xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.c (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/cpumask.h>
8 #include <linux/firmware/qcom/qcom_scm.h>
9 #include <linux/pm_opp.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/slab.h>
12 #include "msm_gem.h"
13 #include "msm_mmu.h"
14 #include "a5xx_gpu.h"
15 
16 extern bool hang_debug;
17 static void a5xx_dump(struct msm_gpu *gpu);
18 
19 #define GPU_PAS_ID 13
20 
21 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
22 {
23 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
24 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
25 
26 	if (a5xx_gpu->has_whereami) {
27 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
28 		OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring)));
29 		OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring)));
30 	}
31 }
32 
33 void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
34 		bool sync)
35 {
36 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
37 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
38 	uint32_t wptr;
39 	unsigned long flags;
40 
41 	/*
42 	 * Most flush operations need to issue a WHERE_AM_I opcode to sync up
43 	 * the rptr shadow
44 	 */
45 	if (sync)
46 		update_shadow_rptr(gpu, ring);
47 
48 	spin_lock_irqsave(&ring->preempt_lock, flags);
49 
50 	/* Copy the shadow to the actual register */
51 	ring->cur = ring->next;
52 
53 	/* Make sure to wrap wptr if we need to */
54 	wptr = get_wptr(ring);
55 
56 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
57 
58 	/* Make sure everything is posted before making a decision */
59 	mb();
60 
61 	/* Update HW if this is the current ring and we are not in preempt */
62 	if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
63 		gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
64 }
65 
66 static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit)
67 {
68 	struct msm_ringbuffer *ring = submit->ring;
69 	struct msm_gem_object *obj;
70 	uint32_t *ptr, dwords;
71 	unsigned int i;
72 
73 	for (i = 0; i < submit->nr_cmds; i++) {
74 		switch (submit->cmd[i].type) {
75 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
76 			break;
77 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
78 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
79 				break;
80 			fallthrough;
81 		case MSM_SUBMIT_CMD_BUF:
82 			/* copy commands into RB: */
83 			obj = submit->bos[submit->cmd[i].idx].obj;
84 			dwords = submit->cmd[i].size;
85 
86 			ptr = msm_gem_get_vaddr(&obj->base);
87 
88 			/* _get_vaddr() shouldn't fail at this point,
89 			 * since we've already mapped it once in
90 			 * submit_reloc()
91 			 */
92 			if (WARN_ON(!ptr))
93 				return;
94 
95 			for (i = 0; i < dwords; i++) {
96 				/* normally the OUT_PKTn() would wait
97 				 * for space for the packet.  But since
98 				 * we just OUT_RING() the whole thing,
99 				 * need to call adreno_wait_ring()
100 				 * ourself:
101 				 */
102 				adreno_wait_ring(ring, 1);
103 				OUT_RING(ring, ptr[i]);
104 			}
105 
106 			msm_gem_put_vaddr(&obj->base);
107 
108 			break;
109 		}
110 	}
111 
112 	a5xx_flush(gpu, ring, true);
113 	a5xx_preempt_trigger(gpu);
114 
115 	/* we might not necessarily have a cmd from userspace to
116 	 * trigger an event to know that submit has completed, so
117 	 * do this manually:
118 	 */
119 	a5xx_idle(gpu, ring);
120 	ring->memptrs->fence = submit->seqno;
121 	msm_gpu_retire(gpu);
122 }
123 
124 static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
125 {
126 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
127 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
128 	struct msm_ringbuffer *ring = submit->ring;
129 	unsigned int i, ibs = 0;
130 
131 	if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) {
132 		gpu->cur_ctx_seqno = 0;
133 		a5xx_submit_in_rb(gpu, submit);
134 		return;
135 	}
136 
137 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
138 	OUT_RING(ring, 0x02);
139 
140 	/* Turn off protected mode to write to special registers */
141 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
142 	OUT_RING(ring, 0);
143 
144 	/* Set the save preemption record for the ring/command */
145 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
146 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
147 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
148 
149 	/* Turn back on protected mode */
150 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
151 	OUT_RING(ring, 1);
152 
153 	/* Enable local preemption for finegrain preemption */
154 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
155 	OUT_RING(ring, 0x1);
156 
157 	/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
158 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
159 	OUT_RING(ring, 0x02);
160 
161 	/* Submit the commands */
162 	for (i = 0; i < submit->nr_cmds; i++) {
163 		switch (submit->cmd[i].type) {
164 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
165 			break;
166 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
167 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
168 				break;
169 			fallthrough;
170 		case MSM_SUBMIT_CMD_BUF:
171 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
172 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
173 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
174 			OUT_RING(ring, submit->cmd[i].size);
175 			ibs++;
176 			break;
177 		}
178 
179 		/*
180 		 * Periodically update shadow-wptr if needed, so that we
181 		 * can see partial progress of submits with large # of
182 		 * cmds.. otherwise we could needlessly stall waiting for
183 		 * ringbuffer state, simply due to looking at a shadow
184 		 * rptr value that has not been updated
185 		 */
186 		if ((ibs % 32) == 0)
187 			update_shadow_rptr(gpu, ring);
188 	}
189 
190 	/*
191 	 * Write the render mode to NULL (0) to indicate to the CP that the IBs
192 	 * are done rendering - otherwise a lucky preemption would start
193 	 * replaying from the last checkpoint
194 	 */
195 	OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
196 	OUT_RING(ring, 0);
197 	OUT_RING(ring, 0);
198 	OUT_RING(ring, 0);
199 	OUT_RING(ring, 0);
200 	OUT_RING(ring, 0);
201 
202 	/* Turn off IB level preemptions */
203 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
204 	OUT_RING(ring, 0x01);
205 
206 	/* Write the fence to the scratch register */
207 	OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
208 	OUT_RING(ring, submit->seqno);
209 
210 	/*
211 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
212 	 * timestamp is written to the memory and then triggers the interrupt
213 	 */
214 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
215 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
216 		CP_EVENT_WRITE_0_IRQ);
217 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
218 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
219 	OUT_RING(ring, submit->seqno);
220 
221 	/* Yield the floor on command completion */
222 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
223 	/*
224 	 * If dword[2:1] are non zero, they specify an address for the CP to
225 	 * write the value of dword[3] to on preemption complete. Write 0 to
226 	 * skip the write
227 	 */
228 	OUT_RING(ring, 0x00);
229 	OUT_RING(ring, 0x00);
230 	/* Data value - not used if the address above is 0 */
231 	OUT_RING(ring, 0x01);
232 	/* Set bit 0 to trigger an interrupt on preempt complete */
233 	OUT_RING(ring, 0x01);
234 
235 	/* A WHERE_AM_I packet is not needed after a YIELD */
236 	a5xx_flush(gpu, ring, false);
237 
238 	/* Check to see if we need to start preemption */
239 	a5xx_preempt_trigger(gpu);
240 }
241 
242 static const struct adreno_five_hwcg_regs {
243 	u32 offset;
244 	u32 value;
245 } a5xx_hwcg[] = {
246 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
247 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
248 	{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
249 	{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
250 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
251 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
252 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
253 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
254 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
255 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
256 	{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
257 	{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
258 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
259 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
260 	{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
261 	{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
262 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
263 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
264 	{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
265 	{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
266 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
267 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
268 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
269 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
270 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
271 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
272 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
273 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
274 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
275 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
276 	{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
277 	{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
278 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
279 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
280 	{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
281 	{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
282 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
283 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
284 	{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
