xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision 67559900)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	phys_addr_t ttbr;
106 	u32 asid;
107 	u64 memptr = rbmemptr(ring, ttbr0);
108 
109 	if (ctx->seqno == a6xx_gpu->cur_ctx_seqno)
110 		return;
111 
112 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
113 		return;
114 
115 	/* Execute the table update */
116 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
117 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
118 
119 	OUT_RING(ring,
120 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
121 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
122 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
123 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
124 
125 	/*
126 	 * Write the new TTBR0 to the memstore. This is good for debugging.
127 	 */
128 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
129 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
130 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
131 	OUT_RING(ring, lower_32_bits(ttbr));
132 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
133 
134 	/*
135 	 * And finally, trigger a uche flush to be sure there isn't anything
136 	 * lingering in that part of the GPU
137 	 */
138 
139 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
140 	OUT_RING(ring, 0x31);
141 
142 	a6xx_gpu->cur_ctx_seqno = ctx->seqno;
143 }
144 
145 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
146 {
147 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
148 	struct msm_drm_private *priv = gpu->dev->dev_private;
149 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
150 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
151 	struct msm_ringbuffer *ring = submit->ring;
152 	unsigned int i, ibs = 0;
153 
154 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
155 
156 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
157 		rbmemptr_stats(ring, index, cpcycles_start));
158 
159 	/*
160 	 * For PM4 the GMU register offsets are calculated from the base of the
161 	 * GPU registers so we need to add 0x1a800 to the register value on A630
162 	 * to get the right value from PM4.
163 	 */
164 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
165 		rbmemptr_stats(ring, index, alwayson_start));
166 
167 	/* Invalidate CCU depth and color */
168 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
169 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
170 
171 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
172 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
173 
174 	/* Submit the commands */
175 	for (i = 0; i < submit->nr_cmds; i++) {
176 		switch (submit->cmd[i].type) {
177 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
178 			break;
179 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
180 			if (priv->lastctx == submit->queue->ctx)
181 				break;
182 			fallthrough;
183 		case MSM_SUBMIT_CMD_BUF:
184 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
185 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
186 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
187 			OUT_RING(ring, submit->cmd[i].size);
188 			ibs++;
189 			break;
190 		}
191 
192 		/*
193 		 * Periodically update shadow-wptr if needed, so that we
194 		 * can see partial progress of submits with large # of
195 		 * cmds.. otherwise we could needlessly stall waiting for
196 		 * ringbuffer state, simply due to looking at a shadow
197 		 * rptr value that has not been updated
198 		 */
199 		if ((ibs % 32) == 0)
200 			update_shadow_rptr(gpu, ring);
201 	}
202 
203 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
204 		rbmemptr_stats(ring, index, cpcycles_end));
205 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
206 		rbmemptr_stats(ring, index, alwayson_end));
207 
208 	/* Write the fence to the scratch register */
209 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
210 	OUT_RING(ring, submit->seqno);
211 
212 	/*
213 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
214 	 * timestamp is written to the memory and then triggers the interrupt
215 	 */
216 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
217 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
218 		CP_EVENT_WRITE_0_IRQ);
219 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
220 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
221 	OUT_RING(ring, submit->seqno);
222 
223 	trace_msm_gpu_submit_flush(submit,
224 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
225 			REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
226 
227 	a6xx_flush(gpu, ring);
228 }
229 
230 const struct adreno_reglist a630_hwcg[] = {
231 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
232 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
233 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
234 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
235 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
236 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
237 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
238 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
239 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
240 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
241 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
242 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
243 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
244 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
245 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
246 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
247 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
248 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
249 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
250 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
251 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
252 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
253 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
254 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
255 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
256 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
257 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
258 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
259 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
260 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
261 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
262 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
263 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
264 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
265 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
266 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
267 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
268 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
269 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
270 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
272 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
273 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
274 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
275 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
276 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
277 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
278 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
279 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
280 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
281 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
282 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
283 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
284 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
285 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
286 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
287 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
288 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
289 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
290 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
291 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
292 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
293 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
294 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
295 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
296 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
297 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
298 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
299 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
300 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
301 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
302 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
303 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
304 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
305 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
306 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
307 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
308 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
309 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
310 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
311 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
312 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
313 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
314 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
315 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
316 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
317 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
318 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
319 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
320 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
321 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
322 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
323 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
324 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
325 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
326 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
327 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
328 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
329 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
330 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
331 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
332 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
333 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
334 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
335 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
336 	{},
337 };
338 
339 const struct adreno_reglist a640_hwcg[] = {
340 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
341 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
342 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
343 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
344 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
345 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
346 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
347 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
348 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
349 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
350 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
351 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
352 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
353 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
354 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
355 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
356 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
357 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
358 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
359 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
360 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
361 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
362 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
363 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
364 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
365 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
366 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
367 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
368 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
369 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
370 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
371 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
372 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
373 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
374 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
375 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
376 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
377 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
378 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
379 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
380 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
381 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
382 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
383 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
384 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
385 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
386 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
387 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
388 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
389 	{},
390 };
391 
392 const struct adreno_reglist a650_hwcg[] = {
393 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
394 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
395 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
396 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
397 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
398 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
400 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
401 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
402 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
403 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
404 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
405 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
406 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
407 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
408 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
409 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
410 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
411 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
412 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
413 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
414 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
415 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
416 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
417 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
418 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
419 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
