xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/cpumask.h>
8 #include <linux/qcom_scm.h>
9 #include <linux/pm_opp.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/slab.h>
12 #include "msm_gem.h"
13 #include "msm_mmu.h"
14 #include "a5xx_gpu.h"
15 
16 extern bool hang_debug;
17 static void a5xx_dump(struct msm_gpu *gpu);
18 
19 #define GPU_PAS_ID 13
20 
21 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
22 {
23 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
24 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
25 
26 	if (a5xx_gpu->has_whereami) {
27 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
28 		OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring)));
29 		OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring)));
30 	}
31 }
32 
33 void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
34 		bool sync)
35 {
36 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
37 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
38 	uint32_t wptr;
39 	unsigned long flags;
40 
41 	/*
42 	 * Most flush operations need to issue a WHERE_AM_I opcode to sync up
43 	 * the rptr shadow
44 	 */
45 	if (sync)
46 		update_shadow_rptr(gpu, ring);
47 
48 	spin_lock_irqsave(&ring->preempt_lock, flags);
49 
50 	/* Copy the shadow to the actual register */
51 	ring->cur = ring->next;
52 
53 	/* Make sure to wrap wptr if we need to */
54 	wptr = get_wptr(ring);
55 
56 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
57 
58 	/* Make sure everything is posted before making a decision */
59 	mb();
60 
61 	/* Update HW if this is the current ring and we are not in preempt */
62 	if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
63 		gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
64 }
65 
66 static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit)
67 {
68 	struct msm_drm_private *priv = gpu->dev->dev_private;
69 	struct msm_ringbuffer *ring = submit->ring;
70 	struct msm_gem_object *obj;
71 	uint32_t *ptr, dwords;
72 	unsigned int i;
73 
74 	for (i = 0; i < submit->nr_cmds; i++) {
75 		switch (submit->cmd[i].type) {
76 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
77 			break;
78 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
79 			if (priv->lastctx == submit->queue->ctx)
80 				break;
81 			fallthrough;
82 		case MSM_SUBMIT_CMD_BUF:
83 			/* copy commands into RB: */
84 			obj = submit->bos[submit->cmd[i].idx].obj;
85 			dwords = submit->cmd[i].size;
86 
87 			ptr = msm_gem_get_vaddr(&obj->base);
88 
89 			/* _get_vaddr() shouldn't fail at this point,
90 			 * since we've already mapped it once in
91 			 * submit_reloc()
92 			 */
93 			if (WARN_ON(!ptr))
94 				return;
95 
96 			for (i = 0; i < dwords; i++) {
97 				/* normally the OUT_PKTn() would wait
98 				 * for space for the packet.  But since
99 				 * we just OUT_RING() the whole thing,
100 				 * need to call adreno_wait_ring()
101 				 * ourself:
102 				 */
103 				adreno_wait_ring(ring, 1);
104 				OUT_RING(ring, ptr[i]);
105 			}
106 
107 			msm_gem_put_vaddr(&obj->base);
108 
109 			break;
110 		}
111 	}
112 
113 	a5xx_flush(gpu, ring, true);
114 	a5xx_preempt_trigger(gpu);
115 
116 	/* we might not necessarily have a cmd from userspace to
117 	 * trigger an event to know that submit has completed, so
118 	 * do this manually:
119 	 */
120 	a5xx_idle(gpu, ring);
121 	ring->memptrs->fence = submit->seqno;
122 	msm_gpu_retire(gpu);
123 }
124 
125 static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
126 {
127 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
128 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
129 	struct msm_drm_private *priv = gpu->dev->dev_private;
130 	struct msm_ringbuffer *ring = submit->ring;
131 	unsigned int i, ibs = 0;
132 
133 	if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) {
134 		priv->lastctx = NULL;
135 		a5xx_submit_in_rb(gpu, submit);
136 		return;
137 	}
138 
139 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
140 	OUT_RING(ring, 0x02);
141 
142 	/* Turn off protected mode to write to special registers */
143 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
144 	OUT_RING(ring, 0);
145 
146 	/* Set the save preemption record for the ring/command */
147 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
148 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
149 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
150 
151 	/* Turn back on protected mode */
152 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
153 	OUT_RING(ring, 1);
154 
155 	/* Enable local preemption for finegrain preemption */
156 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
157 	OUT_RING(ring, 0x02);
158 
159 	/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
160 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
161 	OUT_RING(ring, 0x02);
162 
163 	/* Submit the commands */
164 	for (i = 0; i < submit->nr_cmds; i++) {
165 		switch (submit->cmd[i].type) {
166 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
167 			break;
168 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
169 			if (priv->lastctx == submit->queue->ctx)
170 				break;
171 			fallthrough;
172 		case MSM_SUBMIT_CMD_BUF:
173 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
174 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
175 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
176 			OUT_RING(ring, submit->cmd[i].size);
177 			ibs++;
178 			break;
179 		}
180 
181 		/*
182 		 * Periodically update shadow-wptr if needed, so that we
183 		 * can see partial progress of submits with large # of
184 		 * cmds.. otherwise we could needlessly stall waiting for
185 		 * ringbuffer state, simply due to looking at a shadow
186 		 * rptr value that has not been updated
187 		 */
188 		if ((ibs % 32) == 0)
189 			update_shadow_rptr(gpu, ring);
190 	}
191 
192 	/*
193 	 * Write the render mode to NULL (0) to indicate to the CP that the IBs
194 	 * are done rendering - otherwise a lucky preemption would start
195 	 * replaying from the last checkpoint
196 	 */
197 	OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
198 	OUT_RING(ring, 0);
199 	OUT_RING(ring, 0);
200 	OUT_RING(ring, 0);
201 	OUT_RING(ring, 0);
202 	OUT_RING(ring, 0);
203 
204 	/* Turn off IB level preemptions */
205 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
206 	OUT_RING(ring, 0x01);
207 
208 	/* Write the fence to the scratch register */
209 	OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
210 	OUT_RING(ring, submit->seqno);
211 
212 	/*
213 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
214 	 * timestamp is written to the memory and then triggers the interrupt
215 	 */
216 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
217 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
218 		CP_EVENT_WRITE_0_IRQ);
219 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
220 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
221 	OUT_RING(ring, submit->seqno);
222 
223 	/* Yield the floor on command completion */
224 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
225 	/*
226 	 * If dword[2:1] are non zero, they specify an address for the CP to
227 	 * write the value of dword[3] to on preemption complete. Write 0 to
228 	 * skip the write
229 	 */
230 	OUT_RING(ring, 0x00);
231 	OUT_RING(ring, 0x00);
232 	/* Data value - not used if the address above is 0 */
233 	OUT_RING(ring, 0x01);
234 	/* Set bit 0 to trigger an interrupt on preempt complete */
235 	OUT_RING(ring, 0x01);
236 
237 	/* A WHERE_AM_I packet is not needed after a YIELD */
238 	a5xx_flush(gpu, ring, false);
239 
240 	/* Check to see if we need to start preemption */
241 	a5xx_preempt_trigger(gpu);
242 }
243 
244 static const struct adreno_five_hwcg_regs {
245 	u32 offset;
246 	u32 value;
247 } a5xx_hwcg[] = {
248 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
249 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
250 	{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
251 	{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
252 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
253 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
254 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
255 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
256 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
257 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
258 	{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
259 	{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
260 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
261 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
262 	{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
263 	{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
264 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
265 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
266 	{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
267 	{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
268 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
269 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
270 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
271 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
272 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
273 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
274 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
275 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
276 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
277 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
278 	{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
279 	{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
280 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
281 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
282 	{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
283 	{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
284 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
