1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 
19 #include "mgag200_drv.h"
20 
21 #define MGAG200_LUT_SIZE 256
22 
23 /*
24  * This file contains setup code for the CRTC.
25  */
26 
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
28 {
29 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
30 	struct drm_device *dev = crtc->dev;
31 	struct mga_device *mdev = dev->dev_private;
32 	struct drm_framebuffer *fb = crtc->fb;
33 	int i;
34 
35 	if (!crtc->enabled)
36 		return;
37 
38 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
39 
40 	if (fb && fb->bits_per_pixel == 16) {
41 		int inc = (fb->depth == 15) ? 8 : 4;
42 		u8 r, b;
43 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
44 			if (fb->depth == 16) {
45 				if (i > (MGAG200_LUT_SIZE >> 1)) {
46 					r = b = 0;
47 				} else {
48 					r = mga_crtc->lut_r[i << 1];
49 					b = mga_crtc->lut_b[i << 1];
50 				}
51 			} else {
52 				r = mga_crtc->lut_r[i];
53 				b = mga_crtc->lut_b[i];
54 			}
55 			/* VGA registers */
56 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
59 		}
60 		return;
61 	}
62 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
63 		/* VGA registers */
64 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
67 	}
68 }
69 
70 static inline void mga_wait_vsync(struct mga_device *mdev)
71 {
72 	unsigned long timeout = jiffies + HZ/10;
73 	unsigned int status = 0;
74 
75 	do {
76 		status = RREG32(MGAREG_Status);
77 	} while ((status & 0x08) && time_before(jiffies, timeout));
78 	timeout = jiffies + HZ/10;
79 	status = 0;
80 	do {
81 		status = RREG32(MGAREG_Status);
82 	} while (!(status & 0x08) && time_before(jiffies, timeout));
83 }
84 
85 static inline void mga_wait_busy(struct mga_device *mdev)
86 {
87 	unsigned long timeout = jiffies + HZ;
88 	unsigned int status = 0;
89 	do {
90 		status = RREG8(MGAREG_Status + 2);
91 	} while ((status & 0x01) && time_before(jiffies, timeout));
92 }
93 
94 /*
95  * The core passes the desired mode to the CRTC code to see whether any
96  * CRTC-specific modifications need to be made to it. We're in a position
97  * to just pass that straight through, so this does nothing
98  */
99 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
100 				const struct drm_display_mode *mode,
101 				struct drm_display_mode *adjusted_mode)
102 {
103 	return true;
104 }
105 
106 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
107 {
108 	unsigned int vcomax, vcomin, pllreffreq;
109 	unsigned int delta, tmpdelta, permitteddelta;
110 	unsigned int testp, testm, testn;
111 	unsigned int p, m, n;
112 	unsigned int computed;
113 
114 	m = n = p = 0;
115 	vcomax = 320000;
116 	vcomin = 160000;
117 	pllreffreq = 25000;
118 
119 	delta = 0xffffffff;
120 	permitteddelta = clock * 5 / 1000;
121 
122 	for (testp = 8; testp > 0; testp /= 2) {
123 		if (clock * testp > vcomax)
124 			continue;
125 		if (clock * testp < vcomin)
126 			continue;
127 
128 		for (testn = 17; testn < 256; testn++) {
129 			for (testm = 1; testm < 32; testm++) {
130 				computed = (pllreffreq * testn) /
131 					(testm * testp);
132 				if (computed > clock)
133 					tmpdelta = computed - clock;
134 				else
135 					tmpdelta = clock - computed;
136 				if (tmpdelta < delta) {
137 					delta = tmpdelta;
138 					m = testm - 1;
139 					n = testn - 1;
140 					p = testp - 1;
141 				}
142 			}
143 		}
144 	}
145 
146 	if (delta > permitteddelta) {
147 		printk(KERN_WARNING "PLL delta too large\n");
148 		return 1;
149 	}
150 
151 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
152 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
153 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
154 	return 0;
155 }
156 
157 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
158 {
159 	unsigned int vcomax, vcomin, pllreffreq;
160 	unsigned int delta, tmpdelta, permitteddelta;
161 	unsigned int testp, testm, testn;
162 	unsigned int p, m, n;
163 	unsigned int computed;
164 	int i, j, tmpcount, vcount;
165 	bool pll_locked = false;
166 	u8 tmp;
167 
168 	m = n = p = 0;
169 	vcomax = 550000;
170 	vcomin = 150000;
171 	pllreffreq = 48000;
172 
173 	delta = 0xffffffff;
174 	permitteddelta = clock * 5 / 1000;
175 
176 	for (testp = 1; testp < 9; testp++) {
177 		if (clock * testp > vcomax)
178 			continue;
179 		if (clock * testp < vcomin)
180 			continue;
181 
182 		for (testm = 1; testm < 17; testm++) {
183 			for (testn = 1; testn < 151; testn++) {
184 				computed = (pllreffreq * testn) /
185 					(testm * testp);
186 				if (computed > clock)
187 					tmpdelta = computed - clock;
188 				else
189 					tmpdelta = clock - computed;
190 				if (tmpdelta < delta) {
191 					delta = tmpdelta;
192 					n = testn - 1;
193 					m = (testm - 1) | ((n >> 1) & 0x80);
194 					p = testp - 1;
195 				}
196 			}
197 		}
198 	}
199 
200 	for (i = 0; i <= 32 && pll_locked == false; i++) {
201 		if (i > 0) {
