xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision 023e4163)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/devfreq.h>
12 
13 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
14 {
15 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
16 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
17 
18 	/* Check that the GMU is idle */
19 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
20 		return false;
21 
22 	/* Check tha the CX master is idle */
23 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
24 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
25 		return false;
26 
27 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
28 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
29 }
30 
31 bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
32 {
33 	/* wait for CP to drain ringbuffer: */
34 	if (!adreno_idle(gpu, ring))
35 		return false;
36 
37 	if (spin_until(_a6xx_check_idle(gpu))) {
38 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
39 			gpu->name, __builtin_return_address(0),
40 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
41 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
42 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
43 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
44 		return false;
45 	}
46 
47 	return true;
48 }
49 
50 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
51 {
52 	uint32_t wptr;
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&ring->lock, flags);
56 
57 	/* Copy the shadow to the actual register */
58 	ring->cur = ring->next;
59 
60 	/* Make sure to wrap wptr if we need to */
61 	wptr = get_wptr(ring);
62 
63 	spin_unlock_irqrestore(&ring->lock, flags);
64 
65 	/* Make sure everything is posted before making a decision */
66 	mb();
67 
68 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
69 }
70 
71 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
72 		u64 iova)
73 {
74 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
75 	OUT_RING(ring, counter | (1 << 30) | (2 << 18));
76 	OUT_RING(ring, lower_32_bits(iova));
77 	OUT_RING(ring, upper_32_bits(iova));
78 }
79 
80 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
81 	struct msm_file_private *ctx)
82 {
83 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
84 	struct msm_drm_private *priv = gpu->dev->dev_private;
85 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
86 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
87 	struct msm_ringbuffer *ring = submit->ring;
88 	unsigned int i;
89 
90 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
91 		rbmemptr_stats(ring, index, cpcycles_start));
92 
93 	/*
94 	 * For PM4 the GMU register offsets are calculated from the base of the
95 	 * GPU registers so we need to add 0x1a800 to the register value on A630
96 	 * to get the right value from PM4.
97 	 */
98 	get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
99 		rbmemptr_stats(ring, index, alwayson_start));
100 
101 	/* Invalidate CCU depth and color */
102 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
103 	OUT_RING(ring, PC_CCU_INVALIDATE_DEPTH);
104 
105 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
106 	OUT_RING(ring, PC_CCU_INVALIDATE_COLOR);
107 
108 	/* Submit the commands */
109 	for (i = 0; i < submit->nr_cmds; i++) {
110 		switch (submit->cmd[i].type) {
111 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
112 			break;
113 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
114 			if (priv->lastctx == ctx)
115 				break;
116 		case MSM_SUBMIT_CMD_BUF:
117 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
118 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
119 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
120 			OUT_RING(ring, submit->cmd[i].size);
121 			break;
122 		}
123 	}
124 
125 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
126 		rbmemptr_stats(ring, index, cpcycles_end));
127 	get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
128 		rbmemptr_stats(ring, index, alwayson_end));
129 
130 	/* Write the fence to the scratch register */
131 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
132 	OUT_RING(ring, submit->seqno);
133 
134 	/*
135 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
136 	 * timestamp is written to the memory and then triggers the interrupt
137 	 */
138 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
139 	OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31));
140 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
141 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
142 	OUT_RING(ring, submit->seqno);
143 
144 	trace_msm_gpu_submit_flush(submit,
145 		gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L,
146 			REG_A6XX_GMU_ALWAYS_ON_COUNTER_H));
147 
148 	a6xx_flush(gpu, ring);
149 }
150 
151 static const struct {
152 	u32 offset;
153 	u32 value;
154 } a6xx_hwcg[] = {
155 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
156 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
157 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
158 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
159 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
160 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
161 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
162 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
163 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
164 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
165 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
166 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
167 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
168 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
169 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
170 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
171 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
172 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
173 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
174 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
175 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
176 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
177 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
178 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
179 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
180 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
181 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
182 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
183 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
184 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
185 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
186 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
187 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
188 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
189 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
190 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
191 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
192 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
193 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
194 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
195 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
196 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
197 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