421 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
423 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
424 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
425 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
426 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
427 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
428 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
429 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
430 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
431 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
432 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
433 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
434 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
435 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
436 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
437 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
438 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
439 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
440 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
441 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
442 	{},
443 };
444 
445 const struct adreno_reglist a660_hwcg[] = {
446 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
447 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
448 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
449 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
450 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
451 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
452 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
453 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
454 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
455 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
456 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
457 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
458 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
459 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
460 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
461 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
462 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
463 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
464 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
465 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
466 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
467 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
468 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
469 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
470 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
471 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
472 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
473 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
474 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
475 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
476 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
477 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
478 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
479 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
480 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
481 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
482 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
483 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
484 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
485 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
486 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
487 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
488 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
489 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
490 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
491 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
492 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
493 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
494 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
495 	{},
496 };
497 
498 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
499 {
500 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
501 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
502 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
503 	const struct adreno_reglist *reg;
504 	unsigned int i;
505 	u32 val, clock_cntl_on;
506 
507 	if (!adreno_gpu->info->hwcg)
508 		return;
509 
510 	if (adreno_is_a630(adreno_gpu))
511 		clock_cntl_on = 0x8aa8aa02;
512 	else
513 		clock_cntl_on = 0x8aa8aa82;
514 
515 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
516 
517 	/* Don't re-program the registers if they are already correct */
518 	if ((!state && !val) || (state && (val == clock_cntl_on)))
519 		return;
520 
521 	/* Disable SP clock before programming HWCG registers */
522 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
523 
524 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
525 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
526 
527 	/* Enable SP clock */
528 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
529 
530 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
531 }
532 
533 /* For a615, a616, a618, A619, a630, a640 and a680 */
534 static const u32 a6xx_protect[] = {
535 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
536 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
537 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
538 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
539 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
540 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
541 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
542 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
543 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
544 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
545 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
546 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
547 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
548 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
549 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
550 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
551 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
552 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
553 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
554 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
555 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
556 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
557 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
558 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
559 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
560 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
561 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
562 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
563 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
564 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
565 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
566 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
567 };
568 
569 /* These are for a620 and a650 */
570 static const u32 a650_protect[] = {
571 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
572 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
573 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
574 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
575 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
576 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
577 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
578 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
579 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
580 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
581 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
582 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
583 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
584 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
585 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
586 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
587 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
588 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
589 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
590 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
591 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
592 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
593 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
594 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
595 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
596 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
597 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
598 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
599 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
600 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
601 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
602 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
603 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
604 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
605 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
606 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
607 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
608 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
609 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
610 };
611 
612 /* These are for a635 and a660 */
613 static const u32 a660_protect[] = {
614 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
615 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
616 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
617 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
618 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
619 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
620 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
621 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
622 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
623 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
624 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
625 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
626 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
627 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
628 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
629 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
630 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
631 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
632 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
633 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
634 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
635 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
636 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
637 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
638 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
639 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
640 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
641 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
642 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
643 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
644 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
645 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
646 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
647 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
648 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
649 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
650 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
651 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
652 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
653 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
654 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
655 };
656 
657 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
658 {
659 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
660 	const u32 *regs = a6xx_protect;
661 	unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
662 
663 	BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
664 	BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
665 
666 	if (adreno_is_a650(adreno_gpu)) {
667 		regs = a650_protect;
668 		count = ARRAY_SIZE(a650_protect);
669 		count_max = 48;
670 	} else if (adreno_is_a660_family(adreno_gpu)) {
671 		regs = a660_protect;
672 		count = ARRAY_SIZE(a660_protect);
673 		count_max = 48;
674 	}
675 
676 	/*
677 	 * Enable access protection to privileged registers, fault on an access
678 	 * protect violation and select the last span to protect from the start
679 	 * address all the way to the end of the register address space
680 	 */
681 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
682 
683 	for (i = 0; i < count - 1; i++)
684 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
685 	/* last CP_PROTECT to have "infinite" length on the last entry */
686 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
687 }
688 
689 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
690 {
691 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
692 	u32 lower_bit = 2;
693 	u32 amsbc = 0;
694 	u32 rgb565_predicator = 0;
695 	u32 uavflagprd_inv = 0;
696 
697 	/* a618 is using the hw default values */
698 	if (adreno_is_a618(adreno_gpu))
699 		return;
700 
701 	if (adreno_is_a640_family(adreno_gpu))
702 		amsbc = 1;
703 
704 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
705 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
706 		lower_bit = 3;
707 		amsbc = 1;
708 		rgb565_predicator = 1;
709 		uavflagprd_inv = 2;
710 	}
711 
712 	if (adreno_is_7c3(adreno_gpu)) {
713 		lower_bit = 1;
714 		amsbc = 1;
715 		rgb565_predicator = 1;
716 		uavflagprd_inv = 2;
717 	}
718 
719 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
720 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
721 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
722 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
723 		uavflagprd_inv << 4 | lower_bit << 1);
724 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
725 }
726 
727 static int a6xx_cp_init(struct msm_gpu *gpu)
728 {
729 	struct msm_ringbuffer *ring = gpu->rb[0];
730 
731 	OUT_PKT7(ring, CP_ME_INIT, 8);
732 
733 	OUT_RING(ring, 0x0000002f);
734 
735 	/* Enable multiple hardware contexts */
736 	OUT_RING(ring, 0x00000003);
737 
738 	/* Enable error detection */
739 	OUT_RING(ring, 0x20000000);
740 
741 	/* Don't enable header dump */
742 	OUT_RING(ring, 0x00000000);
743 	OUT_RING(ring, 0x00000000);
744 
745 	/* No workarounds enabled */
746 	OUT_RING(ring, 0x00000000);
747 
748 	/* Pad rest of the cmds with 0's */
749 	OUT_RING(ring, 0x00000000);
750 	OUT_RING(ring, 0x00000000);
751 
752 	a6xx_flush(gpu, ring);
753 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
754 }
755 
756 /*
757  * Check that the microcode version is new enough to include several key
758  * security fixes. Return true if the ucode is safe.