202 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
203 			tmp = RREG8(MGAREG_CRTC_DATA);
204 			if (tmp < 0xff)
205 				WREG8(MGAREG_CRTC_DATA, tmp+1);
206 		}
207 
208 		/* set pixclkdis to 1 */
209 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
210 		tmp = RREG8(DAC_DATA);
211 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
212 		WREG8(DAC_DATA, tmp);
213 
214 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
215 		tmp = RREG8(DAC_DATA);
216 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
217 		WREG8(DAC_DATA, tmp);
218 
219 		/* select PLL Set C */
220 		tmp = RREG8(MGAREG_MEM_MISC_READ);
221 		tmp |= 0x3 << 2;
222 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
223 
224 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
225 		tmp = RREG8(DAC_DATA);
226 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
227 		WREG8(DAC_DATA, tmp);
228 
229 		udelay(500);
230 
231 		/* reset the PLL */
232 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
233 		tmp = RREG8(DAC_DATA);
234 		tmp &= ~0x04;
235 		WREG8(DAC_DATA, tmp);
236 
237 		udelay(50);
238 
239 		/* program pixel pll register */
240 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
241 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
242 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
243 
244 		udelay(50);
245 
246 		/* turn pll on */
247 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
248 		tmp = RREG8(DAC_DATA);
249 		tmp |= 0x04;
250 		WREG_DAC(MGA1064_VREF_CTL, tmp);
251 
252 		udelay(500);
253 
254 		/* select the pixel pll */
255 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
256 		tmp = RREG8(DAC_DATA);
257 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
258 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
259 		WREG8(DAC_DATA, tmp);
260 
261 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
262 		tmp = RREG8(DAC_DATA);
263 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
264 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
265 		WREG8(DAC_DATA, tmp);
266 
267 		/* reset dotclock rate bit */
268 		WREG8(MGAREG_SEQ_INDEX, 1);
269 		tmp = RREG8(MGAREG_SEQ_DATA);
270 		tmp &= ~0x8;
271 		WREG8(MGAREG_SEQ_DATA, tmp);
272 
273 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
274 		tmp = RREG8(DAC_DATA);
275 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
276 		WREG8(DAC_DATA, tmp);
277 
278 		vcount = RREG8(MGAREG_VCOUNT);
279 
280 		for (j = 0; j < 30 && pll_locked == false; j++) {
281 			tmpcount = RREG8(MGAREG_VCOUNT);
282 			if (tmpcount < vcount)
283 				vcount = 0;
284 			if ((tmpcount - vcount) > 2)
285 				pll_locked = true;
286 			else
287 				udelay(5);
288 		}
289 	}
290 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
291 	tmp = RREG8(DAC_DATA);
292 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
293 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
294 	return 0;
295 }
296 
297 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
298 {
299 	unsigned int vcomax, vcomin, pllreffreq;
300 	unsigned int delta, tmpdelta, permitteddelta;
301 	unsigned int testp, testm, testn;
302 	unsigned int p, m, n;
303 	unsigned int computed;
304 	u8 tmp;
305 
306 	m = n = p = 0;
307 	vcomax = 550000;
308 	vcomin = 150000;
309 	pllreffreq = 50000;
310 
311 	delta = 0xffffffff;
312 	permitteddelta = clock * 5 / 1000;
313 
314 	for (testp = 16; testp > 0; testp--) {
315 		if (clock * testp > vcomax)
316 			continue;
317 		if (clock * testp < vcomin)
318 			continue;
319 
320 		for (testn = 1; testn < 257; testn++) {
321 			for (testm = 1; testm < 17; testm++) {
322 				computed = (pllreffreq * testn) /
323 					(testm * testp);
324 				if (computed > clock)
325 					tmpdelta = computed - clock;
326 				else
327 					tmpdelta = clock - computed;
328 				if (tmpdelta < delta) {
329 					delta = tmpdelta;
330 					n = testn - 1;
331 					m = testm - 1;
332 					p = testp - 1;
333 				}
334 			}
335 		}
336 	}
337 
338 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
339 	tmp = RREG8(DAC_DATA);
340 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
341 	WREG8(DAC_DATA, tmp);
342 
343 	tmp = RREG8(MGAREG_MEM_MISC_READ);
344 	tmp |= 0x3 << 2;
345 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
346 
347 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
348 	tmp = RREG8(DAC_DATA);
349 	WREG8(DAC_DATA, tmp & ~0x40);
350 
351 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
352 	tmp = RREG8(DAC_DATA);
353 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
354 	WREG8(DAC_DATA, tmp);
355 
356 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
357 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
358 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
359 
360 	udelay(50);
361 
362 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
363 	tmp = RREG8(DAC_DATA);
364 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