285 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
286 	{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
287 	{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
288 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
289 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
290 	{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
291 	{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
292 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
293 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
294 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
295 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
296 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
297 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
298 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
299 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
300 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
301 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
302 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
303 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
304 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
305 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
306 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
307 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
308 	{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
309 	{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
310 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
311 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
312 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
313 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
314 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
315 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
316 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
317 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
318 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
319 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
320 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
321 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
322 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
323 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
324 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
325 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
326 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
327 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
328 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
329 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
330 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
331 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
332 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
333 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
334 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
335 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
336 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
337 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
338 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
339 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
340 }, a50x_hwcg[] = {
341 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
342 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
343 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
344 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
345 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
346 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
347 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
348 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
349 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
350 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
351 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
352 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
353 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
354 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
355 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
356 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
357 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
358 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4},
359 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
360 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
361 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
362 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
363 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
364 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
365 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
366 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
367 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
368 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
369 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
370 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
371 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
372 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
373 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
374 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
375 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
376 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
377 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
378 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
379 }, a512_hwcg[] = {
380 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
381 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
382 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
383 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
384 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
385 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
386 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
387 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
388 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
389 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
390 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
391 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
392 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
393 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
394 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
395 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
396 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
397 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
398 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
399 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
400 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
401 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
402 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
403 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
404 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
405 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
406 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
407 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
408 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
409 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
410 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
411 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
412 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
413 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
414 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
415 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
416 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
417 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
418 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
419 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
420 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
421 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
422 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
423 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
424 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
425 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
426 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
427 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
428 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
429 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
430 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
431 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
432 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
433 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
434 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
435 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
436 };
437 
438 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
439 {
440 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
441 	const struct adreno_five_hwcg_regs *regs;
442 	unsigned int i, sz;
443 
444 	if (adreno_is_a508(adreno_gpu)) {
445 		regs = a50x_hwcg;
446 		sz = ARRAY_SIZE(a50x_hwcg);
447 	} else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) {
448 		regs = a512_hwcg;
449 		sz = ARRAY_SIZE(a512_hwcg);
450 	} else {
451 		regs = a5xx_hwcg;
452 		sz = ARRAY_SIZE(a5xx_hwcg);
453 	}
454 
455 	for (i = 0; i < sz; i++)
456 		gpu_write(gpu, regs[i].offset,
457 			  state ? regs[i].value : 0);
458 
459 	if (adreno_is_a540(adreno_gpu)) {
460 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0);
461 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0);
462 	}
463 
464 	gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
465 	gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
466 }
467 
468 static int a5xx_me_init(struct msm_gpu *gpu)
469 {
470 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
471 	struct msm_ringbuffer *ring = gpu->rb[0];
472 
473 	OUT_PKT7(ring, CP_ME_INIT, 8);
474 
475 	OUT_RING(ring, 0x0000002F);
476 
477 	/* Enable multiple hardware contexts */
478 	OUT_RING(ring, 0x00000003);
479 
480 	/* Enable error detection */