759  */
760 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
761 		struct drm_gem_object *obj)
762 {
763 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
764 	struct msm_gpu *gpu = &adreno_gpu->base;
765 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
766 	u32 *buf = msm_gem_get_vaddr(obj);
767 	bool ret = false;
768 
769 	if (IS_ERR(buf))
770 		return false;
771 
772 	/*
773 	 * Targets up to a640 (a618, a630 and a640) need to check for a
774 	 * microcode version that is patched to support the whereami opcode or
775 	 * one that is new enough to include it by default.
776 	 *
777 	 * a650 tier targets don't need whereami but still need to be
778 	 * equal to or newer than 0.95 for other security fixes
779 	 *
780 	 * a660 targets have all the critical security fixes from the start
781 	 */
782 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
783 		/*
784 		 * If the lowest nibble is 0xa that is an indication that this
785 		 * microcode has been patched. The actual version is in dword
786 		 * [3] but we only care about the patchlevel which is the lowest
787 		 * nibble of dword [3]
788 		 *
789 		 * Otherwise check that the firmware is greater than or equal
790 		 * to 1.90 which was the first version that had this fix built
791 		 * in
792 		 */
793 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
794 			(buf[0] & 0xfff) >= 0x190) {
795 			a6xx_gpu->has_whereami = true;
796 			ret = true;
797 			goto out;
798 		}
799 
800 		DRM_DEV_ERROR(&gpu->pdev->dev,
801 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
802 			buf[0] & 0xfff, 0x190);
803 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
804 		if ((buf[0] & 0xfff) >= 0x095) {
805 			ret = true;
806 			goto out;
807 		}
808 
809 		DRM_DEV_ERROR(&gpu->pdev->dev,
810 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
811 			buf[0] & 0xfff, 0x095);
812 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
813 		ret = true;
814 	} else {
815 		DRM_DEV_ERROR(&gpu->pdev->dev,
816 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
817 	}
818 out:
819 	msm_gem_put_vaddr(obj);
820 	return ret;
821 }
822 
823 static int a6xx_ucode_init(struct msm_gpu *gpu)
824 {
825 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
826 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
827 
828 	if (!a6xx_gpu->sqe_bo) {
829 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
830 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
831 
832 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
833 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
834 
835 			a6xx_gpu->sqe_bo = NULL;
836 			DRM_DEV_ERROR(&gpu->pdev->dev,
837 				"Could not allocate SQE ucode: %d\n", ret);
838 
839 			return ret;
840 		}
841 
842 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
843 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
844 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
845 			drm_gem_object_put(a6xx_gpu->sqe_bo);
846 
847 			a6xx_gpu->sqe_bo = NULL;
848 			return -EPERM;
849 		}
850 	}
851 
852 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
853 		REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
854 
855 	return 0;
856 }
857 
858 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
859 {
860 	static bool loaded;
861 	int ret;
862 
863 	if (loaded)
864 		return 0;
865 
866 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
867 
868 	loaded = !ret;
869 	return ret;
870 }
871 
872 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
873 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
874 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
875 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
876 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
877 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
878 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
879 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
880 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
881 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
882 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
883 
884 static int hw_init(struct msm_gpu *gpu)
885 {
886 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
887 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
888 	int ret;
889 
890 	/* Make sure the GMU keeps the GPU on while we set it up */
891 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
892 
893 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
894 
895 	/*
896 	 * Disable the trusted memory range - we don't actually supported secure
897 	 * memory rendering at this point in time and we don't want to block off
898 	 * part of the virtual memory space.