365 	WREG8(DAC_DATA, tmp);
366 
367 	udelay(500);
368 
369 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
370 	tmp = RREG8(DAC_DATA);
371 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
372 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
373 	WREG8(DAC_DATA, tmp);
374 
375 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
376 	tmp = RREG8(DAC_DATA);
377 	WREG8(DAC_DATA, tmp | 0x40);
378 
379 	tmp = RREG8(MGAREG_MEM_MISC_READ);
380 	tmp |= (0x3 << 2);
381 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
382 
383 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
384 	tmp = RREG8(DAC_DATA);
385 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
386 	WREG8(DAC_DATA, tmp);
387 
388 	return 0;
389 }
390 
391 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
392 {
393 	unsigned int vcomax, vcomin, pllreffreq;
394 	unsigned int delta, tmpdelta, permitteddelta;
395 	unsigned int testp, testm, testn;
396 	unsigned int p, m, n;
397 	unsigned int computed;
398 	int i, j, tmpcount, vcount;
399 	u8 tmp;
400 	bool pll_locked = false;
401 
402 	m = n = p = 0;
403 	vcomax = 800000;
404 	vcomin = 400000;
405 	pllreffreq = 33333;
406 
407 	delta = 0xffffffff;
408 	permitteddelta = clock * 5 / 1000;
409 
410 	for (testp = 16; testp > 0; testp >>= 1) {
411 		if (clock * testp > vcomax)
412 			continue;
413 		if (clock * testp < vcomin)
414 			continue;
415 
416 		for (testm = 1; testm < 33; testm++) {
417 			for (testn = 17; testn < 257; testn++) {
418 				computed = (pllreffreq * testn) /
419 					(testm * testp);
420 				if (computed > clock)
421 					tmpdelta = computed - clock;
422 				else
423 					tmpdelta = clock - computed;
424 				if (tmpdelta < delta) {
425 					delta = tmpdelta;
426 					n = testn - 1;
427 					m = (testm - 1);
428 					p = testp - 1;
429 				}
430 				if ((clock * testp) >= 600000)
431 					p |= 0x80;
432 			}
433 		}
434 	}
435 	for (i = 0; i <= 32 && pll_locked == false; i++) {
436 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
437 		tmp = RREG8(DAC_DATA);
438 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
439 		WREG8(DAC_DATA, tmp);
440 
441 		tmp = RREG8(MGAREG_MEM_MISC_READ);
442 		tmp |= 0x3 << 2;
443 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
444 
445 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
446 		tmp = RREG8(DAC_DATA);
447 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
448 		WREG8(DAC_DATA, tmp);
449 
450 		udelay(500);
451 
452 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
453 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
454 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
455 
456 		udelay(500);
457 
458 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
459 		tmp = RREG8(DAC_DATA);
460 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
461 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
462 		WREG8(DAC_DATA, tmp);
463 
464 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
465 		tmp = RREG8(DAC_DATA);
466 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
467 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
468 		WREG8(DAC_DATA, tmp);
469 
470 		vcount = RREG8(MGAREG_VCOUNT);
471 
472 		for (j = 0; j < 30 && pll_locked == false; j++) {
473 			tmpcount = RREG8(MGAREG_VCOUNT);
474 			if (tmpcount < vcount)
475 				vcount = 0;
476 			if ((tmpcount - vcount) > 2)
477 				pll_locked = true;
478 			else
479 				udelay(5);
480 		}
481 	}
482 
483 	return 0;
484 }
485 
486 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
487 {
488 	unsigned int vcomax, vcomin, pllreffreq;
489 	unsigned int delta, tmpdelta;
490 	int testr, testn, testm, testo;
491 	unsigned int p, m, n;
492 	unsigned int computed, vco;
493 	int tmp;
494 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
495 
496 	m = n = p = 0;
497 	vcomax = 1488000;
498 	vcomin = 1056000;
499 	pllreffreq = 48000;
500 
501 	delta = 0xffffffff;
502 
503 	for (testr = 0; testr < 4; testr++) {
504 		if (delta == 0)
505 			break;
506 		for (testn = 5; testn < 129; testn++) {
507 			if (delta == 0)
508 				break;
509 			for (testm = 3; testm >= 0; testm--) {
510 				if (delta == 0)
511 					break;
512 				for (testo = 5; testo < 33; testo++) {
513 					vco = pllreffreq * (testn + 1) /
514 						(testr + 1);
515 					if (vco < vcomin)
516 						continue;
517 					if (vco > vcomax)
518 						continue;
519 					computed = vco / (m_div_val[testm] * (testo + 1));
520 					if (computed > clock)
521 						tmpdelta = computed - clock;
522 					else
523 						tmpdelta = clock - computed;
524 					if (tmpdelta < delta) {
525 						delta = tmpdelta;
526 						m = testm | (testo << 3);
527 						n = testn;
528 						p = testr | (testr << 3);
529 					}
530 				}
531 			}
532 		}
533 	}
534 
535 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
536 	tmp = RREG8(DAC_DATA);