198 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
199 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
200 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
201 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
202 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
203 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
204 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
205 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
206 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
207 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
208 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
209 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
210 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
211 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
212 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
213 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
214 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
215 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
216 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
217 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
218 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
219 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
220 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
221 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
222 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
223 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
224 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
225 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
226 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
227 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
228 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
229 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
230 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
231 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
232 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
233 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
234 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
235 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
236 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
237 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
238 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
239 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
240 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
241 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
242 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
243 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
244 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
245 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
246 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
247 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
248 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
249 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
250 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
251 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
252 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
253 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
254 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
255 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
256 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
257 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
258 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
259 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}
260 };
261 
262 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
263 {
264 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
265 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
266 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
267 	unsigned int i;
268 	u32 val;
269 
270 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
271 
272 	/* Don't re-program the registers if they are already correct */
273 	if ((!state && !val) || (state && (val == 0x8aa8aa02)))
274 		return;
275 
276 	/* Disable SP clock before programming HWCG registers */
277 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
278 
279 	for (i = 0; i < ARRAY_SIZE(a6xx_hwcg); i++)
280 		gpu_write(gpu, a6xx_hwcg[i].offset,
281 			state ? a6xx_hwcg[i].value : 0);
282 
283 	/* Enable SP clock */
284 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
285 
286 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? 0x8aa8aa02 : 0);
287 }
288 
289 static int a6xx_cp_init(struct msm_gpu *gpu)
290 {
291 	struct msm_ringbuffer *ring = gpu->rb[0];
292 
293 	OUT_PKT7(ring, CP_ME_INIT, 8);
294 
295 	OUT_RING(ring, 0x0000002f);
296 
297 	/* Enable multiple hardware contexts */
298 	OUT_RING(ring, 0x00000003);
299 
300 	/* Enable error detection */
301 	OUT_RING(ring, 0x20000000);
302 
303 	/* Don't enable header dump */
304 	OUT_RING(ring, 0x00000000);
305 	OUT_RING(ring, 0x00000000);
306 
307 	/* No workarounds enabled */
308 	OUT_RING(ring, 0x00000000);
309 
310 	/* Pad rest of the cmds with 0's */
311 	OUT_RING(ring, 0x00000000);
312 	OUT_RING(ring, 0x00000000);
313 
314 	a6xx_flush(gpu, ring);
315 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
316 }
317 
318 static int a6xx_ucode_init(struct msm_gpu *gpu)
319 {
320 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
321 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
322 
323 	if (!a6xx_gpu->sqe_bo) {
324 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
325 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
326 
327 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
328 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
329 
330 			a6xx_gpu->sqe_bo = NULL;
331 			DRM_DEV_ERROR(&gpu->pdev->dev,
332 				"Could not allocate SQE ucode: %d\n", ret);
333 
334 			return ret;
335 		}
336 
337 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
338 	}
339 
340 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO,
341 		REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova);
342 
343 	return 0;
344 }
345 
346 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
347 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
348 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
349 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
350 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
351 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
352 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
353 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
354 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
355 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
356 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
357 
358 static int a6xx_hw_init(struct msm_gpu *gpu)
359 {
360 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
361 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
362 	int ret;
363 
364 	/* Make sure the GMU keeps the GPU on while we set it up */
365 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
366 
367 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
368 
369 	/*
370 	 * Disable the trusted memory range - we don't actually supported secure
371 	 * memory rendering at this point in time and we don't want to block off
372 	 * part of the virtual memory space.