899 	 */
900 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
901 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
902 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
903 
904 	/* Turn on 64 bit addressing for all blocks */
905 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
906 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
907 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
908 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
909 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
910 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
911 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
912 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
913 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
914 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
915 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
916 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
917 
918 	/* enable hardware clockgating */
919 	a6xx_set_hwcg(gpu, true);
920 
921 	/* VBIF/GBIF start*/
922 	if (adreno_is_a640_family(adreno_gpu) ||
923 	    adreno_is_a650_family(adreno_gpu)) {
924 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
925 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
926 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
927 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
928 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
929 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
930 	} else {
931 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
932 	}
933 
934 	if (adreno_is_a630(adreno_gpu))
935 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
936 
937 	/* Make all blocks contribute to the GPU BUSY perf counter */
938 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
939 
940 	/* Disable L2 bypass in the UCHE */
941 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
942 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
943 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
944 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
945 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
946 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
947 
948 	if (!adreno_is_a650_family(adreno_gpu)) {
949 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
950 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
951 			REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
952 
953 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
954 			REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
955 			0x00100000 + adreno_gpu->gmem - 1);
956 	}
957 
958 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
959 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
960 
961 	if (adreno_is_a640_family(adreno_gpu) ||
962 	    adreno_is_a650_family(adreno_gpu))
963 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
964 	else
965 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
966 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
967 
968 	if (adreno_is_a660_family(adreno_gpu))
969 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
970 
971 	/* Setting the mem pool size */
972 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
973 
974 	/* Setting the primFifo thresholds default values,
975 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
976 	*/
977 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
978 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
979 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
980 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
981 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
982 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
983 	else
984 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
985 
986 	/* Set the AHB default slave response to "ERROR" */
987 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
988 
989 	/* Turn on performance counters */
990 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
991 
992 	/* Select CP0 to always count cycles */
993 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
994 
995 	a6xx_set_ubwc_config(gpu);
996 
997 	/* Enable fault detection */
998 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
999 		(1 << 30) | 0x1fffff);
1000 
1001 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1002 
1003 	/* Set weights for bicubic filtering */
1004 	if (adreno_is_a650_family(adreno_gpu)) {
1005 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1006 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1007 			0x3fe05ff4);
1008 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1009 			0x3fa0ebee);
1010 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1011 			0x3f5193ed);
1012 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1013 			0x3f0243f0);
1014 	}
1015 
1016 	/* Protect registers from the CP */
1017 	a6xx_set_cp_protect(gpu);
1018 
1019 	if (adreno_is_a660_family(adreno_gpu)) {
1020 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1021 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1022 	}
1023 
1024 	/* Set dualQ + disable afull for A660 GPU */
1025 	if (adreno_is_a660(adreno_gpu))
1026 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1027 
1028 	/* Enable expanded apriv for targets that support it */
1029 	if (gpu->hw_apriv) {
1030 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1031 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1032 	}
1033 
1034 	/* Enable interrupts */
1035 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1036 
1037 	ret = adreno_hw_init(gpu);
1038 	if (ret)
1039 		goto out;
1040 
1041 	ret = a6xx_ucode_init(gpu);
1042 	if (ret)
1043 		goto out;
1044 
1045 	/* Set the ringbuffer address */
1046 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1047 		gpu->rb[0]->iova);
1048 
1049 	/* Targets that support extended APRIV can use the RPTR shadow from
1050 	 * hardware but all the other ones need to disable the feature. Targets
1051 	 * that support the WHERE_AM_I opcode can use that instead
1052 	 */
1053 	if (adreno_gpu->base.hw_apriv)
1054 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1055 	else
1056 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1057 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1058 
1059 	/*
1060 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1061 	 * privileged buffer to store the RPTR shadow
1062 	 */
1063 
1064 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1065 		if (!a6xx_gpu->shadow_bo) {
1066 			a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1067 				sizeof(u32) * gpu->nr_rings,
1068 				MSM_BO_WC | MSM_BO_MAP_PRIV,
1069 				gpu->aspace, &a6xx_gpu->shadow_bo,
1070 				&a6xx_gpu->shadow_iova);
1071 
1072 			if (IS_ERR(a6xx_gpu->shadow))
1073 				return PTR_ERR(a6xx_gpu->shadow);
1074 		}
1075 
1076 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1077 			REG_A6XX_CP_RB_RPTR_ADDR_HI,
1078 			shadowptr(a6xx_gpu, gpu->rb[0]));
1079 	}
1080 
1081 	/* Always come up on rb 0 */
1082 	a6xx_gpu->cur_ring = gpu->rb[0];
1083 
1084 	a6xx_gpu->cur_ctx_seqno = 0;
1085 
1086 	/* Enable the SQE_to start the CP engine */
1087 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1088 
1089 	ret = a6xx_cp_init(gpu);
1090 	if (ret)
1091 		goto out;
1092 
1093 	/*
1094 	 * Try to load a zap shader into the secure world. If successful
1095 	 * we can use the CP to switch out of secure mode. If not then we
1096 	 * have no resource but to try to switch ourselves out manually. If we
1097 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1098 	 * be blocked and a permissions violation will soon follow.
1099 	 */
1100 	ret = a6xx_zap_shader_init(gpu);
1101 	if (!ret) {
1102 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1103 		OUT_RING(gpu->rb[0], 0x00000000);
1104 
1105 		a6xx_flush(gpu, gpu->rb[0]);
1106 		if (!a6xx_idle(gpu, gpu->rb[0]))
1107 			return -EINVAL;
1108 	} else if (ret == -ENODEV) {
1109 		/*
1110 		 * This device does not use zap shader (but print a warning
1111 		 * just in case someone got their dt wrong.. hopefully they
1112 		 * have a debug UART to realize the error of their ways...
