handler); 1877 1878 return gpu; 1879 } 1880