1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2016 The Linux Foundation. All rights reserved. 3 */ 4 5 #include <linux/pm_opp.h> 6 #include "a5xx_gpu.h" 7 8 /* 9 * The GPMU data block is a block of shared registers that can be used to 10 * communicate back and forth. These "registers" are by convention with the GPMU 11 * firwmare and not bound to any specific hardware design 12 */ 13 14 #define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE 15 #define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5) 16 #define AGC_MSG_BASE (AGC_INIT_BASE + 7) 17 18 #define AGC_MSG_STATE (AGC_MSG_BASE + 0) 19 #define AGC_MSG_COMMAND (AGC_MSG_BASE + 1) 20 #define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3) 21 #define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o)) 22 23 #define AGC_POWER_CONFIG_PRODUCTION_ID 1 24 #define AGC_INIT_MSG_VALUE 0xBABEFACE 25 26 /* AGC_LM_CONFIG (A540+) */ 27 #define AGC_LM_CONFIG (136/4) 28 #define AGC_LM_CONFIG_GPU_VERSION_SHIFT 17 29 #define AGC_LM_CONFIG_ENABLE_GPMU_ADAPTIVE 1 30 #define AGC_LM_CONFIG_THROTTLE_DISABLE (2 << 8) 31 #define AGC_LM_CONFIG_ISENSE_ENABLE (1 << 4) 32 #define AGC_LM_CONFIG_ENABLE_ERROR (3 << 4) 33 #define AGC_LM_CONFIG_LLM_ENABLED (1 << 16) 34 #define AGC_LM_CONFIG_BCL_DISABLED (1 << 24) 35 36 #define AGC_LEVEL_CONFIG (140/4) 37 38 static struct { 39 uint32_t reg; 40 uint32_t value; 41 } a5xx_sequence_regs[] = { 42 { 0xB9A1, 0x00010303 }, 43 { 0xB9A2, 0x13000000 }, 44 { 0xB9A3, 0x00460020 }, 45 { 0xB9A4, 0x10000000 }, 46 { 0xB9A5, 0x040A1707 }, 47 { 0xB9A6, 0x00010000 }, 48 { 0xB9A7, 0x0E000904 }, 49 { 0xB9A8, 0x10000000 }, 50 { 0xB9A9, 0x01165000 }, 51 { 0xB9AA, 0x000E0002 }, 52 { 0xB9AB, 0x03884141 }, 53 { 0xB9AC, 0x10000840 }, 54 { 0xB9AD, 0x572A5000 }, 55 { 0xB9AE, 0x00000003 }, 56 { 0xB9AF, 0x00000000 }, 57 { 0xB9B0, 0x10000000 }, 58 { 0xB828, 0x6C204010 }, 59 { 0xB829, 0x6C204011 }, 60 { 0xB82A, 0x6C204012 }, 61 { 0xB82B, 0x6C204013 }, 62 { 0xB82C, 0x6C204014 }, 63 { 0xB90F, 0x00000004 }, 64 { 0xB910, 0x00000002 }, 65 { 0xB911, 0x00000002 }, 66 { 0xB912, 0x00000002 }, 67 { 0xB913, 0x00000002 }, 68 { 0xB92F, 0x00000004 }, 69 { 0xB930, 0x00000005 }, 70 { 0xB931, 0x00000005 }, 71 { 0xB932, 0x00000005 }, 72 { 0xB933, 0x00000005 }, 73 { 0xB96F, 0x00000001 }, 74 { 0xB970, 0x00000003 }, 75 { 0xB94F, 0x00000004 }, 76 { 0xB950, 0x0000000B }, 77 { 0xB951, 0x0000000B }, 78 { 0xB952, 0x0000000B }, 79 { 0xB953, 0x0000000B }, 80 { 0xB907, 0x00000019 }, 81 { 0xB927, 0x00000019 }, 82 { 0xB947, 0x00000019 }, 83 { 0xB967, 0x00000019 }, 84 { 0xB987, 0x00000019 }, 85 { 0xB906, 0x00220001 }, 86 { 0xB926, 0x00220001 }, 87 { 0xB946, 0x00220001 }, 88 { 0xB966, 0x00220001 }, 89 { 0xB986, 0x00300000 }, 90 { 0xAC40, 0x0340FF41 }, 91 { 0xAC41, 0x03BEFED0 }, 92 { 0xAC42, 0x00331FED }, 93 { 0xAC43, 0x021FFDD3 }, 94 { 0xAC44, 0x5555AAAA }, 95 { 0xAC45, 0x5555AAAA }, 96 { 0xB9BA, 0x00000008 }, 97 }; 98 99 /* 100 * Get the actual voltage value for the operating point at the specified 101 * frequency 102 */ 103 static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq) 104 { 105 struct drm_device *dev = gpu->dev; 106 struct msm_drm_private *priv = dev->dev_private; 107 struct platform_device *pdev = priv->gpu_pdev; 108 struct dev_pm_opp *opp; 109 u32 ret = 0; 110 111 opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true); 112 113 if (!IS_ERR(opp)) { 114 ret = dev_pm_opp_get_voltage(opp) / 1000; 115 dev_pm_opp_put(opp); 116 } 117 118 return ret; 119 } 120 121 /* Setup thermal limit management */ 122 static void a530_lm_setup(struct msm_gpu *gpu) 123 { 124 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 125 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 126 unsigned int i; 127 128 /* Write the block of sequence registers */ 129 for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++) 130 gpu_write(gpu, a5xx_sequence_regs[i].reg, 131 a5xx_sequence_regs[i].value); 132 133 /* Hard code the A530 GPU thermal sensor ID for the GPMU */ 134 gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007); 135 gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01); 