1113 		 * if you mess this up you are about to crash horribly)
1114 		 */
1115 		dev_warn_once(gpu->dev->dev,
1116 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1117 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1118 		ret = 0;
1119 	} else {
1120 		return ret;
1121 	}
1122 
1123 out:
1124 	/*
1125 	 * Tell the GMU that we are done touching the GPU and it can start power
1126 	 * management
1127 	 */
1128 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1129 
1130 	if (a6xx_gpu->gmu.legacy) {
1131 		/* Take the GMU out of its special boot mode */
1132 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1133 	}
1134 
1135 	return ret;
1136 }
1137 
1138 static int a6xx_hw_init(struct msm_gpu *gpu)
1139 {
1140 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1141 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1142 	int ret;
1143 
1144 	mutex_lock(&a6xx_gpu->gmu.lock);
1145 	ret = hw_init(gpu);
1146 	mutex_unlock(&a6xx_gpu->gmu.lock);
1147 
1148 	return ret;
1149 }
1150 
1151 static void a6xx_dump(struct msm_gpu *gpu)
1152 {
1153 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1154 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1155 	adreno_dump(gpu);
1156 }
1157 
1158 #define VBIF_RESET_ACK_TIMEOUT	100
1159 #define VBIF_RESET_ACK_MASK	0x00f0
1160 
1161 static void a6xx_recover(struct msm_gpu *gpu)
1162 {
1163 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1164 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1165 	int i;
1166 
1167 	adreno_dump_info(gpu);
1168 
1169 	for (i = 0; i < 8; i++)
1170 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1171 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1172 
1173 	if (hang_debug)
1174 		a6xx_dump(gpu);
1175 
1176 	/*
1177 	 * Turn off keep alive that might have been enabled by the hang
1178 	 * interrupt
1179 	 */
1180 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1181 
1182 	gpu->funcs->pm_suspend(gpu);
1183 	gpu->funcs->pm_resume(gpu);
1184 
1185 	msm_gpu_hw_init(gpu);
1186 }
1187 
1188 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1189 {
1190 	static const char *uche_clients[7] = {
1191 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1192 	};
1193 	u32 val;
1194 
1195 	if (mid < 1 || mid > 3)
1196 		return "UNKNOWN";
1197 
1198 	/*
1199 	 * The source of the data depends on the mid ID read from FSYNR1.
1200 	 * and the client ID read from the UCHE block
1201 	 */
1202 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1203 
1204 	/* mid = 3 is most precise and refers to only one block per client */
1205 	if (mid == 3)
1206 		return uche_clients[val & 7];
1207 
1208 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1209 	if (mid == 2)
1210 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1211 
1212 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1213 	return "UCHE";
1214 }
1215 
1216 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1217 {
1218 	if (id == 0)
1219 		return "CP";
1220 	else if (id == 4)
1221 		return "CCU";
1222 	else if (id == 6)
1223 		return "CDP Prefetch";
1224 
1225 	return a6xx_uche_fault_block(gpu, id);
1226 }
1227 
1228 #define ARM_SMMU_FSR_TF                 BIT(1)
1229 #define ARM_SMMU_FSR_PF			BIT(3)
1230 #define ARM_SMMU_FSR_EF			BIT(4)
1231 
1232 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1233 {
1234 	struct msm_gpu *gpu = arg;
1235 	struct adreno_smmu_fault_info *info = data;
1236 	const char *type = "UNKNOWN";
1237 	const char *block;
1238 	bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1239 
1240 	/*
1241 	 * If we aren't going to be resuming later from fault_worker, then do
1242 	 * it now.
1243 	 */
1244 	if (!do_devcoredump) {
1245 		gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1246 	}
1247 
1248 	/*
1249 	 * Print a default message if we couldn't get the data from the
1250 	 * adreno-smmu-priv
1251 	 */
1252 	if (!info) {
1253 		pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1254 			iova, flags,
1255 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1256 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1257 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1258 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1259 
1260 		return 0;
1261 	}
1262 
1263 	if (info->fsr & ARM_SMMU_FSR_TF)
1264 		type = "TRANSLATION";
1265 	else if (info->fsr & ARM_SMMU_FSR_PF)
1266 		type = "PERMISSION";
1267 	else if (info->fsr & ARM_SMMU_FSR_EF)
1268 		type = "EXTERNAL";
1269 
1270 	block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1271 
1272 	pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1273 			info->ttbr0, iova,
1274 			flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1275 			type, block,
1276 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1277 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1278 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1279 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1280 
1281 	if (do_devcoredump) {
1282 		/* Turn off the hangcheck timer to keep it from bothering us */
1283 		del_timer(&gpu->hangcheck_timer);
1284 
1285 		gpu->fault_info.ttbr0 = info->ttbr0;
1286 		gpu->fault_info.iova  = iova;
1287 		gpu->fault_info.flags = flags;
1288 		gpu->fault_info.type  = type;
1289 		gpu->fault_info.block = block;
1290 
1291 		kthread_queue_work(gpu->worker, &gpu->fault_work);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1298 {
1299 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1300 
1301 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1302 		u32 val;
1303 
1304 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1305 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1306 		dev_err_ratelimited(&gpu->pdev->dev,
1307 			"CP | opcode error | possible opcode=0x%8.8X\n",
1308 			val);
1309 	}
1310 
1311 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1312 		dev_err_ratelimited(&gpu->pdev->dev,
1313 			"CP ucode error interrupt\n");
1314 
1315 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1316 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1317 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1318 
1319 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1320 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1321 
1322 		dev_err_ratelimited(&gpu->pdev->dev,
1323 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1324 			val & (1 << 20) ? "READ" : "WRITE",
1325 			(val & 0x3ffff), val);
1326 	}
1327 
1328 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1329 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1330 
1331 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1332 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1333 
1334 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1335 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1336 
1337 }
1338 
1339 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1340 {
1341 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1342 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1343 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1344 
1345 	/*
1346 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1347 	 * but the fault handler will trigger the devcore dump, and we want
1348 	 * to otherwise resume normally rather than killing the submit, so
1349 	 * just bail.