481 	OUT_RING(ring, 0x20000000);
482 
483 	/* Don't enable header dump */
484 	OUT_RING(ring, 0x00000000);
485 	OUT_RING(ring, 0x00000000);
486 
487 	/* Specify workarounds for various microcode issues */
488 	if (adreno_is_a530(adreno_gpu)) {
489 		/* Workaround for token end syncs
490 		 * Force a WFI after every direct-render 3D mode draw and every
491 		 * 2D mode 3 draw
492 		 */
493 		OUT_RING(ring, 0x0000000B);
494 	} else if (adreno_is_a510(adreno_gpu)) {
495 		/* Workaround for token and syncs */
496 		OUT_RING(ring, 0x00000001);
497 	} else {
498 		/* No workarounds enabled */
499 		OUT_RING(ring, 0x00000000);
500 	}
501 
502 	OUT_RING(ring, 0x00000000);
503 	OUT_RING(ring, 0x00000000);
504 
505 	a5xx_flush(gpu, ring, true);
506 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
507 }
508 
509 static int a5xx_preempt_start(struct msm_gpu *gpu)
510 {
511 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
512 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
513 	struct msm_ringbuffer *ring = gpu->rb[0];
514 
515 	if (gpu->nr_rings == 1)
516 		return 0;
517 
518 	/* Turn off protected mode to write to special registers */
519 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
520 	OUT_RING(ring, 0);
521 
522 	/* Set the save preemption record for the ring/command */
523 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
524 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
525 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
526 
527 	/* Turn back on protected mode */
528 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
529 	OUT_RING(ring, 1);
530 
531 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
532 	OUT_RING(ring, 0x00);
533 
534 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
535 	OUT_RING(ring, 0x01);
536 
537 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
538 	OUT_RING(ring, 0x01);
539 
540 	/* Yield the floor on command completion */
541 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
542 	OUT_RING(ring, 0x00);
543 	OUT_RING(ring, 0x00);
544 	OUT_RING(ring, 0x01);
545 	OUT_RING(ring, 0x01);
546 
547 	/* The WHERE_AMI_I packet is not needed after a YIELD is issued */
548 	a5xx_flush(gpu, ring, false);
549 
550 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
551 }
552 
553 static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu,
554 		struct drm_gem_object *obj)
555 {
556 	u32 *buf = msm_gem_get_vaddr(obj);
557 
558 	if (IS_ERR(buf))
559 		return;
560 
561 	/*
562 	 * If the lowest nibble is 0xa that is an indication that this microcode
563 	 * has been patched. The actual version is in dword [3] but we only care
564 	 * about the patchlevel which is the lowest nibble of dword [3]
565 	 */
566 	if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
567 		a5xx_gpu->has_whereami = true;
568 
569 	msm_gem_put_vaddr(obj);
570 }
571 
572 static int a5xx_ucode_init(struct msm_gpu *gpu)
573 {
574 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
575 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
576 	int ret;
577 
578 	if (!a5xx_gpu->pm4_bo) {
579 		a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu,
580 			adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova);
581 
582 
583 		if (IS_ERR(a5xx_gpu->pm4_bo)) {
584 			ret = PTR_ERR(a5xx_gpu->pm4_bo);
585 			a5xx_gpu->pm4_bo = NULL;
586 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n",
587 				ret);
588 			return ret;
589 		}
590 
591 		msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw");
592 	}
593 
594 	if (!a5xx_gpu->pfp_bo) {
595 		a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu,
596 			adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova);
597 
598 		if (IS_ERR(a5xx_gpu->pfp_bo)) {
599 			ret = PTR_ERR(a5xx_gpu->pfp_bo);
600 			a5xx_gpu->pfp_bo = NULL;
601 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n",
602 				ret);
603 			return ret;
604 		}
605 
606 		msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw");
607 		a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo);
608 	}
609 
610 	gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO,
611 		REG_A5XX_CP_ME_INSTR_BASE_HI, a5xx_gpu->pm4_iova);
612 
613 	gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO,
614 		REG_A5XX_CP_PFP_INSTR_BASE_HI, a5xx_gpu->pfp_iova);
615 
616 	return 0;
617 }
618 
619 #define SCM_GPU_ZAP_SHADER_RESUME 0
620 
621 static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
622 {
623 	int ret;
624 
625 	ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
626 	if (ret)
627 		DRM_ERROR("%s: zap-shader resume failed: %d\n",
628 			gpu->name, ret);
629 
630 	return ret;
631 }
632 
633 static int a5xx_zap_shader_init(struct msm_gpu *gpu)
634 {
635 	static bool loaded;
636 	int ret;
637 
638 	/*
639 	 * If the zap shader is already loaded into memory we just need to kick
640 	 * the remote processor to reinitialize it
641 	 */
642 	if (loaded)
643 		return a5xx_zap_shader_resume(gpu);
644 
645 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
646 
647 	loaded = !ret;
648 	return ret;
649 }
650 
651 #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
652 	  A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
653 	  A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
654 	  A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
655 	  A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
656 	  A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
657 	  A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
658 	  A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
659 	  A5XX_RBBM_INT_0_MASK_CP_SW | \
660 	  A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
661 	  A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
662 	  A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
663 
664 static int a5xx_hw_init(struct msm_gpu *gpu)
665 {
666 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
667 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
668 	u32 regbit;
669 	int ret;
670 
671 	gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
672 
673 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
674 	    adreno_is_a540(adreno_gpu))
675 		gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
676 
677 	/* Make all blocks contribute to the GPU BUSY perf counter */
678 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
679 
680 	/* Enable RBBM error reporting bits */
681 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
682 
683 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
684 		/*
685 		 * Mask out the activity signals from RB1-3 to avoid false
686 		 * positives
687 		 */
688 
689 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
690 			0xF0000000);
691 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
692 			0xFFFFFFFF);
693 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
694 			0xFFFFFFFF);
695 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
696 			0xFFFFFFFF);
697 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
698 			0xFFFFFFFF);
699 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
700 			0xFFFFFFFF);
701 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
702 			0xFFFFFFFF);
703 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
704 			0xFFFFFFFF);
705 	}
706 
707 	/* Enable fault detection */
708 	gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
709 		(1 << 30) | 0xFFFF);
710 
711 	/* Turn on performance counters */
712 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
713 
714 	/* Select CP0 to always count cycles */
715 	gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
716 
717 	/* Select RBBM0 to countable 6 to get the busy status for devfreq */
718 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6);
719 
720 	/* Increase VFD cache access so LRZ and other data gets evicted less */
721 	gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
722 
723 	/* Disable L2 bypass in the UCHE */
724 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
725 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
726 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
727 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
728 
729 	/* Set the GMEM VA range (0 to gpu->gmem) */
730 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
731 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
732 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
733 		0x00100000 + adreno_gpu->gmem - 1);
734 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
735 
736 	if (adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) {
737 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20);
738 		if (adreno_is_a508(adreno_gpu))
739 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
740 		else
741 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20);
742 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030);
743 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A);
744 	} else {
745 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
746 		if (adreno_is_a530(adreno_gpu))
747 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
748 		else
749 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
750 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
751 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
752 	}
753 
754 	if (adreno_is_a508(adreno_gpu))
755 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
756 			  (0x100 << 11 | 0x100 << 22));
757 	else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) ||
758 		 adreno_is_a512(adreno_gpu))
759 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
760 			  (0x200 << 11 | 0x200 << 22));
761 	else
762 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
763 			  (0x400 << 11 | 0x300 << 22));
764 
765 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
766 		gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
767 
768 	/*
769 	 * Disable the RB sampler datapath DP2 clock gating optimization
770 	 * for 1-SP GPUs, as it is enabled by default.