537 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
538 	WREG8(DAC_DATA, tmp);
539 
540 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
541 	tmp = RREG8(DAC_DATA);
542 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
543 	WREG8(DAC_DATA, tmp);
544 
545 	tmp = RREG8(MGAREG_MEM_MISC_READ);
546 	tmp |= (0x3<<2) | 0xc0;
547 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
548 
549 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
550 	tmp = RREG8(DAC_DATA);
551 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
552 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
553 	WREG8(DAC_DATA, tmp);
554 
555 	udelay(500);
556 
557 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
558 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
559 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
560 
561 	udelay(50);
562 
563 	return 0;
564 }
565 
566 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
567 {
568 	switch(mdev->type) {
569 	case G200_SE_A:
570 	case G200_SE_B:
571 		return mga_g200se_set_plls(mdev, clock);
572 		break;
573 	case G200_WB:
574 		return mga_g200wb_set_plls(mdev, clock);
575 		break;
576 	case G200_EV:
577 		return mga_g200ev_set_plls(mdev, clock);
578 		break;
579 	case G200_EH:
580 		return mga_g200eh_set_plls(mdev, clock);
581 		break;
582 	case G200_ER:
583 		return mga_g200er_set_plls(mdev, clock);
584 		break;
585 	}
586 	return 0;
587 }
588 
589 static void mga_g200wb_prepare(struct drm_crtc *crtc)
590 {
591 	struct mga_device *mdev = crtc->dev->dev_private;
592 	u8 tmp;
593 	int iter_max;
594 
595 	/* 1- The first step is to warn the BMC of an upcoming mode change.
596 	 * We are putting the misc<0> to output.*/
597 
598 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
599 	tmp = RREG8(DAC_DATA);
600 	tmp |= 0x10;
601 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
602 
603 	/* we are putting a 1 on the misc<0> line */
604 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
605 	tmp = RREG8(DAC_DATA);
606 	tmp |= 0x10;
607 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
608 
609 	/* 2- Second step to mask and further scan request
610 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
611 	 */
612 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
613 	tmp = RREG8(DAC_DATA);
614 	tmp |= 0x80;
615 	WREG_DAC(MGA1064_SPAREREG, tmp);
616 
617 	/* 3a- the third step is to verifu if there is an active scan
618 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
619 	 */
620 	iter_max = 300;
621 	while (!(tmp & 0x1) && iter_max) {
622 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
623 		tmp = RREG8(DAC_DATA);
624 		udelay(1000);
625 		iter_max--;
626 	}
627 
628 	/* 3b- this step occurs only if the remove is actually scanning
629 	 * we are waiting for the end of the frame which is a 1 on
630 	 * remvsyncsts (XSPAREREG<1>)
631 	 */
632 	if (iter_max) {
633 		iter_max = 300;
634 		while ((tmp & 0x2) && iter_max) {
635 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
636 			tmp = RREG8(DAC_DATA);
637 			udelay(1000);
638 			iter_max--;
639 		}
640 	}
641 }
642 
643 static void mga_g200wb_commit(struct drm_crtc *crtc)
644 {
645 	u8 tmp;
646 	struct mga_device *mdev = crtc->dev->dev_private;
647 
648 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
649 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
650 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
651 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
652 
653 	/* 2- second step is to assert the rstlvl2 */
654 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
655 	tmp = RREG8(DAC_DATA);
656 	tmp |= 0x8;
657 	WREG8(DAC_DATA, tmp);
658 
659 	/* wait 10 us */
660 	udelay(10);
661 
662 	/* 3- deassert rstlvl2 */
663 	tmp &= ~0x08;
664 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
665 	WREG8(DAC_DATA, tmp);
666 
667 	/* 4- remove mask of scan request */
668 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
669 	tmp = RREG8(DAC_DATA);
670 	tmp &= ~0x80;
671 	WREG8(DAC_DATA, tmp);
672 
673 	/* 5- put back a 0 on the misc<0> line */
674 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
675 	tmp = RREG8(DAC_DATA);
676 	tmp &= ~0x10;
677 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
678 }
679 
680 /*
681    This is how the framebuffer base address is stored in g200 cards:
682    * Assume @offset is the gpu_addr variable of the framebuffer object
683    * Then addr is the number of _pixels_ (not bytes) from the start of
684      VRAM to the first pixel we want to display. (divided by 2 for 32bit
685      framebuffers)
686    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
687    addr<20> -> CRTCEXT0<6>
688    addr<19-16> -> CRTCEXT0<3-0>
689    addr<15-8> -> CRTCC<7-0>
690    addr<7-0> -> CRTCD<7-0>
691    CRTCEXT0 has to be programmed last to trigger an update and make the
692    new addr variable take effect.