285 	{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
286 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
287 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
288 	{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
289 	{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
290 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
291 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
292 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
293 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
294 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
295 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
296 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
297 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
298 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
299 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
300 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
301 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
302 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
303 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
304 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
305 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
306 	{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
307 	{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
308 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
309 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
310 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
311 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
312 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
313 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
314 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
315 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
316 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
317 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
318 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
319 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
320 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
321 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
322 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
323 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
324 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
325 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
326 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
327 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
328 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
329 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
330 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
331 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
332 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
333 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
334 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
335 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
336 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
337 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
338 }, a50x_hwcg[] = {
339 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
340 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
341 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
342 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
343 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
344 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
346 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
347 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
348 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
349 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
350 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
351 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
352 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
353 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
354 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
355 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
356 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4},
357 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
358 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
359 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
360 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
361 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
362 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
363 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
364 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
365 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
366 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
367 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
368 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
369 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
370 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
371 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
372 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
373 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
374 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
375 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
376 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
377 }, a512_hwcg[] = {
378 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
380 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
381 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
382 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
383 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
384 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
385 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
386 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
387 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
388 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
389 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
390 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
391 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
392 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
393 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
394 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
395 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
396 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
397 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
398 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
399 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
400 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
401 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
402 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
403 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
404 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
405 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
406 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
407 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
408 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
409 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
410 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
411 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
412 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
413 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
414 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
415 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
416 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
417 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
418 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
419 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
420 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
421 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
422 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
423 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
424 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
425 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
426 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
427 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
428 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
429 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
430 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
431 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
432 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
433 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
434 };
435 
436 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
437 {
438 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
439 	const struct adreno_five_hwcg_regs *regs;
440 	unsigned int i, sz;
441 
442 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) {
443 		regs = a50x_hwcg;
444 		sz = ARRAY_SIZE(a50x_hwcg);
445 	} else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) {
446 		regs = a512_hwcg;
447 		sz = ARRAY_SIZE(a512_hwcg);
448 	} else {
449 		regs = a5xx_hwcg;
450 		sz = ARRAY_SIZE(a5xx_hwcg);
451 	}
452 
453 	for (i = 0; i < sz; i++)
454 		gpu_write(gpu, regs[i].offset,
455 			  state ? regs[i].value : 0);
456 
457 	if (adreno_is_a540(adreno_gpu)) {
458 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0);
459 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0);
460 	}
461 
462 	gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
463 	gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
464 }
465 
466 static int a5xx_me_init(struct msm_gpu *gpu)
467 {
468 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
469 	struct msm_ringbuffer *ring = gpu->rb[0];
470 
471 	OUT_PKT7(ring, CP_ME_INIT, 8);
472 
473 	OUT_RING(ring, 0x0000002F);
474 
475 	/* Enable multiple hardware contexts */
476 	OUT_RING(ring, 0x00000003);
477 
478 	/* Enable error detection */
479 	OUT_RING(ring, 0x20000000);
480 
481 	/* Don't enable header dump */
482 	OUT_RING(ring, 0x00000000);
483 	OUT_RING(ring, 0x00000000);
484 
485 	/* Specify workarounds for various microcode issues */