771 	 */
772 	if (adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) ||
773 	    adreno_is_a512(adreno_gpu))
774 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9));
775 
776 	/* Disable UCHE global filter as SP can invalidate/flush independently */
777 	gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29));
778 
779 	/* Enable USE_RETENTION_FLOPS */
780 	gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
781 
782 	/* Enable ME/PFP split notification */
783 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
784 
785 	/*
786 	 *  In A5x, CCU can send context_done event of a particular context to
787 	 *  UCHE which ultimately reaches CP even when there is valid
788 	 *  transaction of that context inside CCU. This can let CP to program
789 	 *  config registers, which will make the "valid transaction" inside
790 	 *  CCU to be interpreted differently. This can cause gpu fault. This
791 	 *  bug is fixed in latest A510 revision. To enable this bug fix -
792 	 *  bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1
793 	 *  (disable). For older A510 version this bit is unused.
794 	 */
795 	if (adreno_is_a510(adreno_gpu))
796 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0);
797 
798 	/* Enable HWCG */
799 	a5xx_set_hwcg(gpu, true);
800 
801 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
802 
803 	/* Set the highest bank bit */
804 	if (adreno_is_a540(adreno_gpu))
805 		regbit = 2;
806 	else
807 		regbit = 1;
808 
809 	gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, regbit << 7);
810 	gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, regbit << 1);
811 
812 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
813 	    adreno_is_a540(adreno_gpu))
814 		gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, regbit);
815 
816 	/* Disable All flat shading optimization (ALLFLATOPTDIS) */
817 	gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10));
818 
819 	/* Protect registers from the CP */
820 	gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
821 
822 	/* RBBM */
823 	gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
824 	gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
825 	gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
826 	gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
827 	gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
828 	gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
829 
830 	/* Content protect */
831 	gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
832 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
833 			16));
834 	gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
835 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
836 
837 	/* CP */
838 	gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
839 	gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
840 	gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
841 	gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
842 
843 	/* RB */
844 	gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
845 	gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
846 
847 	/* VPC */
848 	gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
849 	gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16));
850 
851 	/* UCHE */
852 	gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
853 
854 	if (adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) ||
855 	    adreno_is_a510(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
856 	    adreno_is_a530(adreno_gpu))
857 		gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
858 			ADRENO_PROTECT_RW(0x10000, 0x8000));
859 
860 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
861 	/*
862 	 * Disable the trusted memory range - we don't actually supported secure
863 	 * memory rendering at this point in time and we don't want to block off
864 	 * part of the virtual memory space.
865 	 */
866 	gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
867 		REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
868 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
869 
870 	/* Put the GPU into 64 bit by default */
871 	gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1);
872 	gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1);
873 	gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1);
874 	gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1);
875 	gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1);
876 	gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1);
877 	gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1);
878 	gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1);
879 	gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1);
880 	gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1);
881 	gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1);
882 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
883 
884 	/*
885 	 * VPC corner case with local memory load kill leads to corrupt
886 	 * internal state. Normal Disable does not work for all a5x chips.
887 	 * So do the following setting to disable it.
888 	 */
889 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) {
890 		gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23));
891 		gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0);
892 	}
893 
894 	ret = adreno_hw_init(gpu);
895 	if (ret)
896 		return ret;
897 
898 	if (!(adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) ||
899 	      adreno_is_a510(adreno_gpu) || adreno_is_a512(adreno_gpu)))
900 		a5xx_gpmu_ucode_init(gpu);
901 
902 	ret = a5xx_ucode_init(gpu);
903 	if (ret)
904 		return ret;
905 
906 	/* Set the ringbuffer address */
907 	gpu_write64(gpu, REG_A5XX_CP_RB_BASE, REG_A5XX_CP_RB_BASE_HI,
908 		gpu->rb[0]->iova);
909 
910 	/*
911 	 * If the microcode supports the WHERE_AM_I opcode then we can use that
912 	 * in lieu of the RPTR shadow and enable preemption. Otherwise, we
913 	 * can't safely use the RPTR shadow or preemption. In either case, the
914 	 * RPTR shadow should be disabled in hardware.
915 	 */
916 	gpu_write(gpu, REG_A5XX_CP_RB_CNTL,
917 		MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
918 
919 	/* Create a privileged buffer for the RPTR shadow */
920 	if (a5xx_gpu->has_whereami) {
921 		if (!a5xx_gpu->shadow_bo) {
922 			a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
923 				sizeof(u32) * gpu->nr_rings,
924 				MSM_BO_WC | MSM_BO_MAP_PRIV,
925 				gpu->aspace, &a5xx_gpu->shadow_bo,
926 				&a5xx_gpu->shadow_iova);
927 
928 			if (IS_ERR(a5xx_gpu->shadow))
929 				return PTR_ERR(a5xx_gpu->shadow);
930 		}
931 
932 		gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR,
933 			REG_A5XX_CP_RB_RPTR_ADDR_HI, shadowptr(a5xx_gpu, gpu->rb[0]));
934 	} else if (gpu->nr_rings > 1) {
935 		/* Disable preemption if WHERE_AM_I isn't available */
936 		a5xx_preempt_fini(gpu);
937 		gpu->nr_rings = 1;
938 	}
939 
940 	a5xx_preempt_hw_init(gpu);
941 
942 	/* Disable the interrupts through the initial bringup stage */
943 	gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
944 
945 	/* Clear ME_HALT to start the micro engine */
946 	gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
947 	ret = a5xx_me_init(gpu);
948 	if (ret)
949 		return ret;
950 
951 	ret = a5xx_power_init(gpu);
952 	if (ret)
953 		return ret;
954 
955 	/*
956 	 * Send a pipeline event stat to get misbehaving counters to start
957 	 * ticking correctly
958 	 */
959 	if (adreno_is_a530(adreno_gpu)) {
960 		OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
961 		OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT));
962 
963 		a5xx_flush(gpu, gpu->rb[0], true);
964 		if (!a5xx_idle(gpu, gpu->rb[0]))
965 			return -EINVAL;
966 	}
967 
968 	/*
969 	 * If the chip that we are using does support loading one, then
970 	 * try to load a zap shader into the secure world. If successful
971 	 * we can use the CP to switch out of secure mode. If not then we
972 	 * have no resource but to try to switch ourselves out manually. If we
973 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
974 	 * be blocked and a permissions violation will soon follow.