1350 	 */
1351 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1352 		return;
1353 
1354 	/*
1355 	 * Force the GPU to stay on until after we finish
1356 	 * collecting information
1357 	 */
1358 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1359 
1360 	DRM_DEV_ERROR(&gpu->pdev->dev,
1361 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1362 		ring ? ring->id : -1, ring ? ring->seqno : 0,
1363 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1364 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1365 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1366 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1367 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1368 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1369 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1370 
1371 	/* Turn off the hangcheck timer to keep it from bothering us */
1372 	del_timer(&gpu->hangcheck_timer);
1373 
1374 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1375 }
1376 
1377 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1378 {
1379 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1380 
1381 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1382 
1383 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1384 		a6xx_fault_detect_irq(gpu);
1385 
1386 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1387 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1388 
1389 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1390 		a6xx_cp_hw_err_irq(gpu);
1391 
1392 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1393 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1394 
1395 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1396 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1397 
1398 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1399 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1400 
1401 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1402 		msm_gpu_retire(gpu);
1403 
1404 	return IRQ_HANDLED;
1405 }
1406 
1407 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1408 {
1409 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1410 }
1411 
1412 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1413 {
1414 	return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1415 }
1416 
1417 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1418 {
1419 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1420 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1421 }
1422 
1423 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1424 {
1425 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1426 	struct msm_gpu *gpu = &adreno_gpu->base;
1427 	u32 gpu_scid, cntl1_regval = 0;
1428 
1429 	if (IS_ERR(a6xx_gpu->llc_mmio))
1430 		return;
1431 
1432 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1433 		gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1434 
1435 		gpu_scid &= 0x1f;
1436 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1437 			       (gpu_scid << 15) | (gpu_scid << 20);
1438 	}
1439 
1440 	/*
1441 	 * For targets with a MMU500, activate the slice but don't program the
1442 	 * register.  The XBL will take care of that.
1443 	 */
1444 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1445 		if (!a6xx_gpu->have_mmu500) {
1446 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1447 
1448 			gpuhtw_scid &= 0x1f;
1449 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1450 		}
1451 	}
1452 
1453 	if (!cntl1_regval)
1454 		return;
1455 
1456 	/*
1457 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1458 	 * pagetables
1459 	 */
1460 	if (!a6xx_gpu->have_mmu500) {
1461 		a6xx_llc_write(a6xx_gpu,
1462 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1463 
1464 		/*
1465 		 * Program cacheability overrides to not allocate cache
1466 		 * lines on a write miss
1467 		 */
1468 		a6xx_llc_rmw(a6xx_gpu,
1469 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1470 		return;
1471 	}
1472 
1473 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1474 
1475 	/* On A660, the SCID programming for UCHE traffic is done in
1476 	 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1477 	 */
1478 	if (adreno_is_a660_family(adreno_gpu))
1479 		gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1480 			(1 << 8), (gpu_scid << 10) | (1 << 8));
1481 }
1482 
1483 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1484 {
1485 	llcc_slice_putd(a6xx_gpu->llc_slice);
1486 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1487 }
1488 
1489 static void a6xx_llc_slices_init(struct platform_device *pdev,
1490 		struct a6xx_gpu *a6xx_gpu)
1491 {
1492 	struct device_node *phandle;
1493 
1494 	/*
1495 	 * There is a different programming path for targets with an mmu500
1496 	 * attached, so detect if that is the case
1497 	 */
1498 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1499 	a6xx_gpu->have_mmu500 = (phandle &&
1500 		of_device_is_compatible(phandle, "arm,mmu-500"));
1501 	of_node_put(phandle);
1502 
1503 	if (a6xx_gpu->have_mmu500)
1504 		a6xx_gpu->llc_mmio = NULL;
1505 	else
1506 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1507 
1508 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1509 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1510 