486 	if (adreno_is_a506(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
487 		/* Workaround for token end syncs
488 		 * Force a WFI after every direct-render 3D mode draw and every
489 		 * 2D mode 3 draw
490 		 */
491 		OUT_RING(ring, 0x0000000B);
492 	} else if (adreno_is_a510(adreno_gpu)) {
493 		/* Workaround for token and syncs */
494 		OUT_RING(ring, 0x00000001);
495 	} else {
496 		/* No workarounds enabled */
497 		OUT_RING(ring, 0x00000000);
498 	}
499 
500 	OUT_RING(ring, 0x00000000);
501 	OUT_RING(ring, 0x00000000);
502 
503 	a5xx_flush(gpu, ring, true);
504 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
505 }
506 
507 static int a5xx_preempt_start(struct msm_gpu *gpu)
508 {
509 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
510 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
511 	struct msm_ringbuffer *ring = gpu->rb[0];
512 
513 	if (gpu->nr_rings == 1)
514 		return 0;
515 
516 	/* Turn off protected mode to write to special registers */
517 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
518 	OUT_RING(ring, 0);
519 
520 	/* Set the save preemption record for the ring/command */
521 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
522 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
523 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
524 
525 	/* Turn back on protected mode */
526 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
527 	OUT_RING(ring, 1);
528 
529 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
530 	OUT_RING(ring, 0x00);
531 
532 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
533 	OUT_RING(ring, 0x01);
534 
535 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
536 	OUT_RING(ring, 0x01);
537 
538 	/* Yield the floor on command completion */
539 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
540 	OUT_RING(ring, 0x00);
541 	OUT_RING(ring, 0x00);
542 	OUT_RING(ring, 0x01);
543 	OUT_RING(ring, 0x01);
544 
545 	/* The WHERE_AMI_I packet is not needed after a YIELD is issued */
546 	a5xx_flush(gpu, ring, false);
547 
548 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
549 }
550 
551 static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu,
552 		struct drm_gem_object *obj)
553 {
554 	u32 *buf = msm_gem_get_vaddr(obj);
555 
556 	if (IS_ERR(buf))
557 		return;
558 
559 	/*
560 	 * If the lowest nibble is 0xa that is an indication that this microcode
561 	 * has been patched. The actual version is in dword [3] but we only care
562 	 * about the patchlevel which is the lowest nibble of dword [3]
563 	 */
564 	if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
565 		a5xx_gpu->has_whereami = true;
566 
567 	msm_gem_put_vaddr(obj);
568 }
569 
570 static int a5xx_ucode_init(struct msm_gpu *gpu)
571 {
572 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
573 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
574 	int ret;
575 
576 	if (!a5xx_gpu->pm4_bo) {
577 		a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu,
578 			adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova);
579 
580 
581 		if (IS_ERR(a5xx_gpu->pm4_bo)) {
582 			ret = PTR_ERR(a5xx_gpu->pm4_bo);
583 			a5xx_gpu->pm4_bo = NULL;
584 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n",
585 				ret);
586 			return ret;
587 		}
588 
589 		msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw");
590 	}
591 
592 	if (!a5xx_gpu->pfp_bo) {
593 		a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu,
594 			adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova);
595 
596 		if (IS_ERR(a5xx_gpu->pfp_bo)) {
597 			ret = PTR_ERR(a5xx_gpu->pfp_bo);
598 			a5xx_gpu->pfp_bo = NULL;
599 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n",
600 				ret);
601 			return ret;
602 		}
603 
604 		msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw");
605 		a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo);
606 	}
607 
608 	gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO, a5xx_gpu->pm4_iova);
609 
610 	gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO, a5xx_gpu->pfp_iova);
611 
612 	return 0;
613 }
614 
615 #define SCM_GPU_ZAP_SHADER_RESUME 0
616 
617 static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
618 {
619 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
620 	int ret;
621 
622 	/*
623 	 * Adreno 506 have CPZ Retention feature and doesn't require
624 	 * to resume zap shader
625 	 */
626 	if (adreno_is_a506(adreno_gpu))
627 		return 0;
628 
629 	ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
630 	if (ret)
631 		DRM_ERROR("%s: zap-shader resume failed: %d\n",
632 			gpu->name, ret);
633 
634 	return ret;
635 }
636 
637 static int a5xx_zap_shader_init(struct msm_gpu *gpu)
638 {
639 	static bool loaded;
640 	int ret;
641 
642 	/*
643 	 * If the zap shader is already loaded into memory we just need to kick
644 	 * the remote processor to reinitialize it
645 	 */
646 	if (loaded)
647 		return a5xx_zap_shader_resume(gpu);
648 
649 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
650 
651 	loaded = !ret;
652 	return ret;
653 }
654 
655 #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
656 	  A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
657 	  A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
658 	  A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
659 	  A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
660 	  A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
661 	  A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
662 	  A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
663 	  A5XX_RBBM_INT_0_MASK_CP_SW | \
664 	  A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
665 	  A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
666 	  A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
667 
668 static int a5xx_hw_init(struct msm_gpu *gpu)
669 {
670 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
671 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
672 	u32 regbit;
673 	int ret;
674 
675 	gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
676 
677 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
678 	    adreno_is_a540(adreno_gpu))
679 		gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
680 
681 	/* Make all blocks contribute to the GPU BUSY perf counter */
682 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
683 
684 	/* Enable RBBM error reporting bits */
685 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
686 
687 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
688 		/*
689 		 * Mask out the activity signals from RB1-3 to avoid false
690 		 * positives
691 		 */
692 
693 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
694 			0xF0000000);
695 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
696 			0xFFFFFFFF);
697 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
698 			0xFFFFFFFF);
699 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
700 			0xFFFFFFFF);
701 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
702 			0xFFFFFFFF);
703 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
704 			0xFFFFFFFF);
705 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
706 			0xFFFFFFFF);
707 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
708 			0xFFFFFFFF);
709 	}
710 
711 	/* Enable fault detection */
712 	gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
713 		(1 << 30) | 0xFFFF);
714 
715 	/* Turn on performance counters */
716 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
717 
718 	/* Select CP0 to always count cycles */
719 	gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
720 
721 	/* Select RBBM0 to countable 6 to get the busy status for devfreq */
722 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6);
723 
724 	/* Increase VFD cache access so LRZ and other data gets evicted less */
725 	gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
726 
727 	/* Disable L2 bypass in the UCHE */
728 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
729 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
730 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
731 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
732 
733 	/* Set the GMEM VA range (0 to gpu->gmem) */
734 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
735 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
736 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
737 		0x00100000 + adreno_gpu->gmem - 1);
738 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
739 
740 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
741 	    adreno_is_a510(adreno_gpu)) {
742 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20);
743 		if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
744 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
745 		else
746 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20);
747 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030);
748 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A);
749 	} else {
750 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
751 		if (adreno_is_a530(adreno_gpu))
752 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
753 		else
754 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
755 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
756 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
757 	}
758 
759 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
760 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
761 			  (0x100 << 11 | 0x100 << 22));
762 	else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) ||
763 		 adreno_is_a512(adreno_gpu))
764 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
765 			  (0x200 << 11 | 0x200 << 22));
766 	else
767 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
768 			  (0x400 << 11 | 0x300 << 22));
769 
770 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
771 		gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
772 
773 	/*
774 	 * Disable the RB sampler datapath DP2 clock gating optimization
775 	 * for 1-SP GPUs, as it is enabled by default.