975 	 */
976 	ret = a5xx_zap_shader_init(gpu);
977 	if (!ret) {
978 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
979 		OUT_RING(gpu->rb[0], 0x00000000);
980 
981 		a5xx_flush(gpu, gpu->rb[0], true);
982 		if (!a5xx_idle(gpu, gpu->rb[0]))
983 			return -EINVAL;
984 	} else if (ret == -ENODEV) {
985 		/*
986 		 * This device does not use zap shader (but print a warning
987 		 * just in case someone got their dt wrong.. hopefully they
988 		 * have a debug UART to realize the error of their ways...
989 		 * if you mess this up you are about to crash horribly)
990 		 */
991 		dev_warn_once(gpu->dev->dev,
992 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
993 		gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
994 	} else {
995 		return ret;
996 	}
997 
998 	/* Last step - yield the ringbuffer */
999 	a5xx_preempt_start(gpu);
1000 
1001 	return 0;
1002 }
1003 
1004 static void a5xx_recover(struct msm_gpu *gpu)
1005 {
1006 	int i;
1007 
1008 	adreno_dump_info(gpu);
1009 
1010 	for (i = 0; i < 8; i++) {
1011 		printk("CP_SCRATCH_REG%d: %u\n", i,
1012 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
1013 	}
1014 
1015 	if (hang_debug)
1016 		a5xx_dump(gpu);
1017 
1018 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
1019 	gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
1020 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
1021 	adreno_recover(gpu);
1022 }
1023 
1024 static void a5xx_destroy(struct msm_gpu *gpu)
1025 {
1026 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1027 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1028 
1029 	DBG("%s", gpu->name);
1030 
1031 	a5xx_preempt_fini(gpu);
1032 
1033 	if (a5xx_gpu->pm4_bo) {
1034 		msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace);
1035 		drm_gem_object_put(a5xx_gpu->pm4_bo);
1036 	}
1037 
1038 	if (a5xx_gpu->pfp_bo) {
1039 		msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace);
1040 		drm_gem_object_put(a5xx_gpu->pfp_bo);
1041 	}
1042 
1043 	if (a5xx_gpu->gpmu_bo) {
1044 		msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
1045 		drm_gem_object_put(a5xx_gpu->gpmu_bo);
1046 	}
1047 
1048 	if (a5xx_gpu->shadow_bo) {
1049 		msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace);
1050 		drm_gem_object_put(a5xx_gpu->shadow_bo);
1051 	}
1052 
1053 	adreno_gpu_cleanup(adreno_gpu);
1054 	kfree(a5xx_gpu);
1055 }
1056 
1057 static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
1058 {
1059 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
1060 		return false;
1061 
1062 	/*
1063 	 * Nearly every abnormality ends up pausing the GPU and triggering a
1064 	 * fault so we can safely just watch for this one interrupt to fire
1065 	 */
1066 	return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
1067 		A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
1068 }
1069 
1070 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1071 {
1072 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1073 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1074 
1075 	if (ring != a5xx_gpu->cur_ring) {
1076 		WARN(1, "Tried to idle a non-current ringbuffer\n");
1077 		return false;
1078 	}
1079 
1080 	/* wait for CP to drain ringbuffer: */
1081 	if (!adreno_idle(gpu, ring))
1082 		return false;
1083 
1084 	if (spin_until(_a5xx_check_idle(gpu))) {
1085 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
1086 			gpu->name, __builtin_return_address(0),
1087 			gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1088 			gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
1089 			gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1090 			gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
1091 		return false;
1092 	}
1093 
1094 	return true;
1095 }
1096 
1097 static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1098 {
1099 	struct msm_gpu *gpu = arg;
1100 	pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
1101 			iova, flags,
1102 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
1103 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
1104 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
1105 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)));
1106 
1107 	return 0;
1108 }
1109 
1110 static void a5xx_cp_err_irq(struct msm_gpu *gpu)
1111 {
1112 	u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
1113 
1114 	if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
1115 		u32 val;
1116 
1117 		gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
1118 
1119 		/*
1120 		 * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
1121 		 * read it twice
1122 		 */
1123 
1124 		gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1125 		val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1126 
1127 		dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
1128 			val);
1129 	}
1130 
1131 	if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
1132 		dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
1133 			gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
1134 
1135 	if (status & A5XX_CP_INT_CP_DMA_ERROR)
1136 		dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
1137 
1138 	if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1139 		u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
1140 
1141 		dev_err_ratelimited(gpu->dev->dev,
1142 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1143 			val & (1 << 24) ? "WRITE" : "READ",
1144 			(val & 0xFFFFF) >> 2, val);
1145 	}
1146 
1147 	if (status & A5XX_CP_INT_CP_AHB_ERROR) {
1148 		u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
1149 		const char *access[16] = { "reserved", "reserved",
1150 			"timestamp lo", "timestamp hi", "pfp read", "pfp write",
1151 			"", "", "me read", "me write", "", "", "crashdump read",
1152 			"crashdump write" };
1153 
1154 		dev_err_ratelimited(gpu->dev->dev,
1155 			"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
1156 			status & 0xFFFFF, access[(status >> 24) & 0xF],
1157 			(status & (1 << 31)), status);
1158 	}
1159 }
1160 
1161 static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
1162 {
1163 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
1164 		u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
1165 
1166 		dev_err_ratelimited(gpu->dev->dev,
1167 			"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
1168 			val & (1 << 28) ? "WRITE" : "READ",
1169 			(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
1170 			(val >> 24) & 0xF);
1171 
1172 		/* Clear the error */
1173 		gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
1174 
1175 		/* Clear the interrupt */
1176 		gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1177 			A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1178 	}
1179 
1180 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
1181 		dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
1182 
1183 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
1184 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
1185 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
1186 
1187 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
1188 		dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
1189 			gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
1190 
1191 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
1192 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
1193 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
1194 
1195 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1196 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
1197 
1198 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1199 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
1200 }
1201 
1202 static void a5xx_uche_err_irq(struct msm_gpu *gpu)
1203 {
1204 	uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
1205 
1206 	addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
1207 
1208 	dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
1209 		addr);
1210 }
1211 
1212 static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
1213 {
1214 	dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
1215 }
1216 
1217 static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
1218 {
1219 	struct drm_device *dev = gpu->dev;
1220 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1221 
1222 	/*
1223 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1224 	 * but the fault handler will trigger the devcore dump, and we want
1225 	 * to otherwise resume normally rather than killing the submit, so
1226 	 * just bail.
