xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.h (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  */
13 #ifndef __A5XX_GPU_H__
14 #define __A5XX_GPU_H__
15 
16 #include "adreno_gpu.h"
17 
18 /* Bringing over the hack from the previous targets */
19 #undef ROP_COPY
20 #undef ROP_XOR
21 
22 #include "a5xx.xml.h"
23 
24 struct a5xx_gpu {
25 	struct adreno_gpu base;
26 
27 	struct drm_gem_object *pm4_bo;
28 	uint64_t pm4_iova;
29 
30 	struct drm_gem_object *pfp_bo;
31 	uint64_t pfp_iova;
32 
33 	struct drm_gem_object *gpmu_bo;
34 	uint64_t gpmu_iova;
35 	uint32_t gpmu_dwords;
36 
37 	uint32_t lm_leakage;
38 
39 	struct msm_ringbuffer *cur_ring;
40 	struct msm_ringbuffer *next_ring;
41 
42 	struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS];
43 	struct a5xx_preempt_record *preempt[MSM_GPU_MAX_RINGS];
44 	uint64_t preempt_iova[MSM_GPU_MAX_RINGS];
45 
46 	atomic_t preempt_state;
47 	struct timer_list preempt_timer;
48 };
49 
50 #define to_a5xx_gpu(x) container_of(x, struct a5xx_gpu, base)
51 
52 #ifdef CONFIG_DEBUG_FS
53 int a5xx_debugfs_init(struct msm_gpu *gpu, struct drm_minor *minor);
54 #endif
55 
56 /*
57  * In order to do lockless preemption we use a simple state machine to progress
58  * through the process.
59  *
60  * PREEMPT_NONE - no preemption in progress.  Next state START.
61  * PREEMPT_START - The trigger is evaulating if preemption is possible. Next
62  * states: TRIGGERED, NONE
63  * PREEMPT_ABORT - An intermediate state before moving back to NONE. Next
64  * state: NONE.
65  * PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next
66  * states: FAULTED, PENDING
67  * PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger
68  * recovery.  Next state: N/A
69  * PREEMPT_PENDING: Preemption complete interrupt fired - the callback is
70  * checking the success of the operation. Next state: FAULTED, NONE.
71  */
72 
73 enum preempt_state {
74 	PREEMPT_NONE = 0,
75 	PREEMPT_START,
76 	PREEMPT_ABORT,
77 	PREEMPT_TRIGGERED,
78 	PREEMPT_FAULTED,
79 	PREEMPT_PENDING,
80 };
81 
82 /*
83  * struct a5xx_preempt_record is a shared buffer between the microcode and the
84  * CPU to store the state for preemption. The record itself is much larger
85  * (64k) but most of that is used by the CP for storage.
86  *
87  * There is a preemption record assigned per ringbuffer. When the CPU triggers a
88  * preemption, it fills out the record with the useful information (wptr, ring
89  * base, etc) and the microcode uses that information to set up the CP following
90  * the preemption.  When a ring is switched out, the CP will save the ringbuffer
91  * state back to the record. In this way, once the records are properly set up
92  * the CPU can quickly switch back and forth between ringbuffers by only
93  * updating a few registers (often only the wptr).
94  *
95  * These are the CPU aware registers in the record:
96  * @magic: Must always be 0x27C4BAFC
97  * @info: Type of the record - written 0 by the CPU, updated by the CP
98  * @data: Data field from SET_RENDER_MODE or a checkpoint. Written and used by
99  * the CP
100  * @cntl: Value of RB_CNTL written by CPU, save/restored by CP
101  * @rptr: Value of RB_RPTR written by CPU, save/restored by CP
102  * @wptr: Value of RB_WPTR written by CPU, save/restored by CP
103  * @rptr_addr: Value of RB_RPTR_ADDR written by CPU, save/restored by CP
104  * @rbase: Value of RB_BASE written by CPU, save/restored by CP
105  * @counter: GPU address of the storage area for the performance counters
106  */
107 struct a5xx_preempt_record {
108 	uint32_t magic;
109 	uint32_t info;
110 	uint32_t data;
111 	uint32_t cntl;
112 	uint32_t rptr;
113 	uint32_t wptr;
114 	uint64_t rptr_addr;
115 	uint64_t rbase;
116 	uint64_t counter;
117 };
118 
119 /* Magic identifier for the preemption record */
120 #define A5XX_PREEMPT_RECORD_MAGIC 0x27C4BAFCUL
121 
122 /*
123  * Even though the structure above is only a few bytes, we need a full 64k to
124  * store the entire preemption record from the CP
125  */
126 #define A5XX_PREEMPT_RECORD_SIZE (64 * 1024)
127 
128 /*
129  * The preemption counter block is a storage area for the value of the
130  * preemption counters that are saved immediately before context switch. We
131  * append it on to the end of the allocation for the preemption record.
132  */
133 #define A5XX_PREEMPT_COUNTER_SIZE (16 * 4)
134 
135 
136 int a5xx_power_init(struct msm_gpu *gpu);
137 void a5xx_gpmu_ucode_init(struct msm_gpu *gpu);
138 
139 static inline int spin_usecs(struct msm_gpu *gpu, uint32_t usecs,
140 		uint32_t reg, uint32_t mask, uint32_t value)
141 {
142 	while (usecs--) {
143 		udelay(1);
144 		if ((gpu_read(gpu, reg) & mask) == value)
145 			return 0;
146 		cpu_relax();
147 	}
148 
149 	return -ETIMEDOUT;
150 }
151 
152 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
153 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state);
154 
155 void a5xx_preempt_init(struct msm_gpu *gpu);
156 void a5xx_preempt_hw_init(struct msm_gpu *gpu);
157 void a5xx_preempt_trigger(struct msm_gpu *gpu);
158 void a5xx_preempt_irq(struct msm_gpu *gpu);
159 void a5xx_preempt_fini(struct msm_gpu *gpu);
160 
161 /* Return true if we are in a preempt state */
162 static inline bool a5xx_in_preempt(struct a5xx_gpu *a5xx_gpu)
163 {
164 	int preempt_state = atomic_read(&a5xx_gpu->preempt_state);
165 
166 	return !(preempt_state == PREEMPT_NONE ||
167 			preempt_state == PREEMPT_ABORT);
168 }
169 
170 #endif /* __A5XX_GPU_H__ */
171