136 gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01); 137 138 /* Until we get clock scaling 0 is always the active power level */ 139 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0); 140 141 gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage); 142 143 /* The threshold is fixed at 6000 for A530 */ 144 gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000); 145 146 gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); 147 gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1); 148 149 /* Write the voltage table */ 150 gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); 151 gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1); 152 153 gpu_write(gpu, AGC_MSG_STATE, 1); 154 gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID); 155 156 /* Write the max power - hard coded to 5448 for A530 */ 157 gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448); 158 gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1); 159 160 /* 161 * For now just write the one voltage level - we will do more when we 162 * can do scaling 163 */ 164 gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate)); 165 gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000); 166 167 gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t)); 168 gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE); 169 } 170 171 #define PAYLOAD_SIZE(_size) ((_size) * sizeof(u32)) 172 #define LM_DCVS_LIMIT 1 173 #define LEVEL_CONFIG ~(0x303) 174 175 static void a540_lm_setup(struct msm_gpu *gpu) 176 { 177 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 178 u32 config; 179 180 /* The battery current limiter isn't enabled for A540 */ 181 config = AGC_LM_CONFIG_BCL_DISABLED; 182 config |= adreno_gpu->rev.patchid << AGC_LM_CONFIG_GPU_VERSION_SHIFT; 183 184 /* For now disable GPMU side throttling */ 185 config |= AGC_LM_CONFIG_THROTTLE_DISABLE; 186 187 /* Until we get clock scaling 0 is always the active power level */ 188 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0); 189 190 /* Fixed at 6000 for now */ 191 gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000); 192 193 gpu_write(gpu, AGC_MSG_STATE, 0x80000001); 194 gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID); 195 196 gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448); 197 gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1); 198 199 gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate)); 200 gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000); 201 202 gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LM_CONFIG), config); 203 gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LEVEL_CONFIG), LEVEL_CONFIG); 204 gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 205 PAYLOAD_SIZE(AGC_LEVEL_CONFIG + 1)); 206 207 gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE); 208 } 209 210 /* Enable SP/TP cpower collapse */ 211 static void a5xx_pc_init(struct msm_gpu *gpu) 212 { 213 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F); 214 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0); 215 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080); 216 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040); 217 } 218 219 /* Enable the GPMU microcontroller */ 220 static int a5xx_gpmu_init(struct msm_gpu *gpu) 221 { 222 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 223 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 224 struct msm_ringbuffer *ring = gpu->rb[0]; 225 226 if (!a5xx_gpu->gpmu_dwords) 227 return 0; 228 229 /* Turn off protected mode for this operation */ 230 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 231 OUT_RING(ring, 0); 232 233 /* Kick off the IB to load the GPMU microcode */ 234 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 235 OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova)); 236 OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova)); 237 OUT_RING(ring, a5xx_gpu->gpmu_dwords); 238 239 /* Turn back on protected mode */ 240 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 241 OUT_RING(ring, 1); 242 243 a5xx_flush(gpu, ring, true); 244 245 if (!a5xx_idle(gpu, ring)) { 246 DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n", 247 gpu->name); 248 return -EINVAL; 249 } 250 251 if (adreno_is_a530(adreno_gpu)) 252 gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014); 253 254 /* Kick off the GPMU */ 255 gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0); 256 257 /* 258 * Wait for the GPMU to respond. It isn't fatal if it doesn't, we just 259 * won't have advanced power collapse. 