1227 	 */
1228 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24))
1229 		return;
1230 
1231 	DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1232 		ring ? ring->id : -1, ring ? ring->seqno : 0,
1233 		gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1234 		gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1235 		gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
1236 		gpu_read64(gpu, REG_A5XX_CP_IB1_BASE, REG_A5XX_CP_IB1_BASE_HI),
1237 		gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
1238 		gpu_read64(gpu, REG_A5XX_CP_IB2_BASE, REG_A5XX_CP_IB2_BASE_HI),
1239 		gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
1240 
1241 	/* Turn off the hangcheck timer to keep it from bothering us */
1242 	del_timer(&gpu->hangcheck_timer);
1243 
1244 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1245 }
1246 
1247 #define RBBM_ERROR_MASK \
1248 	(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
1249 	A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
1250 	A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
1251 	A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
1252 	A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
1253 	A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1254 
1255 static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
1256 {
1257 	u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
1258 
1259 	/*
1260 	 * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
1261 	 * before the source is cleared the interrupt will storm.
1262 	 */
1263 	gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1264 		status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1265 
1266 	/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
1267 	if (status & RBBM_ERROR_MASK)
1268 		a5xx_rbbm_err_irq(gpu, status);
1269 
1270 	if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1271 		a5xx_cp_err_irq(gpu);
1272 
1273 	if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
1274 		a5xx_fault_detect_irq(gpu);
1275 
1276 	if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1277 		a5xx_uche_err_irq(gpu);
1278 
1279 	if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
1280 		a5xx_gpmu_err_irq(gpu);
1281 
1282 	if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
1283 		a5xx_preempt_trigger(gpu);
1284 		msm_gpu_retire(gpu);
1285 	}
1286 
1287 	if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
1288 		a5xx_preempt_irq(gpu);
1289 
1290 	return IRQ_HANDLED;
1291 }
1292 
1293 static const u32 a5xx_registers[] = {
1294 	0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
1295 	0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
1296 	0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
1297 	0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
1298 	0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
1299 	0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
1300 	0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
1301 	0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
1302 	0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
1303 	0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
1304 	0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
1305 	0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
1306 	0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
1307 	0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
1308 	0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
1309 	0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
1310 	0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
1311 	0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
1312 	0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
1313 	0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
1314 	0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
1315 	0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
1316 	0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
1317 	0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
1318 	0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
1319 	0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D,
1320 	0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5,
1321 	0xAC60, 0xAC60, ~0,
1322 };
1323 
1324 static void a5xx_dump(struct msm_gpu *gpu)
1325 {
1326 	DRM_DEV_INFO(gpu->dev->dev, "status:   %08x\n",
1327 		gpu_read(gpu, REG_A5XX_RBBM_STATUS));
1328 	adreno_dump(gpu);
1329 }
1330 
1331 static int a5xx_pm_resume(struct msm_gpu *gpu)
1332 {
1333 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1334 	int ret;
1335 
1336 	/* Turn on the core power */
1337 	ret = msm_gpu_pm_resume(gpu);
1338 	if (ret)
1339 		return ret;
1340 
1341 	/* Adreno 508, 509, 510, 512 needs manual RBBM sus/res control */
1342 	if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) {
1343 		/* Halt the sp_input_clk at HM level */
1344 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055);
1345 		a5xx_set_hwcg(gpu, true);
1346 		/* Turn on sp_input_clk at HM level */
1347 		gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0);
1348 		return 0;
1349 	}
1350 
1351 	/* Turn the RBCCU domain first to limit the chances of voltage droop */
1352 	gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
1353 
1354 	/* Wait 3 usecs before polling */
1355 	udelay(3);
1356 
1357 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
1358 		(1 << 20), (1 << 20));
1359 	if (ret) {
1360 		DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
1361 			gpu->name,
1362 			gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
1363 		return ret;
1364 	}
1365 
1366 	/* Turn on the SP domain */
1367 	gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
1368 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
1369 		(1 << 20), (1 << 20));
1370 	if (ret)
1371 		DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
1372 			gpu->name);
1373 
1374 	return ret;
1375 }
1376 
1377 static int a5xx_pm_suspend(struct msm_gpu *gpu)
1378 {
1379 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1380 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1381 	u32 mask = 0xf;
1382 	int i, ret;
1383 
1384 	/* A508, A510 have 3 XIN ports in VBIF */
1385 	if (adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu))
1386 		mask = 0x7;
1387 
1388 	/* Clear the VBIF pipe before shutting down */
1389 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask);
1390 	spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) &
1391 				mask) == mask);
1392 
1393 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
1394 
1395 	/*
1396 	 * Reset the VBIF before power collapse to avoid issue with FIFO
1397 	 * entries on Adreno A510 and A530 (the others will tend to lock up)
1398 	 */
1399 	if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
1400 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
1401 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
1402 	}
1403 
1404 	ret = msm_gpu_pm_suspend(gpu);
1405 	if (ret)
1406 		return ret;
1407 
1408 	if (a5xx_gpu->has_whereami)
1409 		for (i = 0; i < gpu->nr_rings; i++)
1410 			a5xx_gpu->shadow[i] = 0;
1411 
1412 	return 0;
1413 }
1414 
1415 static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1416 {
1417 	*value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO,
1418 		REG_A5XX_RBBM_ALWAYSON_COUNTER_HI);
1419 
1420 	return 0;
1421 }
1422 
1423 struct a5xx_crashdumper {
1424 	void *ptr;
1425 	struct drm_gem_object *bo;
1426 	u64 iova;
1427 };
1428 
1429 struct a5xx_gpu_state {
1430 	struct msm_gpu_state base;
1431 	u32 *hlsqregs;
1432 };
1433 
1434 static int a5xx_crashdumper_init(struct msm_gpu *gpu,
1435 		struct a5xx_crashdumper *dumper)
1436 {
1437 	dumper->ptr = msm_gem_kernel_new(gpu->dev,
1438 		SZ_1M, MSM_BO_WC, gpu->aspace,
1439 		&dumper->bo, &dumper->iova);
1440 
1441 	if (!IS_ERR(dumper->ptr))
1442 		msm_gem_object_set_name(dumper->bo, "crashdump");
1443 
1444 	return PTR_ERR_OR_ZERO(dumper->ptr);
1445 }
1446 
1447 static int a5xx_crashdumper_run(struct msm_gpu *gpu,
1448 		struct a5xx_crashdumper *dumper)
1449 {
1450 	u32 val;
1451 
1452 	if (IS_ERR_OR_NULL(dumper->ptr))
1453 		return -EINVAL;
1454 
1455 	gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO,
1456 		REG_A5XX_CP_CRASH_SCRIPT_BASE_HI, dumper->iova);
1457 
1458 	gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1);
1459 
1460 	return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val,
1461 		val & 0x04, 100, 10000);
1462 }
1463 
1464 /*
1465  * These are a list of the registers that need to be read through the HLSQ
1466  * aperture through the crashdumper.  These are not nominally accessible from
1467  * the CPU on a secure platform.