1511 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1512 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1513 }
1514 
1515 static int a6xx_pm_resume(struct msm_gpu *gpu)
1516 {
1517 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1518 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1519 	int ret;
1520 
1521 	gpu->needs_hw_init = true;
1522 
1523 	trace_msm_gpu_resume(0);
1524 
1525 	mutex_lock(&a6xx_gpu->gmu.lock);
1526 	ret = a6xx_gmu_resume(a6xx_gpu);
1527 	mutex_unlock(&a6xx_gpu->gmu.lock);
1528 	if (ret)
1529 		return ret;
1530 
1531 	msm_devfreq_resume(gpu);
1532 
1533 	a6xx_llc_activate(a6xx_gpu);
1534 
1535 	return 0;
1536 }
1537 
1538 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1539 {
1540 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1541 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1542 	int i, ret;
1543 
1544 	trace_msm_gpu_suspend(0);
1545 
1546 	a6xx_llc_deactivate(a6xx_gpu);
1547 
1548 	msm_devfreq_suspend(gpu);
1549 
1550 	mutex_lock(&a6xx_gpu->gmu.lock);
1551 	ret = a6xx_gmu_stop(a6xx_gpu);
1552 	mutex_unlock(&a6xx_gpu->gmu.lock);
1553 	if (ret)
1554 		return ret;
1555 
1556 	if (a6xx_gpu->shadow_bo)
1557 		for (i = 0; i < gpu->nr_rings; i++)
1558 			a6xx_gpu->shadow[i] = 0;
1559 
1560 	return 0;
1561 }
1562 
1563 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1564 {
1565 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1566 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1567 
1568 	mutex_lock(&a6xx_gpu->gmu.lock);
1569 
1570 	/* Force the GPU power on so we can read this register */
1571 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1572 
1573 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1574 			    REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1575 
1576 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1577 
1578 	mutex_unlock(&a6xx_gpu->gmu.lock);
1579 
1580 	return 0;
1581 }
1582 
1583 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1584 {
1585 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1586 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1587 
1588 	return a6xx_gpu->cur_ring;
1589 }
1590 
1591 static void a6xx_destroy(struct msm_gpu *gpu)
1592 {
1593 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1594 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1595 
1596 	if (a6xx_gpu->sqe_bo) {
1597 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1598 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1599 	}
1600 
1601 	if (a6xx_gpu->shadow_bo) {
1602 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1603 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1604 	}
1605 
1606 	a6xx_llc_slices_destroy(a6xx_gpu);
1607 
1608 	a6xx_gmu_remove(a6xx_gpu);
1609 
1610 	adreno_gpu_cleanup(adreno_gpu);
1611 
1612 	kfree(a6xx_gpu);
1613 }
1614 
1615 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1616 {
1617 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1618 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1619 	u64 busy_cycles, busy_time;
1620 
1621 
1622 	/* Only read the gpu busy if the hardware is already active */
1623 	if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1624 		return 0;
1625 
1626 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1627 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1628 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1629 
1630 	busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1631 	do_div(busy_time, 192);
1632 
1633 	gpu->devfreq.busy_cycles = busy_cycles;
1634 
1635 	pm_runtime_put(a6xx_gpu->gmu.dev);
1636 
1637 	if (WARN_ON(busy_time > ~0LU))
1638 		return ~0LU;
1639 
1640 	return (unsigned long)busy_time;
1641 }
1642 
1643 void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp)
1644 {
1645 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1646 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1647 
1648 	mutex_lock(&a6xx_gpu->gmu.lock);
1649 	a6xx_gmu_set_freq(gpu, opp);
1650 	mutex_unlock(&a6xx_gpu->gmu.lock);
1651 }
1652 
1653 static struct msm_gem_address_space *
1654 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1655 {
1656 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1657 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1658 	struct iommu_domain *iommu;
1659 	struct msm_mmu *mmu;
1660 	struct msm_gem_address_space *aspace;
1661 	u64 start, size;
1662 
1663 	iommu = iommu_domain_alloc(&platform_bus_type);
1664 	if (!iommu)
1665 		return NULL;
1666 
1667 	/*
1668 	 * This allows GPU to set the bus attributes required to use system
1669 	 * cache on behalf of the iommu page table walker.
1670 	 */
1671 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1672 		adreno_set_llc_attributes(iommu);
1673 
1674 	mmu = msm_iommu_new(&pdev->dev, iommu);
1675 	if (IS_ERR(mmu)) {
1676 		iommu_domain_free(iommu);
1677 		return ERR_CAST(mmu);
1678 	}
1679 
1680 	/*
1681 	 * Use the aperture start or SZ_16M, whichever is greater. This will
1682 	 * ensure that we align with the allocated pagetable range while still
1683 	 * allowing room in the lower 32 bits for GMEM and whatnot
1684 	 */
1685 	start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1686 	size = iommu->geometry.aperture_end - start + 1;
1687 
1688 	aspace = msm_gem_address_space_create(mmu, "gpu",
1689 		start & GENMASK_ULL(48, 0), size);
1690 
1691 	if (IS_ERR(aspace) && !IS_ERR(mmu))