776 	 */
777 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
778 	    adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu))
779 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9));
780 
781 	/* Disable UCHE global filter as SP can invalidate/flush independently */
782 	gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29));
783 
784 	/* Enable USE_RETENTION_FLOPS */
785 	gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
786 
787 	/* Enable ME/PFP split notification */
788 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
789 
790 	/*
791 	 *  In A5x, CCU can send context_done event of a particular context to
792 	 *  UCHE which ultimately reaches CP even when there is valid
793 	 *  transaction of that context inside CCU. This can let CP to program
794 	 *  config registers, which will make the "valid transaction" inside
795 	 *  CCU to be interpreted differently. This can cause gpu fault. This
796 	 *  bug is fixed in latest A510 revision. To enable this bug fix -
797 	 *  bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1
798 	 *  (disable). For older A510 version this bit is unused.
799 	 */
800 	if (adreno_is_a510(adreno_gpu))
801 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0);
802 
803 	/* Enable HWCG */
804 	a5xx_set_hwcg(gpu, true);
805 
806 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
807 
808 	/* Set the highest bank bit */
809 	if (adreno_is_a540(adreno_gpu) || adreno_is_a530(adreno_gpu))
810 		regbit = 2;
811 	else
812 		regbit = 1;
813 
814 	gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, regbit << 7);
815 	gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, regbit << 1);
816 
817 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
818 	    adreno_is_a540(adreno_gpu))
819 		gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, regbit);
820 
821 	/* Disable All flat shading optimization (ALLFLATOPTDIS) */
822 	gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10));
823 
824 	/* Protect registers from the CP */
825 	gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
826 
827 	/* RBBM */
828 	gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
829 	gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
830 	gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
831 	gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
832 	gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
833 	gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
834 
835 	/* Content protect */
836 	gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
837 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
838 			16));
839 	gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
840 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
841 
842 	/* CP */
843 	gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
844 	gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
845 	gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
846 	gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
847 
848 	/* RB */
849 	gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
850 	gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
851 
852 	/* VPC */
853 	gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
854 	gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16));
855 
856 	/* UCHE */
857 	gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
858 
859 	/* SMMU */
860 	gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
861 			ADRENO_PROTECT_RW(0x10000, 0x8000));
862 
863 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
864 	/*
865 	 * Disable the trusted memory range - we don't actually supported secure
866 	 * memory rendering at this point in time and we don't want to block off
867 	 * part of the virtual memory space.
868 	 */
869 	gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000);
870 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
871 
872 	/* Put the GPU into 64 bit by default */
873 	gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1);
874 	gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1);
875 	gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1);
876 	gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1);
877 	gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1);
878 	gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1);
879 	gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1);
880 	gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1);
881 	gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1);
882 	gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1);
883 	gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1);
884 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
885 
886 	/*
887 	 * VPC corner case with local memory load kill leads to corrupt
888 	 * internal state. Normal Disable does not work for all a5x chips.
889 	 * So do the following setting to disable it.
890 	 */
891 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) {
892 		gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23));
893 		gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0);
894 	}
895 
896 	ret = adreno_hw_init(gpu);
897 	if (ret)
898 		return ret;
899 
900 	if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))
901 		a5xx_gpmu_ucode_init(gpu);
902 
903 	ret = a5xx_ucode_init(gpu);
904 	if (ret)
905 		return ret;
906 
907 	/* Set the ringbuffer address */
908 	gpu_write64(gpu, REG_A5XX_CP_RB_BASE, gpu->rb[0]->iova);
909 
910 	/*
911 	 * If the microcode supports the WHERE_AM_I opcode then we can use that
912 	 * in lieu of the RPTR shadow and enable preemption. Otherwise, we
913 	 * can't safely use the RPTR shadow or preemption. In either case, the
914 	 * RPTR shadow should be disabled in hardware.
915 	 */
916 	gpu_write(gpu, REG_A5XX_CP_RB_CNTL,
917 		MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
918 
919 	/* Create a privileged buffer for the RPTR shadow */
920 	if (a5xx_gpu->has_whereami) {
921 		if (!a5xx_gpu->shadow_bo) {
922 			a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
923 				sizeof(u32) * gpu->nr_rings,
924 				MSM_BO_WC | MSM_BO_MAP_PRIV,
925 				gpu->aspace, &a5xx_gpu->shadow_bo,
926 				&a5xx_gpu->shadow_iova);
927 
928 			if (IS_ERR(a5xx_gpu->shadow))
929 				return PTR_ERR(a5xx_gpu->shadow);
930 
931 			msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow");
932 		}
933 
934 		gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR,
935 			    shadowptr(a5xx_gpu, gpu->rb[0]));
936 	} else if (gpu->nr_rings > 1) {
937 		/* Disable preemption if WHERE_AM_I isn't available */
938 		a5xx_preempt_fini(gpu);
939 		gpu->nr_rings = 1;
940 	}
941 
942 	a5xx_preempt_hw_init(gpu);
943 
944 	/* Disable the interrupts through the initial bringup stage */
945 	gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
946 
947 	/* Clear ME_HALT to start the micro engine */
948 	gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
949 	ret = a5xx_me_init(gpu);
950 	if (ret)
951 		return ret;
952 
953 	ret = a5xx_power_init(gpu);
954 	if (ret)
955 		return ret;
956 
957 	/*
958 	 * Send a pipeline event stat to get misbehaving counters to start
959 	 * ticking correctly
960 	 */
961 	if (adreno_is_a530(adreno_gpu)) {
962 		OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
963 		OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT));
964 
965 		a5xx_flush(gpu, gpu->rb[0], true);
966 		if (!a5xx_idle(gpu, gpu->rb[0]))
967 			return -EINVAL;
968 	}
969 
970 	/*
971 	 * If the chip that we are using does support loading one, then
972 	 * try to load a zap shader into the secure world. If successful
973 	 * we can use the CP to switch out of secure mode. If not then we
974 	 * have no resource but to try to switch ourselves out manually. If we
975 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
976 	 * be blocked and a permissions violation will soon follow.