693  */
694 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
695 {
696 	struct mga_device *mdev = crtc->dev->dev_private;
697 	u32 addr;
698 	int count;
699 	u8 crtcext0;
700 
701 	while (RREG8(0x1fda) & 0x08);
702 	while (!(RREG8(0x1fda) & 0x08));
703 
704 	count = RREG8(MGAREG_VCOUNT) + 2;
705 	while (RREG8(MGAREG_VCOUNT) < count);
706 
707 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
708 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
709 	crtcext0 &= 0xB0;
710 	addr = offset / 8;
711 	/* Can't store addresses any higher than that...
712 	   but we also don't have more than 16MB of memory, so it should be fine. */
713 	WARN_ON(addr > 0x1fffff);
714 	crtcext0 |= (!!(addr & (1<<20)))<<6;
715 	WREG_CRT(0x0d, (u8)(addr & 0xff));
716 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
717 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
718 }
719 
720 
721 /* ast is different - we will force move buffers out of VRAM */
722 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
723 				struct drm_framebuffer *fb,
724 				int x, int y, int atomic)
725 {
726 	struct mga_device *mdev = crtc->dev->dev_private;
727 	struct drm_gem_object *obj;
728 	struct mga_framebuffer *mga_fb;
729 	struct mgag200_bo *bo;
730 	int ret;
731 	u64 gpu_addr;
732 
733 	/* push the previous fb to system ram */
734 	if (!atomic && fb) {
735 		mga_fb = to_mga_framebuffer(fb);
736 		obj = mga_fb->obj;
737 		bo = gem_to_mga_bo(obj);
738 		ret = mgag200_bo_reserve(bo, false);
739 		if (ret)
740 			return ret;
741 		mgag200_bo_push_sysram(bo);
742 		mgag200_bo_unreserve(bo);
743 	}
744 
745 	mga_fb = to_mga_framebuffer(crtc->fb);
746 	obj = mga_fb->obj;
747 	bo = gem_to_mga_bo(obj);
748 
749 	ret = mgag200_bo_reserve(bo, false);
750 	if (ret)
751 		return ret;
752 
753 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
754 	if (ret) {
755 		mgag200_bo_unreserve(bo);
756 		return ret;
757 	}
758 
759 	if (&mdev->mfbdev->mfb == mga_fb) {
760 		/* if pushing console in kmap it */
761 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
762 		if (ret)
763 			DRM_ERROR("failed to kmap fbcon\n");
764 
765 	}
766 	mgag200_bo_unreserve(bo);
767 
768 	mga_set_start_address(crtc, (u32)gpu_addr);
769 
770 	return 0;
771 }
772 
773 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
774 				  struct drm_framebuffer *old_fb)
775 {
776 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
777 }
778 
779 static int mga_crtc_mode_set(struct drm_crtc *crtc,
780 				struct drm_display_mode *mode,
781 				struct drm_display_mode *adjusted_mode,
782 				int x, int y, struct drm_framebuffer *old_fb)
783 {
784 	struct drm_device *dev = crtc->dev;
785 	struct mga_device *mdev = dev->dev_private;
786 	int hdisplay, hsyncstart, hsyncend, htotal;
787 	int vdisplay, vsyncstart, vsyncend, vtotal;
788 	int pitch;
789 	int option = 0, option2 = 0;
790 	int i;
791 	unsigned char misc = 0;
792 	unsigned char ext_vga[6];
793 	u8 bppshift;
794 
795 	static unsigned char dacvalue[] = {
796 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
797 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
798 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
799 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
800 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
801 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
802 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
803 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
804 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
805 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
806 	};
807 
808 	bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
809 
810 	switch (mdev->type) {
811 	case G200_SE_A:
812 	case G200_SE_B:
813 		dacvalue[MGA1064_VREF_CTL] = 0x03;
814 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
815 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
816 					     MGA1064_MISC_CTL_VGA8 |
817 					     MGA1064_MISC_CTL_DAC_RAM_CS;
818 		if (mdev->has_sdram)
819 			option = 0x40049120;
820 		else
821 			option = 0x4004d120;
822 		option2 = 0x00008000;
823 		break;
824 	case G200_WB:
825 		dacvalue[MGA1064_VREF_CTL] = 0x07;
826 		option = 0x41049120;
827 		option2 = 0x0000b000;
828 		break;
829 	case G200_EV:
830 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
831 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
