1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved. 3 */ 4 #ifndef __A5XX_GPU_H__ 5 #define __A5XX_GPU_H__ 6 7 #include "adreno_gpu.h" 8 9 /* Bringing over the hack from the previous targets */ 10 #undef ROP_COPY 11 #undef ROP_XOR 12 13 #include "a5xx.xml.h" 14 15 struct a5xx_gpu { 16 struct adreno_gpu base; 17 18 struct drm_gem_object *pm4_bo; 19 uint64_t pm4_iova; 20 21 struct drm_gem_object *pfp_bo; 22 uint64_t pfp_iova; 23 24 struct drm_gem_object *gpmu_bo; 25 uint64_t gpmu_iova; 26 uint32_t gpmu_dwords; 27 28 uint32_t lm_leakage; 29 30 struct msm_ringbuffer *cur_ring; 31 struct msm_ringbuffer *next_ring; 32 33 struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS]; 34 struct a5xx_preempt_record *preempt[MSM_GPU_MAX_RINGS]; 35 uint64_t preempt_iova[MSM_GPU_MAX_RINGS]; 36 37 atomic_t preempt_state; 38 struct timer_list preempt_timer; 39 }; 40 41 #define to_a5xx_gpu(x) container_of(x, struct a5xx_gpu, base) 42 43 #ifdef CONFIG_DEBUG_FS 44 void a5xx_debugfs_init(struct msm_gpu *gpu, struct drm_minor *minor); 45 #endif 46 47 /* 48 * In order to do lockless preemption we use a simple state machine to progress 49 * through the process. 50 * 51 * PREEMPT_NONE - no preemption in progress. Next state START. 52 * PREEMPT_START - The trigger is evaulating if preemption is possible. Next 53 * states: TRIGGERED, NONE 54 * PREEMPT_ABORT - An intermediate state before moving back to NONE. Next 55 * state: NONE. 56 * PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next 57 * states: FAULTED, PENDING 58 * PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger 59 * recovery. Next state: N/A 60 * PREEMPT_PENDING: Preemption complete interrupt fired - the callback is 61 * checking the success of the operation. Next state: FAULTED, NONE. 62 */ 63 64 enum preempt_state { 65 PREEMPT_NONE = 0, 66 PREEMPT_START, 67 PREEMPT_ABORT, 68 PREEMPT_TRIGGERED, 69 PREEMPT_FAULTED, 70 PREEMPT_PENDING, 71 }; 72 73 /* 74 * struct a5xx_preempt_record is a shared buffer between the microcode and the 75 * CPU to store the state for preemption. The record itself is much larger 76 * (64k) but most of that is used by the CP for storage. 77 * 78 * There is a preemption record assigned per ringbuffer. When the CPU triggers a 79 * preemption, it fills out the record with the useful information (wptr, ring 80 * base, etc) and the microcode uses that information to set up the CP following 81 * the preemption. When a ring is switched out, the CP will save the ringbuffer 82 * state back to the record. In this way, once the records are properly set up 83 * the CPU can quickly switch back and forth between ringbuffers by only 84 * updating a few registers (often only the wptr). 85 * 86 * These are the CPU aware registers in the record: 87 * @magic: Must always be 0x27C4BAFC 88 * @info: Type of the record - written 0 by the CPU, updated by the CP 89 * @data: Data field from SET_RENDER_MODE or a checkpoint. Written and used by 90 * the CP 91 * @cntl: Value of RB_CNTL written by CPU, save/restored by CP 92 * @rptr: Value of RB_RPTR written by CPU, save/restored by CP 93 * @wptr: Value of RB_WPTR written by CPU, save/restored by CP 94 * @rptr_addr: Value of RB_RPTR_ADDR written by CPU, save/restored by CP 95 * @rbase: Value of RB_BASE written by CPU, save/restored by CP 96 * @counter: GPU address of the storage area for the performance counters 97 */ 98 struct a5xx_preempt_record { 99 uint32_t magic; 100 uint32_t info; 101 uint32_t data; 102 uint32_t cntl; 103 uint32_t rptr; 104 uint32_t wptr; 105 uint64_t rptr_addr; 106 uint64_t rbase; 107 uint64_t counter; 108 }; 109 110 /* Magic identifier for the preemption record */ 111 #define A5XX_PREEMPT_RECORD_MAGIC 0x27C4BAFCUL 112 113 /* 114 * Even though the structure above is only a few bytes, we need a full 64k to 115 * store the entire preemption record from the CP 116 */ 117 #define A5XX_PREEMPT_RECORD_SIZE (64 * 1024) 118 119 /* 120 * The preemption counter block is a storage area for the value of the 121 * preemption counters that are saved immediately before context switch. We 122 * append it on to the end of the allocation for the preemption record. 123 */ 124 #define A5XX_PREEMPT_COUNTER_SIZE (16 * 4) 125 126 127 int a5xx_power_init(struct msm_gpu *gpu); 128 void a5xx_gpmu_ucode_init(struct msm_gpu *gpu); 129 130 static inline int spin_usecs(struct msm_gpu *gpu, uint32_t usecs, 131 uint32_t reg, uint32_t mask, uint32_t value) 132 { 133 while (usecs--) { 134 udelay(1); 135 if ((gpu_read(gpu, reg) & mask) == value) 136 return 0; 137 cpu_relax(); 138 } 139 140 return -ETIMEDOUT; 141 } 142 143 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 144 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state); 145 146 void a5xx_preempt_init(struct msm_gpu *gpu); 147 void a5xx_preempt_hw_init(struct msm_gpu *gpu); 148 void a5xx_preempt_trigger(struct msm_gpu *gpu); 149 void a5xx_preempt_irq(struct msm_gpu *gpu); 150 void a5xx_preempt_fini(struct msm_gpu *gpu); 151 152 /* Return true if we are in a preempt state */ 153 static inline bool a5xx_in_preempt(struct a5xx_gpu *a5xx_gpu) 154 { 155 int preempt_state = atomic_read(&a5xx_gpu->preempt_state); 156 157 return !(preempt_state == PREEMPT_NONE || 158 preempt_state == PREEMPT_ABORT); 159 } 160 161 #endif /* __A5XX_GPU_H__ */ 162