977 	 */
978 	ret = a5xx_zap_shader_init(gpu);
979 	if (!ret) {
980 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
981 		OUT_RING(gpu->rb[0], 0x00000000);
982 
983 		a5xx_flush(gpu, gpu->rb[0], true);
984 		if (!a5xx_idle(gpu, gpu->rb[0]))
985 			return -EINVAL;
986 	} else if (ret == -ENODEV) {
987 		/*
988 		 * This device does not use zap shader (but print a warning
989 		 * just in case someone got their dt wrong.. hopefully they
990 		 * have a debug UART to realize the error of their ways...
991 		 * if you mess this up you are about to crash horribly)
992 		 */
993 		dev_warn_once(gpu->dev->dev,
994 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
995 		gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
996 	} else {
997 		return ret;
998 	}
999 
1000 	/* Last step - yield the ringbuffer */
1001 	a5xx_preempt_start(gpu);
1002 
1003 	return 0;
1004 }
1005 
1006 static void a5xx_recover(struct msm_gpu *gpu)
1007 {
1008 	int i;
1009 
1010 	adreno_dump_info(gpu);
1011 
1012 	for (i = 0; i < 8; i++) {
1013 		printk("CP_SCRATCH_REG%d: %u\n", i,
1014 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
1015 	}
1016 
1017 	if (hang_debug)
1018 		a5xx_dump(gpu);
1019 
1020 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
1021 	gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
1022 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
1023 	adreno_recover(gpu);
1024 }
1025 
1026 static void a5xx_destroy(struct msm_gpu *gpu)
1027 {
1028 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1029 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1030 
1031 	DBG("%s", gpu->name);
1032 
1033 	a5xx_preempt_fini(gpu);
1034 
1035 	if (a5xx_gpu->pm4_bo) {
1036 		msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace);
1037 		drm_gem_object_put(a5xx_gpu->pm4_bo);
1038 	}
1039 
1040 	if (a5xx_gpu->pfp_bo) {
1041 		msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace);
1042 		drm_gem_object_put(a5xx_gpu->pfp_bo);
1043 	}
1044 
1045 	if (a5xx_gpu->gpmu_bo) {
1046 		msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
1047 		drm_gem_object_put(a5xx_gpu->gpmu_bo);
1048 	}
1049 
1050 	if (a5xx_gpu->shadow_bo) {
1051 		msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace);
1052 		drm_gem_object_put(a5xx_gpu->shadow_bo);
1053 	}
1054 
1055 	adreno_gpu_cleanup(adreno_gpu);
1056 	kfree(a5xx_gpu);
1057 }
1058 
1059 static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
1060 {
1061 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
1062 		return false;
1063 
1064 	/*
1065 	 * Nearly every abnormality ends up pausing the GPU and triggering a
1066 	 * fault so we can safely just watch for this one interrupt to fire
1067 	 */
1068 	return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
1069 		A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
1070 }
1071 
1072 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1073 {
1074 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1075 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1076 
1077 	if (ring != a5xx_gpu->cur_ring) {
1078 		WARN(1, "Tried to idle a non-current ringbuffer\n");
1079 		return false;
1080 	}
1081 
1082 	/* wait for CP to drain ringbuffer: */
1083 	if (!adreno_idle(gpu, ring))
1084 		return false;
1085 
1086 	if (spin_until(_a5xx_check_idle(gpu))) {
1087 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
1088 			gpu->name, __builtin_return_address(0),
1089 			gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1090 			gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
1091 			gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1092 			gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
1093 		return false;
1094 	}
1095 
1096 	return true;
1097 }
1098 
1099 static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1100 {
1101 	struct msm_gpu *gpu = arg;
1102 	pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
1103 			iova, flags,
1104 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
1105 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
1106 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
1107 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)));
1108 
1109 	return 0;
1110 }
1111 
1112 static void a5xx_cp_err_irq(struct msm_gpu *gpu)
1113 {
1114 	u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
1115 
1116 	if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
1117 		u32 val;
1118 
1119 		gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
1120 
1121 		/*
1122 		 * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
1123 		 * read it twice
1124 		 */
1125 
1126 		gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1127 		val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1128 
1129 		dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
1130 			val);
1131 	}
1132 
1133 	if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
1134 		dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
1135 			gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
1136 
1137 	if (status & A5XX_CP_INT_CP_DMA_ERROR)
1138 		dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
1139 
1140 	if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1141 		u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
1142 
1143 		dev_err_ratelimited(gpu->dev->dev,
1144 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1145 			val & (1 << 24) ? "WRITE" : "READ",
1146 			(val & 0xFFFFF) >> 2, val);
1147 	}
1148 
1149 	if (status & A5XX_CP_INT_CP_AHB_ERROR) {
1150 		u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
1151 		const char *access[16] = { "reserved", "reserved",
1152 			"timestamp lo", "timestamp hi", "pfp read", "pfp write",
1153 			"", "", "me read", "me write", "", "", "crashdump read",
1154 			"crashdump write" };
1155 
1156 		dev_err_ratelimited(gpu->dev->dev,
1157 			"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
1158 			status & 0xFFFFF, access[(status >> 24) & 0xF],
1159 			(status & (1 << 31)), status);
1160 	}
1161 }
1162 
1163 static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
1164 {
1165 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
1166 		u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
1167 
1168 		dev_err_ratelimited(gpu->dev->dev,
1169 			"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
1170 			val & (1 << 28) ? "WRITE" : "READ",
1171 			(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
1172 			(val >> 24) & 0xF);
1173 
1174 		/* Clear the error */
1175 		gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
1176 
1177 		/* Clear the interrupt */
1178 		gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1179 			A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1180 	}
1181 
1182 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
1183 		dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
1184 
1185 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
1186 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
1187 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
1188 
1189 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
1190 		dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
1191 			gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
1192 
1193 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
1194 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
1195 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
1196 
1197 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1198 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
1199 
1200 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1201 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
1202 }
1203 
1204 static void a5xx_uche_err_irq(struct msm_gpu *gpu)
1205 {
1206 	uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
1207 
1208 	addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
1209 
1210 	dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
1211 		addr);
1212 }
1213 
1214 static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
1215 {
1216 	dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
1217 }
1218 
1219 static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
1220 {
1221 	struct drm_device *dev = gpu->dev;
1222 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1223 
1224 	/*
1225 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1226 	 * but the fault handler will trigger the devcore dump, and we want
1227 	 * to otherwise resume normally rather than killing the submit, so
1228 	 * just bail.