832 					     MGA1064_MISC_CTL_DAC_RAM_CS;
833 		option = 0x00000120;
834 		option2 = 0x0000b000;
835 		break;
836 	case G200_EH:
837 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
838 					     MGA1064_MISC_CTL_DAC_RAM_CS;
839 		option = 0x00000120;
840 		option2 = 0x0000b000;
841 		break;
842 	case G200_ER:
843 		break;
844 	}
845 
846 	switch (crtc->fb->bits_per_pixel) {
847 	case 8:
848 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
849 		break;
850 	case 16:
851 		if (crtc->fb->depth == 15)
852 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
853 		else
854 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
855 		break;
856 	case 24:
857 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
858 		break;
859 	case 32:
860 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
861 		break;
862 	}
863 
864 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
865 		misc |= 0x40;
866 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
867 		misc |= 0x80;
868 
869 
870 	for (i = 0; i < sizeof(dacvalue); i++) {
871 		if ((i <= 0x17) ||
872 		    (i == 0x1b) ||
873 		    (i == 0x1c) ||
874 		    ((i >= 0x1f) && (i <= 0x29)) ||
875 		    ((i >= 0x30) && (i <= 0x37)))
876 			continue;
877 		if (IS_G200_SE(mdev) &&
878 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
879 			continue;
880 		if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
881 		    (i >= 0x44) && (i <= 0x4e))
882 			continue;
883 
884 		WREG_DAC(i, dacvalue[i]);
885 	}
886 
887 	if (mdev->type == G200_ER)
888 		WREG_DAC(0x90, 0);
889 
890 	if (option)
891 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
892 	if (option2)
893 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
894 
895 	WREG_SEQ(2, 0xf);
896 	WREG_SEQ(3, 0);
897 	WREG_SEQ(4, 0xe);
898 
899 	pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
900 	if (crtc->fb->bits_per_pixel == 24)
901 		pitch = (pitch * 3) >> (4 - bppshift);
902 	else
903 		pitch = pitch >> (4 - bppshift);
904 
905 	hdisplay = mode->hdisplay / 8 - 1;
906 	hsyncstart = mode->hsync_start / 8 - 1;
907 	hsyncend = mode->hsync_end / 8 - 1;
908 	htotal = mode->htotal / 8 - 1;
909 
910 	/* Work around hardware quirk */
911 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
912 		htotal++;
913 
914 	vdisplay = mode->vdisplay - 1;
915 	vsyncstart = mode->vsync_start - 1;
916 	vsyncend = mode->vsync_end - 1;
917 	vtotal = mode->vtotal - 2;
918 
919 	WREG_GFX(0, 0);
920 	WREG_GFX(1, 0);
921 	WREG_GFX(2, 0);
922 	WREG_GFX(3, 0);
923 	WREG_GFX(4, 0);
924 	WREG_GFX(5, 0x40);
925 	WREG_GFX(6, 0x5);
926 	WREG_GFX(7, 0xf);
927 	WREG_GFX(8, 0xf);
928 
929 	WREG_CRT(0, htotal - 4);
930 	WREG_CRT(1, hdisplay);
931 	WREG_CRT(2, hdisplay);
932 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
933 	WREG_CRT(4, hsyncstart);
934 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
935 	WREG_CRT(6, vtotal & 0xFF);
936 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
937 		 ((vdisplay & 0x100) >> 7) |
938 		 ((vsyncstart & 0x100) >> 6) |
939 		 ((vdisplay & 0x100) >> 5) |
940 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
941 		 ((vtotal & 0x200) >> 4)|
942 		 ((vdisplay & 0x200) >> 3) |
943 		 ((vsyncstart & 0x200) >> 2));
944 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
945 		 ((vdisplay & 0x200) >> 3));
946 	WREG_CRT(10, 0);
947 	WREG_CRT(11, 0);
948 	WREG_CRT(12, 0);
949 	WREG_CRT(13, 0);
950 	WREG_CRT(14, 0);
951 	WREG_CRT(15, 0);
952 	WREG_CRT(16, vsyncstart & 0xFF);
953 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
954 	WREG_CRT(18, vdisplay & 0xFF);
955 	WREG_CRT(19, pitch & 0xFF);
956 	WREG_CRT(20, 0);
957 	WREG_CRT(21, vdisplay & 0xFF);
958 	WREG_CRT(22, (vtotal + 1) & 0xFF);
959 	WREG_CRT(23, 0xc3);
960 	WREG_CRT(24, vdisplay & 0xFF);
961 
962 	ext_vga[0] = 0;
963 	ext_vga[5] = 0;
964 
965 	/* TODO interlace */
966 
967 	ext_vga[0] |= (pitch & 0x300) >> 4;
968 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
969 		((hdisplay & 0x100) >> 7) |
970 		((hsyncstart & 0x100) >> 6) |
971 		(htotal & 0x40);
972 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
973 		((vdisplay & 0x400) >> 8) |
974 		((vdisplay & 0xc00) >> 7) |
975 		((vsyncstart & 0xc00) >> 5) |
976 		((vdisplay & 0x400) >> 3);
977 	if (crtc->fb->bits_per_pixel == 24)
978 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
979 	else