373 	 */
374 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
375 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
376 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
377 
378 	/* enable hardware clockgating */
379 	a6xx_set_hwcg(gpu, true);
380 
381 	/* VBIF start */
382 	gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
383 	gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
384 
385 	/* Make all blocks contribute to the GPU BUSY perf counter */
386 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
387 
388 	/* Disable L2 bypass in the UCHE */
389 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
390 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
391 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
392 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
393 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
394 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
395 
396 	/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
397 	gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
398 		REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
399 
400 	gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
401 		REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
402 		0x00100000 + adreno_gpu->gmem - 1);
403 
404 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
405 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
406 
407 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
408 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
409 
410 	/* Setting the mem pool size */
411 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
412 
413 	/* Setting the primFifo thresholds default values */
414 	gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11));
415 
416 	/* Set the AHB default slave response to "ERROR" */
417 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
418 
419 	/* Turn on performance counters */
420 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
421 
422 	/* Select CP0 to always count cycles */
423 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
424 
425 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 2 << 1);
426 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, 2 << 1);
427 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 2 << 1);
428 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 2 << 21);
429 
430 	/* Enable fault detection */
431 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
432 		(1 << 30) | 0x1fffff);
433 
434 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
435 
436 	/* Protect registers from the CP */
437 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003);
438 
439 	gpu_write(gpu, REG_A6XX_CP_PROTECT(0),
440 		A6XX_PROTECT_RDONLY(0x600, 0x51));
441 	gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
442 	gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
443 	gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
444 	gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
445 	gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
446 	gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
447 	gpu_write(gpu, REG_A6XX_CP_PROTECT(7),
448 		A6XX_PROTECT_RDONLY(0xfc00, 0x3));
449 	gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
450 	gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
451 	gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
452 	gpu_write(gpu, REG_A6XX_CP_PROTECT(11),
453 		A6XX_PROTECT_RDONLY(0x0, 0x4f9));
454 	gpu_write(gpu, REG_A6XX_CP_PROTECT(12),
455 		A6XX_PROTECT_RDONLY(0x501, 0xa));
456 	gpu_write(gpu, REG_A6XX_CP_PROTECT(13),
457 		A6XX_PROTECT_RDONLY(0x511, 0x44));
458 	gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
459 	gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
460 	gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
461 	gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
462 	gpu_write(gpu, REG_A6XX_CP_PROTECT(18),
463 		A6XX_PROTECT_RW(0xbe20, 0x11f3));
464 	gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
465 	gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
466 	gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
467 	gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
468 	gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
469 	gpu_write(gpu, REG_A6XX_CP_PROTECT(24),
470 			A6XX_PROTECT_RDONLY(0x980, 0x4));
471 	gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
472 
473 	/* Enable interrupts */
474 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
475 
476 	ret = adreno_hw_init(gpu);
477 	if (ret)
478 		goto out;
479 
480 	ret = a6xx_ucode_init(gpu);
481 	if (ret)
482 		goto out;
483 
484 	/* Always come up on rb 0 */
485 	a6xx_gpu->cur_ring = gpu->rb[0];
486 
487 	/* Enable the SQE_to start the CP engine */
488 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
489 
490 	ret = a6xx_cp_init(gpu);
491 	if (ret)
492 		goto out;
493 
494 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
495 
496 out:
497 	/*
498 	 * Tell the GMU that we are done touching the GPU and it can start power
499 	 * management
500 	 */
501 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
502 
503 	/* Take the GMU out of its special boot mode */
504 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
505 
506 	return ret;
507 }
508 
509 static void a6xx_dump(struct msm_gpu *gpu)