1229 	 */
1230 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24))
1231 		return;
1232 
1233 	DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1234 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1235 		gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1236 		gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1237 		gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
1238 		gpu_read64(gpu, REG_A5XX_CP_IB1_BASE),
1239 		gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
1240 		gpu_read64(gpu, REG_A5XX_CP_IB2_BASE),
1241 		gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
1242 
1243 	/* Turn off the hangcheck timer to keep it from bothering us */
1244 	del_timer(&gpu->hangcheck_timer);
1245 
1246 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1247 }
1248 
1249 #define RBBM_ERROR_MASK \
1250 	(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
1251 	A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
1252 	A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
1253 	A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
1254 	A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
1255 	A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1256 
1257 static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
1258 {
1259 	struct msm_drm_private *priv = gpu->dev->dev_private;
1260 	u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
1261 
1262 	/*
1263 	 * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
1264 	 * before the source is cleared the interrupt will storm.
1265 	 */
1266 	gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1267 		status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1268 
1269 	if (priv->disable_err_irq) {
1270 		status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS |
1271 			  A5XX_RBBM_INT_0_MASK_CP_SW;
1272 	}
1273 
1274 	/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
1275 	if (status & RBBM_ERROR_MASK)
1276 		a5xx_rbbm_err_irq(gpu, status);
1277 
1278 	if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1279 		a5xx_cp_err_irq(gpu);
1280 
1281 	if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
1282 		a5xx_fault_detect_irq(gpu);
1283 
1284 	if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1285 		a5xx_uche_err_irq(gpu);
1286 
1287 	if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
1288 		a5xx_gpmu_err_irq(gpu);
1289 
1290 	if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
1291 		a5xx_preempt_trigger(gpu);
1292 		msm_gpu_retire(gpu);
1293 	}
1294 
1295 	if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
1296 		a5xx_preempt_irq(gpu);
1297 
1298 	return IRQ_HANDLED;
1299 }
1300 
1301 static const u32 a5xx_registers[] = {
1302 	0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
1303 	0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
1304 	0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
1305 	0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
1306 	0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
1307 	0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
1308 	0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
1309 	0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
1310 	0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
1311 	0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
1312 	0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
1313 	0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
1314 	0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
1315 	0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
1316 	0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
1317 	0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
1318 	0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
1319 	0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
1320 	0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
1321 	0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
1322 	0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
1323 	0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
1324 	0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
1325 	0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
1326 	0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
1327 	0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D,
1328 	0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5,
1329 	0xAC60, 0xAC60, ~0,
1330 };
1331 
1332 static void a5xx_dump(struct msm_gpu *gpu)
1333 {
1334 	DRM_DEV_INFO(gpu->dev->dev, "status:   %08x\n",
1335 		gpu_read(gpu, REG_A5XX_RBBM_STATUS));
1336 	adreno_dump(gpu);
1337 }
1338 
1339 static int a5xx_pm_resume(struct msm_gpu *gpu)
1340 {
1341 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1342 	int ret;
1343 
1344 	/* Turn on the core power */
1345 	ret = msm_gpu_pm_resume(gpu);
1346 	if (ret)
1347 		return ret;
1348 
1349 	/* Adreno 506, 508, 509, 510, 512 needs manual RBBM sus/res control */
1350 	if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) {
1351 		/* Halt the sp_input_clk at HM level */
1352 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055);
1353 		a5xx_set_hwcg(gpu, true);
1354 		/* Turn on sp_input_clk at HM level */
1355 		gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0);
1356 		return 0;
1357 	}
1358 
1359 	/* Turn the RBCCU domain first to limit the chances of voltage droop */
1360 	gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
1361 
1362 	/* Wait 3 usecs before polling */
1363 	udelay(3);
1364 
1365 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
1366 		(1 << 20), (1 << 20));
1367 	if (ret) {
1368 		DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
1369 			gpu->name,
1370 			gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
1371 		return ret;
1372 	}
1373 
1374 	/* Turn on the SP domain */
1375 	gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
1376 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
1377 		(1 << 20), (1 << 20));
1378 	if (ret)
1379 		DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
1380 			gpu->name);
1381 
1382 	return ret;
1383 }
1384 
1385 static int a5xx_pm_suspend(struct msm_gpu *gpu)
1386 {
1387 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1388 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1389 	u32 mask = 0xf;
1390 	int i, ret;
1391 
1392 	/* A506, A508, A510 have 3 XIN ports in VBIF */
1393 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
1394 	    adreno_is_a510(adreno_gpu))
1395 		mask = 0x7;
1396 
1397 	/* Clear the VBIF pipe before shutting down */
1398 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask);
1399 	spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) &
1400 				mask) == mask);
1401 
1402 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
1403 
1404 	/*
1405 	 * Reset the VBIF before power collapse to avoid issue with FIFO
1406 	 * entries on Adreno A510 and A530 (the others will tend to lock up)
1407 	 */
1408 	if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
1409 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
1410 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
1411 	}
1412 
1413 	ret = msm_gpu_pm_suspend(gpu);
1414 	if (ret)
1415 		return ret;
1416 
1417 	if (a5xx_gpu->has_whereami)
1418 		for (i = 0; i < gpu->nr_rings; i++)
1419 			a5xx_gpu->shadow[i] = 0;
1420 
1421 	return 0;
1422 }
1423 
1424 static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1425 {
1426 	*value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO);
1427 
1428 	return 0;
1429 }
1430 
1431 struct a5xx_crashdumper {
1432 	void *ptr;
1433 	struct drm_gem_object *bo;
1434 	u64 iova;
1435 };
1436 
1437 struct a5xx_gpu_state {
1438 	struct msm_gpu_state base;
1439 	u32 *hlsqregs;
1440 };
1441 
1442 static int a5xx_crashdumper_init(struct msm_gpu *gpu,
1443 		struct a5xx_crashdumper *dumper)
1444 {
1445 	dumper->ptr = msm_gem_kernel_new(gpu->dev,
1446 		SZ_1M, MSM_BO_WC, gpu->aspace,
1447 		&dumper->bo, &dumper->iova);
1448 
1449 	if (!IS_ERR(dumper->ptr))
1450 		msm_gem_object_set_name(dumper->bo, "crashdump");
1451 
1452 	return PTR_ERR_OR_ZERO(dumper->ptr);
1453 }
1454 
1455 static int a5xx_crashdumper_run(struct msm_gpu *gpu,
1456 		struct a5xx_crashdumper *dumper)
1457 {
1458 	u32 val;
1459 
1460 	if (IS_ERR_OR_NULL(dumper->ptr))
1461 		return -EINVAL;
1462 
1463 	gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO, dumper->iova);
1464 
1465 	gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1);
1466 
1467 	return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val,
1468 		val & 0x04, 100, 10000);
1469 }
1470 
1471 /*
1472  * These are a list of the registers that need to be read through the HLSQ
1473  * aperture through the crashdumper.  These are not nominally accessible from
1474  * the CPU on a secure platform.