980 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
981 	ext_vga[4] = 0;
982 	if (mdev->type == G200_WB)
983 		ext_vga[1] |= 0x88;
984 
985 	/* Set pixel clocks */
986 	misc = 0x2d;
987 	WREG8(MGA_MISC_OUT, misc);
988 
989 	mga_crtc_set_plls(mdev, mode->clock);
990 
991 	for (i = 0; i < 6; i++) {
992 		WREG_ECRT(i, ext_vga[i]);
993 	}
994 
995 	if (mdev->type == G200_ER)
996 		WREG_ECRT(0x24, 0x5);
997 
998 	if (mdev->type == G200_EV) {
999 		WREG_ECRT(6, 0);
1000 	}
1001 
1002 	WREG_ECRT(0, ext_vga[0]);
1003 	/* Enable mga pixel clock */
1004 	misc = 0x2d;
1005 
1006 	WREG8(MGA_MISC_OUT, misc);
1007 
1008 	if (adjusted_mode)
1009 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1010 
1011 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1012 
1013 	/* reset tagfifo */
1014 	if (mdev->type == G200_ER) {
1015 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1016 		u8 seq1;
1017 
1018 		/* screen off */
1019 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1020 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1021 		WREG8(MGAREG_SEQ_DATA, seq1);
1022 
1023 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1024 		udelay(1000);
1025 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1026 
1027 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1028 	}
1029 
1030 
1031 	if (IS_G200_SE(mdev)) {
1032 		if (mdev->unique_rev_id >= 0x02) {
1033 			u8 hi_pri_lvl;
1034 			u32 bpp;
1035 			u32 mb;
1036 
1037 			if (crtc->fb->bits_per_pixel > 16)
1038 				bpp = 32;
1039 			else if (crtc->fb->bits_per_pixel > 8)
1040 				bpp = 16;
1041 			else
1042 				bpp = 8;
1043 
1044 			mb = (mode->clock * bpp) / 1000;
1045 			if (mb > 3100)
1046 				hi_pri_lvl = 0;
1047 			else if (mb > 2600)
1048 				hi_pri_lvl = 1;
1049 			else if (mb > 1900)
1050 				hi_pri_lvl = 2;
1051 			else if (mb > 1160)
1052 				hi_pri_lvl = 3;
1053 			else if (mb > 440)
1054 				hi_pri_lvl = 4;
1055 			else
1056 				hi_pri_lvl = 5;
1057 
1058 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1059 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1060 		} else {
1061 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1062 			if (mdev->unique_rev_id >= 0x01)
1063 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1064 			else
1065 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1066 		}
1067 	}
1068 	return 0;
1069 }
1070 
1071 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1072 static int mga_suspend(struct drm_crtc *crtc)
1073 {
1074 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1075 	struct drm_device *dev = crtc->dev;
1076 	struct mga_device *mdev = dev->dev_private;
1077 	struct pci_dev *pdev = dev->pdev;
1078 	int option;
1079 
1080 	if (mdev->suspended)
1081 		return 0;
1082 
1083 	WREG_SEQ(1, 0x20);
1084 	WREG_ECRT(1, 0x30);
1085 	/* Disable the pixel clock */
1086 	WREG_DAC(0x1a, 0x05);
1087 	/* Power down the DAC */
1088 	WREG_DAC(0x1e, 0x18);
1089 	/* Power down the pixel PLL */
1090 	WREG_DAC(0x1a, 0x0d);
1091 
1092 	/* Disable PLLs and clocks */
1093 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1094 	option &= ~(0x1F8024);
1095 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1096 	pci_set_power_state(pdev, PCI_D3hot);
1097 	pci_disable_device(pdev);
1098 
1099 	mdev->suspended = true;
1100 
1101 	return 0;
1102 }
1103 
1104 static int mga_resume(struct drm_crtc *crtc)
1105 {
1106 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1107 	struct drm_device *dev = crtc->dev;
1108 	struct mga_device *mdev = dev->dev_private;
1109 	struct pci_dev *pdev = dev->pdev;
1110 	int option;
1111 
1112 	if (!mdev->suspended)
1113 		return 0;
1114 
1115 	pci_set_power_state(pdev, PCI_D0);
1116 	pci_enable_device(pdev);
1117 
1118 	/* Disable sysclk */
1119 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1120 	option &= ~(0x4);
1121 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1122 
1123 	mdev->suspended = false;
1124 
1125 	return 0;
1126 }
1127 
1128 #endif
1129 
1130 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1131 {
1132 	struct drm_device *dev = crtc->dev;
1133 	struct mga_device *mdev = dev->dev_private;
1134 	u8 seq1 = 0, crtcext1 = 0;
1135 
1136 	switch (mode) {
1137 	case DRM_MODE_DPMS_ON:
1138 		seq1 = 0;
1139 		crtcext1 = 0;
1140 		mga_crtc_load_lut(crtc);
1141 		break;
1142 	case DRM_MODE_DPMS_STANDBY:
1143 		seq1 = 0x20;