1468  */
1469 static const struct {
1470 	u32 type;
1471 	u32 regoffset;
1472 	u32 count;
1473 } a5xx_hlsq_aperture_regs[] = {
1474 	{ 0x35, 0xe00, 0x32 },   /* HSLQ non-context */
1475 	{ 0x31, 0x2080, 0x1 },   /* HLSQ 2D context 0 */
1476 	{ 0x33, 0x2480, 0x1 },   /* HLSQ 2D context 1 */
1477 	{ 0x32, 0xe780, 0x62 },  /* HLSQ 3D context 0 */
1478 	{ 0x34, 0xef80, 0x62 },  /* HLSQ 3D context 1 */
1479 	{ 0x3f, 0x0ec0, 0x40 },  /* SP non-context */
1480 	{ 0x3d, 0x2040, 0x1 },   /* SP 2D context 0 */
1481 	{ 0x3b, 0x2440, 0x1 },   /* SP 2D context 1 */
1482 	{ 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */
1483 	{ 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */
1484 	{ 0x3a, 0x0f00, 0x1c },  /* TP non-context */
1485 	{ 0x38, 0x2000, 0xa },   /* TP 2D context 0 */
1486 	{ 0x36, 0x2400, 0xa },   /* TP 2D context 1 */
1487 	{ 0x39, 0xe700, 0x80 },  /* TP 3D context 0 */
1488 	{ 0x37, 0xef00, 0x80 },  /* TP 3D context 1 */
1489 };
1490 
1491 static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu,
1492 		struct a5xx_gpu_state *a5xx_state)
1493 {
1494 	struct a5xx_crashdumper dumper = { 0 };
1495 	u32 offset, count = 0;
1496 	u64 *ptr;
1497 	int i;
1498 
1499 	if (a5xx_crashdumper_init(gpu, &dumper))
1500 		return;
1501 
1502 	/* The script will be written at offset 0 */
1503 	ptr = dumper.ptr;
1504 
1505 	/* Start writing the data at offset 256k */
1506 	offset = dumper.iova + (256 * SZ_1K);
1507 
1508 	/* Count how many additional registers to get from the HLSQ aperture */
1509 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++)
1510 		count += a5xx_hlsq_aperture_regs[i].count;
1511 
1512 	a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL);
1513 	if (!a5xx_state->hlsqregs)
1514 		return;
1515 
1516 	/* Build the crashdump script */
1517 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1518 		u32 type = a5xx_hlsq_aperture_regs[i].type;
1519 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1520 
1521 		/* Write the register to select the desired bank */
1522 		*ptr++ = ((u64) type << 8);
1523 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) |
1524 			(1 << 21) | 1;
1525 
1526 		*ptr++ = offset;
1527 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44)
1528 			| c;
1529 
1530 		offset += c * sizeof(u32);
1531 	}
1532 
1533 	/* Write two zeros to close off the script */
1534 	*ptr++ = 0;
1535 	*ptr++ = 0;
1536 
1537 	if (a5xx_crashdumper_run(gpu, &dumper)) {
1538 		kfree(a5xx_state->hlsqregs);
1539 		msm_gem_kernel_put(dumper.bo, gpu->aspace);
1540 		return;
1541 	}
1542 
1543 	/* Copy the data from the crashdumper to the state */
1544 	memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K),
1545 		count * sizeof(u32));
1546 
1547 	msm_gem_kernel_put(dumper.bo, gpu->aspace);
1548 }
1549 
1550 static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu)
1551 {
1552 	struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state),
1553 			GFP_KERNEL);
1554 	bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24));
1555 
1556 	if (!a5xx_state)
1557 		return ERR_PTR(-ENOMEM);
1558 
1559 	/* Temporarily disable hardware clock gating before reading the hw */
1560 	a5xx_set_hwcg(gpu, false);
1561 
1562 	/* First get the generic state from the adreno core */
1563 	adreno_gpu_state_get(gpu, &(a5xx_state->base));
1564 
1565 	a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS);
1566 
1567 	/*
1568 	 * Get the HLSQ regs with the help of the crashdumper, but only if
1569 	 * we are not stalled in an iommu fault (in which case the crashdumper
1570 	 * would not have access to memory)
1571 	 */
1572 	if (!stalled)
1573 		a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state);
1574 
1575 	a5xx_set_hwcg(gpu, true);
1576 
1577 	return &a5xx_state->base;
1578 }
1579 
1580 static void a5xx_gpu_state_destroy(struct kref *kref)
1581 {
1582 	struct msm_gpu_state *state = container_of(kref,
1583 		struct msm_gpu_state, ref);
1584 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1585 		struct a5xx_gpu_state, base);
1586 
1587 	kfree(a5xx_state->hlsqregs);
1588 
1589 	adreno_gpu_state_destroy(state);
1590 	kfree(a5xx_state);
1591 }
1592 
1593 static int a5xx_gpu_state_put(struct msm_gpu_state *state)
1594 {
1595 	if (IS_ERR_OR_NULL(state))
1596 		return 1;
1597 
1598 	return kref_put(&state->ref, a5xx_gpu_state_destroy);
1599 }
1600 
1601 
1602 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1603 static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
1604 		      struct drm_printer *p)
1605 {
1606 	int i, j;
1607 	u32 pos = 0;
1608 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1609 		struct a5xx_gpu_state, base);
1610 
1611 	if (IS_ERR_OR_NULL(state))
1612 		return;
1613 
1614 	adreno_show(gpu, state, p);
1615 
1616 	/* Dump the additional a5xx HLSQ registers */
1617 	if (!a5xx_state->hlsqregs)
1618 		return;
1619 
1620 	drm_printf(p, "registers-hlsq:\n");