1692 		mmu->funcs->destroy(mmu);
1693 
1694 	return aspace;
1695 }
1696 
1697 static struct msm_gem_address_space *
1698 a6xx_create_private_address_space(struct msm_gpu *gpu)
1699 {
1700 	struct msm_mmu *mmu;
1701 
1702 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1703 
1704 	if (IS_ERR(mmu))
1705 		return ERR_CAST(mmu);
1706 
1707 	return msm_gem_address_space_create(mmu,
1708 		"gpu", 0x100000000ULL, 0x1ffffffffULL);
1709 }
1710 
1711 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1712 {
1713 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1714 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1715 
1716 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1717 		return a6xx_gpu->shadow[ring->id];
1718 
1719 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1720 }
1721 
1722 static u32 a618_get_speed_bin(u32 fuse)
1723 {
1724 	if (fuse == 0)
1725 		return 0;
1726 	else if (fuse == 169)
1727 		return 1;
1728 	else if (fuse == 174)
1729 		return 2;
1730 
1731 	return UINT_MAX;
1732 }
1733 
1734 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1735 {
1736 	u32 val = UINT_MAX;
1737 
1738 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1739 		val = a618_get_speed_bin(fuse);
1740 
1741 	if (val == UINT_MAX) {
1742 		DRM_DEV_ERROR(dev,
1743 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1744 			fuse);
1745 		return UINT_MAX;
1746 	}
1747 
1748 	return (1 << val);
1749 }
1750 
1751 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1752 {
1753 	u32 supp_hw = UINT_MAX;
1754 	u32 speedbin;
1755 	int ret;
1756 
1757 	ret = nvmem_cell_read_variable_le_u32(dev, "speed_bin", &speedbin);
1758 	/*
1759 	 * -ENOENT means that the platform doesn't support speedbin which is
1760 	 * fine
1761 	 */
1762 	if (ret == -ENOENT) {
1763 		return 0;
1764 	} else if (ret) {
1765 		DRM_DEV_ERROR(dev,
1766 			      "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1767 			      ret);
1768 		goto done;
1769 	}
1770 
1771 	supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1772 
1773 done:
1774 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1775 	if (ret)
1776 		return ret;
1777 
1778 	return 0;
1779 }
1780 
1781 static const struct adreno_gpu_funcs funcs = {
1782 	.base = {
1783 		.get_param = adreno_get_param,
1784 		.hw_init = a6xx_hw_init,
1785 		.pm_suspend = a6xx_pm_suspend,
1786 		.pm_resume = a6xx_pm_resume,
1787 		.recover = a6xx_recover,
1788 		.submit = a6xx_submit,
1789 		.active_ring = a6xx_active_ring,
1790 		.irq = a6xx_irq,
1791 		.destroy = a6xx_destroy,
1792 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1793 		.show = a6xx_show,
1794 #endif
1795 		.gpu_busy = a6xx_gpu_busy,
1796 		.gpu_get_freq = a6xx_gmu_get_freq,
1797 		.gpu_set_freq = a6xx_gpu_set_freq,
1798 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1799 		.gpu_state_get = a6xx_gpu_state_get,
1800 		.gpu_state_put = a6xx_gpu_state_put,
1801 #endif
1802 		.create_address_space = a6xx_create_address_space,
1803 		.create_private_address_space = a6xx_create_private_address_space,
1804 		.get_rptr = a6xx_get_rptr,
1805 	},
1806 	.get_timestamp = a6xx_get_timestamp,
1807 };
1808 
1809 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1810 {
1811 	struct msm_drm_private *priv = dev->dev_private;
1812 	struct platform_device *pdev = priv->gpu_pdev;
1813 	struct adreno_platform_config *config = pdev->dev.platform_data;
1814 	const struct adreno_info *info;
1815 	struct device_node *node;
1816 	struct a6xx_gpu *a6xx_gpu;
1817 	struct adreno_gpu *adreno_gpu;
1818 	struct msm_gpu *gpu;
1819 	int ret;
1820 
1821 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1822 	if (!a6xx_gpu)
1823 		return ERR_PTR(-ENOMEM);
1824 
1825 	adreno_gpu = &a6xx_gpu->base;
1826 	gpu = &adreno_gpu->base;
1827 
1828 	adreno_gpu->registers = NULL;
1829 
1830 	/*
1831 	 * We need to know the platform type before calling into adreno_gpu_init
1832 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
1833 	 * and grab the revision number
1834 	 */
1835 	info = adreno_info(config->rev);
1836 
1837 	if (info && (info->revn == 650 || info->revn == 660 ||
1838 			adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1839 		adreno_gpu->base.hw_apriv = true;
1840 
1841 	/*
1842 	 * For now only clamp to idle freq for devices where this is known not
1843 	 * to cause power supply issues:
1844 	 */
1845 	if (info && (info->revn == 618))
1846 		gpu->clamp_to_idle = true;
1847 
1848 	a6xx_llc_slices_init(pdev, a6xx_gpu);
1849 
1850 	ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
1851 	if (ret) {
1852 		a6xx_destroy(&(a6xx_gpu->base.base));
1853 		return ERR_PTR(ret);
1854 	}
1855 
1856 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1857 	if (ret) {
1858 		a6xx_destroy(&(a6xx_gpu->base.base));
1859 		return ERR_PTR(ret);
1860 	}
1861 
1862 	/* Check if there is a GMU phandle and set it up */
1863 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1864 
1865 	/* FIXME: How do we gracefully handle this? */
1866 	BUG_ON(!node);
1867 
1868 	ret = a6xx_gmu_init(a6xx_gpu, node);
1869 	if (ret) {
1870 		a6xx_destroy(&(a6xx_gpu->base.base));
1871 		return ERR_PTR(ret);
1872 	}
1873 
1874 	if (gpu->aspace)
1875 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1876 				a6xx_fault_handler);
1877 
1878 	return gpu;
1879 }
1880