1475  */
1476 static const struct {
1477 	u32 type;
1478 	u32 regoffset;
1479 	u32 count;
1480 } a5xx_hlsq_aperture_regs[] = {
1481 	{ 0x35, 0xe00, 0x32 },   /* HSLQ non-context */
1482 	{ 0x31, 0x2080, 0x1 },   /* HLSQ 2D context 0 */
1483 	{ 0x33, 0x2480, 0x1 },   /* HLSQ 2D context 1 */
1484 	{ 0x32, 0xe780, 0x62 },  /* HLSQ 3D context 0 */
1485 	{ 0x34, 0xef80, 0x62 },  /* HLSQ 3D context 1 */
1486 	{ 0x3f, 0x0ec0, 0x40 },  /* SP non-context */
1487 	{ 0x3d, 0x2040, 0x1 },   /* SP 2D context 0 */
1488 	{ 0x3b, 0x2440, 0x1 },   /* SP 2D context 1 */
1489 	{ 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */
1490 	{ 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */
1491 	{ 0x3a, 0x0f00, 0x1c },  /* TP non-context */
1492 	{ 0x38, 0x2000, 0xa },   /* TP 2D context 0 */
1493 	{ 0x36, 0x2400, 0xa },   /* TP 2D context 1 */
1494 	{ 0x39, 0xe700, 0x80 },  /* TP 3D context 0 */
1495 	{ 0x37, 0xef00, 0x80 },  /* TP 3D context 1 */
1496 };
1497 
1498 static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu,
1499 		struct a5xx_gpu_state *a5xx_state)
1500 {
1501 	struct a5xx_crashdumper dumper = { 0 };
1502 	u32 offset, count = 0;
1503 	u64 *ptr;
1504 	int i;
1505 
1506 	if (a5xx_crashdumper_init(gpu, &dumper))
1507 		return;
1508 
1509 	/* The script will be written at offset 0 */
1510 	ptr = dumper.ptr;
1511 
1512 	/* Start writing the data at offset 256k */
1513 	offset = dumper.iova + (256 * SZ_1K);
1514 
1515 	/* Count how many additional registers to get from the HLSQ aperture */
1516 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++)
1517 		count += a5xx_hlsq_aperture_regs[i].count;
1518 
1519 	a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL);
1520 	if (!a5xx_state->hlsqregs)
1521 		return;
1522 
1523 	/* Build the crashdump script */
1524 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1525 		u32 type = a5xx_hlsq_aperture_regs[i].type;
1526 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1527 
1528 		/* Write the register to select the desired bank */
1529 		*ptr++ = ((u64) type << 8);
1530 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) |
1531 			(1 << 21) | 1;
1532 
1533 		*ptr++ = offset;
1534 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44)
1535 			| c;
1536 
1537 		offset += c * sizeof(u32);
1538 	}
1539 
1540 	/* Write two zeros to close off the script */
1541 	*ptr++ = 0;
1542 	*ptr++ = 0;
1543 
1544 	if (a5xx_crashdumper_run(gpu, &dumper)) {
1545 		kfree(a5xx_state->hlsqregs);
1546 		msm_gem_kernel_put(dumper.bo, gpu->aspace);
1547 		return;
1548 	}
1549 
1550 	/* Copy the data from the crashdumper to the state */
1551 	memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K),
1552 		count * sizeof(u32));
1553 
1554 	msm_gem_kernel_put(dumper.bo, gpu->aspace);
1555 }
1556 
1557 static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu)
1558 {
1559 	struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state),
1560 			GFP_KERNEL);
1561 	bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24));
1562 
1563 	if (!a5xx_state)
1564 		return ERR_PTR(-ENOMEM);
1565 
1566 	/* Temporarily disable hardware clock gating before reading the hw */
1567 	a5xx_set_hwcg(gpu, false);
1568 
1569 	/* First get the generic state from the adreno core */
1570 	adreno_gpu_state_get(gpu, &(a5xx_state->base));
1571 
1572 	a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS);
1573 
1574 	/*
1575 	 * Get the HLSQ regs with the help of the crashdumper, but only if
1576 	 * we are not stalled in an iommu fault (in which case the crashdumper
1577 	 * would not have access to memory)
1578 	 */
1579 	if (!stalled)
1580 		a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state);
1581 
1582 	a5xx_set_hwcg(gpu, true);
1583 
1584 	return &a5xx_state->base;
1585 }
1586 
1587 static void a5xx_gpu_state_destroy(struct kref *kref)
1588 {
1589 	struct msm_gpu_state *state = container_of(kref,
1590 		struct msm_gpu_state, ref);
1591 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1592 		struct a5xx_gpu_state, base);
1593 
1594 	kfree(a5xx_state->hlsqregs);
1595 
1596 	adreno_gpu_state_destroy(state);
1597 	kfree(a5xx_state);
1598 }
1599 
1600 static int a5xx_gpu_state_put(struct msm_gpu_state *state)
1601 {
1602 	if (IS_ERR_OR_NULL(state))
1603 		return 1;
1604 
1605 	return kref_put(&state->ref, a5xx_gpu_state_destroy);
1606 }
1607 
1608 
1609 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1610 static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
1611 		      struct drm_printer *p)
1612 {
1613 	int i, j;
1614 	u32 pos = 0;
1615 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1616 		struct a5xx_gpu_state, base);
1617 
1618 	if (IS_ERR_OR_NULL(state))