1621 
1622 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1623 		u32 o = a5xx_hlsq_aperture_regs[i].regoffset;
1624 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1625 
1626 		for (j = 0; j < c; j++, pos++, o++) {
1627 			/*
1628 			 * To keep the crashdump simple we pull the entire range
1629 			 * for each register type but not all of the registers
1630 			 * in the range are valid. Fortunately invalid registers
1631 			 * stick out like a sore thumb with a value of
1632 			 * 0xdeadbeef
1633 			 */
1634 			if (a5xx_state->hlsqregs[pos] == 0xdeadbeef)
1635 				continue;
1636 
1637 			drm_printf(p, "  - { offset: 0x%04x, value: 0x%08x }\n",
1638 				o << 2, a5xx_state->hlsqregs[pos]);
1639 		}
1640 	}
1641 }
1642 #endif
1643 
1644 static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
1645 {
1646 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1647 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1648 
1649 	return a5xx_gpu->cur_ring;
1650 }
1651 
1652 static unsigned long a5xx_gpu_busy(struct msm_gpu *gpu)
1653 {
1654 	u64 busy_cycles, busy_time;
1655 
1656 	/* Only read the gpu busy if the hardware is already active */
1657 	if (pm_runtime_get_if_in_use(&gpu->pdev->dev) == 0)
1658 		return 0;
1659 
1660 	busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO,
1661 			REG_A5XX_RBBM_PERFCTR_RBBM_0_HI);
1662 
1663 	busy_time = busy_cycles - gpu->devfreq.busy_cycles;
1664 	do_div(busy_time, clk_get_rate(gpu->core_clk) / 1000000);
1665 
1666 	gpu->devfreq.busy_cycles = busy_cycles;
1667 
1668 	pm_runtime_put(&gpu->pdev->dev);
1669 
1670 	if (WARN_ON(busy_time > ~0LU))
1671 		return ~0LU;
1672 
1673 	return (unsigned long)busy_time;
1674 }
1675 
1676 static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1677 {
1678 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1679 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1680 
1681 	if (a5xx_gpu->has_whereami)
1682 		return a5xx_gpu->shadow[ring->id];
1683 
1684 	return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR);
1685 }
1686 
1687 static const struct adreno_gpu_funcs funcs = {
1688 	.base = {
1689 		.get_param = adreno_get_param,
1690 		.hw_init = a5xx_hw_init,
1691 		.pm_suspend = a5xx_pm_suspend,
1692 		.pm_resume = a5xx_pm_resume,
1693 		.recover = a5xx_recover,
1694 		.submit = a5xx_submit,
1695 		.active_ring = a5xx_active_ring,
1696 		.irq = a5xx_irq,
1697 		.destroy = a5xx_destroy,
1698 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1699 		.show = a5xx_show,
1700 #endif
1701 #if defined(CONFIG_DEBUG_FS)
1702 		.debugfs_init = a5xx_debugfs_init,
1703 #endif
1704 		.gpu_busy = a5xx_gpu_busy,
1705 		.gpu_state_get = a5xx_gpu_state_get,
1706 		.gpu_state_put = a5xx_gpu_state_put,
1707 		.create_address_space = adreno_iommu_create_address_space,
1708 		.get_rptr = a5xx_get_rptr,
1709 	},
1710 	.get_timestamp = a5xx_get_timestamp,
1711 };
1712 
1713 static void check_speed_bin(struct device *dev)
1714 {
1715 	struct nvmem_cell *cell;
1716 	u32 val;
1717 
1718 	/*
1719 	 * If the OPP table specifies a opp-supported-hw property then we have
1720 	 * to set something with dev_pm_opp_set_supported_hw() or the table
1721 	 * doesn't get populated so pick an arbitrary value that should
1722 	 * ensure the default frequencies are selected but not conflict with any
1723 	 * actual bins
1724 	 */
1725 	val = 0x80;
1726 
1727 	cell = nvmem_cell_get(dev, "speed_bin");
1728 
1729 	if (!IS_ERR(cell)) {
1730 		void *buf = nvmem_cell_read(cell, NULL);
1731 
1732 		if (!IS_ERR(buf)) {
1733 			u8 bin = *((u8 *) buf);
1734 
1735 			val = (1 << bin);
1736 			kfree(buf);
1737 		}
1738 
1739 		nvmem_cell_put(cell);
1740 	}
1741 
1742 	devm_pm_opp_set_supported_hw(dev, &val, 1);
1743 }
1744 
1745 struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
1746 {
1747 	struct msm_drm_private *priv = dev->dev_private;
1748 	struct platform_device *pdev = priv->gpu_pdev;
1749 	struct a5xx_gpu *a5xx_gpu = NULL;
1750 	struct adreno_gpu *adreno_gpu;
1751 	struct msm_gpu *gpu;
1752 	int ret;
1753 
1754 	if (!pdev) {
1755 		DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n");
1756 		return ERR_PTR(-ENXIO);
1757 	}
1758 
1759 	a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
1760 	if (!a5xx_gpu)
1761 		return ERR_PTR(-ENOMEM);
1762 
1763 	adreno_gpu = &a5xx_gpu->base;
1764 	gpu = &adreno_gpu->base;
1765 
1766 	adreno_gpu->registers = a5xx_registers;
1767 
1768 	a5xx_gpu->lm_leakage = 0x4E001A;
1769 
1770 	check_speed_bin(&pdev->dev);
1771 
1772 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 4);
1773 	if (ret) {
1774 		a5xx_destroy(&(a5xx_gpu->base.base));
1775 		return ERR_PTR(ret);
1776 	}
1777 
1778 	if (gpu->aspace)
1779 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
1780 
1781 	/* Set up the preemption specific bits and pieces for each ringbuffer */
1782 	a5xx_preempt_init(gpu);
1783 
1784 	return gpu;
1785 }
1786