510 {
511 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
512 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
513 	adreno_dump(gpu);
514 }
515 
516 #define VBIF_RESET_ACK_TIMEOUT	100
517 #define VBIF_RESET_ACK_MASK	0x00f0
518 
519 static void a6xx_recover(struct msm_gpu *gpu)
520 {
521 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
522 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
523 	int i;
524 
525 	adreno_dump_info(gpu);
526 
527 	for (i = 0; i < 8; i++)
528 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
529 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
530 
531 	if (hang_debug)
532 		a6xx_dump(gpu);
533 
534 	/*
535 	 * Turn off keep alive that might have been enabled by the hang
536 	 * interrupt
537 	 */
538 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
539 
540 	gpu->funcs->pm_suspend(gpu);
541 	gpu->funcs->pm_resume(gpu);
542 
543 	msm_gpu_hw_init(gpu);
544 }
545 
546 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
547 {
548 	struct msm_gpu *gpu = arg;
549 
550 	pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
551 			iova, flags,
552 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
553 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
554 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
555 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
556 
557 	return -EFAULT;
558 }
559 
560 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
561 {
562 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
563 
564 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
565 		u32 val;
566 
567 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
568 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
569 		dev_err_ratelimited(&gpu->pdev->dev,
570 			"CP | opcode error | possible opcode=0x%8.8X\n",
571 			val);
572 	}
573 
574 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
575 		dev_err_ratelimited(&gpu->pdev->dev,
576 			"CP ucode error interrupt\n");
577 
578 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
579 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
580 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
581 
582 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
583 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
584 
585 		dev_err_ratelimited(&gpu->pdev->dev,
586 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
587 			val & (1 << 20) ? "READ" : "WRITE",
588 			(val & 0x3ffff), val);
589 	}
590 
591 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
592 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
593 
594 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
595 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
596 
597 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
598 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
599 
600 }
601 
602 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
603 {
604 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
605 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
606 	struct drm_device *dev = gpu->dev;
607 	struct msm_drm_private *priv = dev->dev_private;
608 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
609 
610 	/*
611 	 * Force the GPU to stay on until after we finish
612 	 * collecting information
613 	 */
614 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
615 
616 	DRM_DEV_ERROR(&gpu->pdev->dev,
617 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
618 		ring ? ring->id : -1, ring ? ring->seqno : 0,
619 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
620 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
621 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
622 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
623 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
624 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
625 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
626 
627 	/* Turn off the hangcheck timer to keep it from bothering us */
628 	del_timer(&gpu->hangcheck_timer);
629 
630 	queue_work(priv->wq, &gpu->recover_work);
631 }
632 
633 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
634 {
635 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
636 
637 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
638 
639 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
640 		a6xx_fault_detect_irq(gpu);
641 
642 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
643 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
644 
645 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
646 		a6xx_cp_hw_err_irq(gpu);
647 
648 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
649 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
650 
651 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
652 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
653 
654 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
655 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
656 
657 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
658 		msm_gpu_retire(gpu);
659 
660 	return IRQ_HANDLED;
661 }
662 
663 static const u32 a6xx_register_offsets[REG_ADRENO_REGISTER_MAX] = {
664 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A6XX_CP_RB_BASE),
665 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A6XX_CP_RB_BASE_HI),