260 */ 261 if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF, 262 0xBABEFACE)) 263 DRM_ERROR("%s: GPMU firmware initialization timed out\n", 264 gpu->name); 265 266 if (!adreno_is_a530(adreno_gpu)) { 267 u32 val = gpu_read(gpu, REG_A5XX_GPMU_GENERAL_1); 268 269 if (val) 270 DRM_ERROR("%s: GPMU firmware initialization failed: %d\n", 271 gpu->name, val); 272 } 273 274 return 0; 275 } 276 277 /* Enable limits management */ 278 static void a5xx_lm_enable(struct msm_gpu *gpu) 279 { 280 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 281 282 /* This init sequence only applies to A530 */ 283 if (!adreno_is_a530(adreno_gpu)) 284 return; 285 286 gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0); 287 gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A); 288 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01); 289 gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000); 290 gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000); 291 292 gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011); 293 } 294 295 int a5xx_power_init(struct msm_gpu *gpu) 296 { 297 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 298 int ret; 299 300 /* Not all A5xx chips have a GPMU */ 301 if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) 302 return 0; 303 304 /* Set up the limits management */ 305 if (adreno_is_a530(adreno_gpu)) 306 a530_lm_setup(gpu); 307 else if (adreno_is_a540(adreno_gpu)) 308 a540_lm_setup(gpu); 309 310 /* Set up SP/TP power collpase */ 311 a5xx_pc_init(gpu); 312 313 /* Start the GPMU */ 314 ret = a5xx_gpmu_init(gpu); 315 if (ret) 316 return ret; 317 318 /* Start the limits management */ 319 a5xx_lm_enable(gpu); 320 321 return 0; 322 } 323 324 void a5xx_gpmu_ucode_init(struct msm_gpu *gpu) 325 { 326 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 327 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 328 struct drm_device *drm = gpu->dev; 329 uint32_t dwords = 0, offset = 0, bosize; 330 unsigned int *data, *ptr, *cmds; 331 unsigned int cmds_size; 332 333 if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) 334 return; 335 336 if (a5xx_gpu->gpmu_bo) 337 return; 338 339 data = (unsigned int *) adreno_gpu->fw[ADRENO_FW_GPMU]->data; 340 341 /* 342 * The first dword is the size of the remaining data in dwords. Use it 343 * as a checksum of sorts and make sure it matches the actual size of 344 * the firmware that we read 345 */ 346 347 if (adreno_gpu->fw[ADRENO_FW_GPMU]->size < 8 || 348 (data[0] < 2) || (data[0] >= 349 (adreno_gpu->fw[ADRENO_FW_GPMU]->size >> 2))) 350 return; 351 352 /* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */ 353 if (data[1] != 2) 354 return; 355 356 cmds = data + data[2] + 3; 357 cmds_size = data[0] - data[2] - 2; 358 359 /* 360 * A single type4 opcode can only have so many values attached so 361 * add enough opcodes to load the all the commands 362 */ 363 bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2; 364 365 ptr = msm_gem_kernel_new(drm, bosize, 366 MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, 367 &a5xx_gpu->gpmu_bo, &a5xx_gpu->gpmu_iova); 368 if (IS_ERR(ptr)) 369 return; 370 371 msm_gem_object_set_name(a5xx_gpu->gpmu_bo, "gpmufw"); 372 373 while (cmds_size > 0) { 374 int i; 375 uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ? 376 TYPE4_MAX_PAYLOAD : cmds_size; 377 378 ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset, 379 _size); 380 381 for (i = 0; i < _size; i++) 382 ptr[dwords++] = *cmds++; 383 384 offset += _size; 385 cmds_size -= _size; 386 } 387 388 msm_gem_put_vaddr(a5xx_gpu->gpmu_bo); 389 a5xx_gpu->gpmu_dwords = dwords; 390 } 391