1619 		return;
1620 
1621 	adreno_show(gpu, state, p);
1622 
1623 	/* Dump the additional a5xx HLSQ registers */
1624 	if (!a5xx_state->hlsqregs)
1625 		return;
1626 
1627 	drm_printf(p, "registers-hlsq:\n");
1628 
1629 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1630 		u32 o = a5xx_hlsq_aperture_regs[i].regoffset;
1631 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1632 
1633 		for (j = 0; j < c; j++, pos++, o++) {
1634 			/*
1635 			 * To keep the crashdump simple we pull the entire range
1636 			 * for each register type but not all of the registers
1637 			 * in the range are valid. Fortunately invalid registers
1638 			 * stick out like a sore thumb with a value of
1639 			 * 0xdeadbeef
1640 			 */
1641 			if (a5xx_state->hlsqregs[pos] == 0xdeadbeef)
1642 				continue;
1643 
1644 			drm_printf(p, "  - { offset: 0x%04x, value: 0x%08x }\n",
1645 				o << 2, a5xx_state->hlsqregs[pos]);
1646 		}
1647 	}
1648 }
1649 #endif
1650 
1651 static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
1652 {
1653 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1654 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1655 
1656 	return a5xx_gpu->cur_ring;
1657 }
1658 
1659 static u64 a5xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1660 {
1661 	u64 busy_cycles;
1662 
1663 	busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO);
1664 	*out_sample_rate = clk_get_rate(gpu->core_clk);
1665 
1666 	return busy_cycles;
1667 }
1668 
1669 static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1670 {
1671 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1672 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1673 
1674 	if (a5xx_gpu->has_whereami)
1675 		return a5xx_gpu->shadow[ring->id];
1676 
1677 	return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR);
1678 }
1679 
1680 static const struct adreno_gpu_funcs funcs = {
1681 	.base = {
1682 		.get_param = adreno_get_param,
1683 		.set_param = adreno_set_param,
1684 		.hw_init = a5xx_hw_init,
1685 		.pm_suspend = a5xx_pm_suspend,
1686 		.pm_resume = a5xx_pm_resume,
1687 		.recover = a5xx_recover,
1688 		.submit = a5xx_submit,
1689 		.active_ring = a5xx_active_ring,
1690 		.irq = a5xx_irq,
1691 		.destroy = a5xx_destroy,
1692 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1693 		.show = a5xx_show,
1694 #endif
1695 #if defined(CONFIG_DEBUG_FS)
1696 		.debugfs_init = a5xx_debugfs_init,
1697 #endif
1698 		.gpu_busy = a5xx_gpu_busy,
1699 		.gpu_state_get = a5xx_gpu_state_get,
1700 		.gpu_state_put = a5xx_gpu_state_put,
1701 		.create_address_space = adreno_create_address_space,
1702 		.get_rptr = a5xx_get_rptr,
1703 	},
1704 	.get_timestamp = a5xx_get_timestamp,
1705 };
1706 
1707 static void check_speed_bin(struct device *dev)
1708 {
1709 	struct nvmem_cell *cell;
1710 	u32 val;
1711 
1712 	/*
1713 	 * If the OPP table specifies a opp-supported-hw property then we have
1714 	 * to set something with dev_pm_opp_set_supported_hw() or the table
1715 	 * doesn't get populated so pick an arbitrary value that should
1716 	 * ensure the default frequencies are selected but not conflict with any
1717 	 * actual bins
1718 	 */
1719 	val = 0x80;
1720 
1721 	cell = nvmem_cell_get(dev, "speed_bin");
1722 
1723 	if (!IS_ERR(cell)) {
1724 		void *buf = nvmem_cell_read(cell, NULL);
1725 
1726 		if (!IS_ERR(buf)) {
1727 			u8 bin = *((u8 *) buf);
1728 
1729 			val = (1 << bin);
1730 			kfree(buf);
1731 		}
1732 
1733 		nvmem_cell_put(cell);
1734 	}
1735 
1736 	devm_pm_opp_set_supported_hw(dev, &val, 1);
1737 }
1738 
1739 struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
1740 {
1741 	struct msm_drm_private *priv = dev->dev_private;
1742 	struct platform_device *pdev = priv->gpu_pdev;
1743 	struct a5xx_gpu *a5xx_gpu = NULL;
1744 	struct adreno_gpu *adreno_gpu;
1745 	struct msm_gpu *gpu;
1746 	int ret;
1747 
1748 	if (!pdev) {
1749 		DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n");
1750 		return ERR_PTR(-ENXIO);
1751 	}
1752 
1753 	a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
1754 	if (!a5xx_gpu)
1755 		return ERR_PTR(-ENOMEM);
1756 
1757 	adreno_gpu = &a5xx_gpu->base;
1758 	gpu = &adreno_gpu->base;
1759 
1760 	adreno_gpu->registers = a5xx_registers;
1761 
1762 	a5xx_gpu->lm_leakage = 0x4E001A;
1763 
1764 	check_speed_bin(&pdev->dev);
1765 
1766 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 4);
1767 	if (ret) {
1768 		a5xx_destroy(&(a5xx_gpu->base.base));
1769 		return ERR_PTR(ret);
1770 	}
1771 
1772 	if (gpu->aspace)
1773 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
1774 
1775 	/* Set up the preemption specific bits and pieces for each ringbuffer */
1776 	a5xx_preempt_init(gpu);
1777 
1778 	return gpu;
1779 }
1780