666 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR,
667 		REG_A6XX_CP_RB_RPTR_ADDR_LO),
668 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI,
669 		REG_A6XX_CP_RB_RPTR_ADDR_HI),
670 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A6XX_CP_RB_RPTR),
671 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A6XX_CP_RB_WPTR),
672 	REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A6XX_CP_RB_CNTL),
673 };
674 
675 static int a6xx_pm_resume(struct msm_gpu *gpu)
676 {
677 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
678 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
679 	int ret;
680 
681 	ret = a6xx_gmu_resume(a6xx_gpu);
682 
683 	gpu->needs_hw_init = true;
684 
685 	msm_gpu_resume_devfreq(gpu);
686 
687 	return ret;
688 }
689 
690 static int a6xx_pm_suspend(struct msm_gpu *gpu)
691 {
692 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
693 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
694 
695 	devfreq_suspend_device(gpu->devfreq.devfreq);
696 
697 	/*
698 	 * Make sure the GMU is idle before continuing (because some transitions
699 	 * may use VBIF
700 	 */
701 	a6xx_gmu_wait_for_idle(a6xx_gpu);
702 
703 	/* Clear the VBIF pipe before shutting down */
704 	/* FIXME: This accesses the GPU - do we need to make sure it is on? */
705 	gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0xf);
706 	spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & 0xf) == 0xf);
707 	gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
708 
709 	return a6xx_gmu_stop(a6xx_gpu);
710 }
711 
712 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
713 {
714 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
715 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
716 
717 	/* Force the GPU power on so we can read this register */
718 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
719 
720 	*value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
721 		REG_A6XX_RBBM_PERFCTR_CP_0_HI);
722 
723 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
724 	return 0;
725 }
726 
727 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
728 {
729 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
730 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
731 
732 	return a6xx_gpu->cur_ring;
733 }
734 
735 static void a6xx_destroy(struct msm_gpu *gpu)
736 {
737 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
738 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
739 
740 	if (a6xx_gpu->sqe_bo) {
741 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
742 		drm_gem_object_put_unlocked(a6xx_gpu->sqe_bo);
743 	}
744 
745 	a6xx_gmu_remove(a6xx_gpu);
746 
747 	adreno_gpu_cleanup(adreno_gpu);
748 	kfree(a6xx_gpu);
749 }
750 
751 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
752 {
753 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
754 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
755 	u64 busy_cycles, busy_time;
756 
757 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
758 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
759 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
760 
761 	busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
762 	do_div(busy_time, 192);
763 
764 	gpu->devfreq.busy_cycles = busy_cycles;
765 
766 	if (WARN_ON(busy_time > ~0LU))
767 		return ~0LU;
768 
769 	return (unsigned long)busy_time;
770 }
771 
772 static const struct adreno_gpu_funcs funcs = {
773 	.base = {
774 		.get_param = adreno_get_param,
775 		.hw_init = a6xx_hw_init,
776 		.pm_suspend = a6xx_pm_suspend,
777 		.pm_resume = a6xx_pm_resume,
778 		.recover = a6xx_recover,
779 		.submit = a6xx_submit,
780 		.flush = a6xx_flush,
781 		.active_ring = a6xx_active_ring,
782 		.irq = a6xx_irq,
783 		.destroy = a6xx_destroy,
784 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
785 		.show = a6xx_show,
786 #endif
787 		.gpu_busy = a6xx_gpu_busy,
788 		.gpu_get_freq = a6xx_gmu_get_freq,
789 		.gpu_set_freq = a6xx_gmu_set_freq,
790 		.gpu_state_get = a6xx_gpu_state_get,
791 		.gpu_state_put = a6xx_gpu_state_put,
792 	},
793 	.get_timestamp = a6xx_get_timestamp,
794 };
795 
796 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
797 {
798 	struct msm_drm_private *priv = dev->dev_private;
799 	struct platform_device *pdev = priv->gpu_pdev;
800 	struct device_node *node;
801 	struct a6xx_gpu *a6xx_gpu;
802 	struct adreno_gpu *adreno_gpu;
803 	struct msm_gpu *gpu;
804 	int ret;
805 
806 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
807 	if (!a6xx_gpu)
808 		return ERR_PTR(-ENOMEM);
809 
810 	adreno_gpu = &a6xx_gpu->base;
811 	gpu = &adreno_gpu->base;
812 
813 	adreno_gpu->registers = NULL;
814 	adreno_gpu->reg_offsets = a6xx_register_offsets;
815 
816 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
817 	if (ret) {
818 		a6xx_destroy(&(a6xx_gpu->base.base));
819 		return ERR_PTR(ret);
820 	}
821 
822 	/* Check if there is a GMU phandle and set it up */
823 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
824 
825 	/* FIXME: How do we gracefully handle this? */
826 	BUG_ON(!node);
827 
828 	ret = a6xx_gmu_probe(a6xx_gpu, node);
829 	if (ret) {
830 		a6xx_destroy(&(a6xx_gpu->base.base));
831 		return ERR_PTR(ret);
832 	}
833 
834 	if (gpu->aspace)
835 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
836 				a6xx_fault_handler);
837 
838 	return gpu;
839 }
840