1144 		crtcext1 = 0x10;
1145 		break;
1146 	case DRM_MODE_DPMS_SUSPEND:
1147 		seq1 = 0x20;
1148 		crtcext1 = 0x20;
1149 		break;
1150 	case DRM_MODE_DPMS_OFF:
1151 		seq1 = 0x20;
1152 		crtcext1 = 0x30;
1153 		break;
1154 	}
1155 
1156 #if 0
1157 	if (mode == DRM_MODE_DPMS_OFF) {
1158 		mga_suspend(crtc);
1159 	}
1160 #endif
1161 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1162 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1163 	mga_wait_vsync(mdev);
1164 	mga_wait_busy(mdev);
1165 	WREG8(MGAREG_SEQ_DATA, seq1);
1166 	msleep(20);
1167 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1168 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1169 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1170 
1171 #if 0
1172 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1173 		mga_resume(crtc);
1174 		drm_helper_resume_force_mode(dev);
1175 	}
1176 #endif
1177 }
1178 
1179 /*
1180  * This is called before a mode is programmed. A typical use might be to
1181  * enable DPMS during the programming to avoid seeing intermediate stages,
1182  * but that's not relevant to us
1183  */
1184 static void mga_crtc_prepare(struct drm_crtc *crtc)
1185 {
1186 	struct drm_device *dev = crtc->dev;
1187 	struct mga_device *mdev = dev->dev_private;
1188 	u8 tmp;
1189 
1190 	/*	mga_resume(crtc);*/
1191 
1192 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1193 	tmp = RREG8(MGAREG_CRTC_DATA);
1194 	WREG_CRT(0x11, tmp | 0x80);
1195 
1196 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1197 		WREG_SEQ(0, 1);
1198 		msleep(50);
1199 		WREG_SEQ(1, 0x20);
1200 		msleep(20);
1201 	} else {
1202 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1203 		tmp = RREG8(MGAREG_SEQ_DATA);
1204 
1205 		/* start sync reset */
1206 		WREG_SEQ(0, 1);
1207 		WREG_SEQ(1, tmp | 0x20);
1208 	}
1209 
1210 	if (mdev->type == G200_WB)
1211 		mga_g200wb_prepare(crtc);
1212 
1213 	WREG_CRT(17, 0);
1214 }
1215 
1216 /*
1217  * This is called after a mode is programmed. It should reverse anything done
1218  * by the prepare function
1219  */
1220 static void mga_crtc_commit(struct drm_crtc *crtc)
1221 {
1222 	struct drm_device *dev = crtc->dev;
1223 	struct mga_device *mdev = dev->dev_private;
1224 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1225 	u8 tmp;
1226 
1227 	if (mdev->type == G200_WB)
1228 		mga_g200wb_commit(crtc);
1229 
1230 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1231 		msleep(50);
1232 		WREG_SEQ(1, 0x0);
1233 		msleep(20);
1234 		WREG_SEQ(0, 0x3);
1235 	} else {
1236 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1237 		tmp = RREG8(MGAREG_SEQ_DATA);
1238 
1239 		tmp &= ~0x20;
1240 		WREG_SEQ(0x1, tmp);
1241 		WREG_SEQ(0, 3);
1242 	}
1243 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1244 }
1245 
1246 /*
1247  * The core can pass us a set of gamma values to program. We actually only
1248  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1249  * but it's a requirement that we provide the function
1250  */
1251 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1252 				  u16 *blue, uint32_t start, uint32_t size)
1253 {
1254 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1255 	int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1256 	int i;
1257 
1258 	for (i = start; i < end; i++) {
1259 		mga_crtc->lut_r[i] = red[i] >> 8;
1260 		mga_crtc->lut_g[i] = green[i] >> 8;
1261 		mga_crtc->lut_b[i] = blue[i] >> 8;
1262 	}
1263 	mga_crtc_load_lut(crtc);
1264 }
1265 
1266 /* Simple cleanup function */
1267 static void mga_crtc_destroy(struct drm_crtc *crtc)
1268 {
1269 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1270 
1271 	drm_crtc_cleanup(crtc);
1272 	kfree(mga_crtc);
1273 }
1274 
1275 static void mga_crtc_disable(struct drm_crtc *crtc)
1276 {
1277 	int ret;
1278 	DRM_DEBUG_KMS("\n");
1279 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1280 	if (crtc->fb) {
1281 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->fb);
1282 		struct drm_gem_object *obj = mga_fb->obj;
1283 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1284 		ret = mgag200_bo_reserve(bo, false);
1285 		if (ret)
1286 			return;
1287 		mgag200_bo_push_sysram(bo);
1288 		mgag200_bo_unreserve(bo);
1289 	}
1290 	crtc->fb = NULL;
1291 }
1292 
1293 /* These provide the minimum set of functions required to handle a CRTC */
1294 static const struct drm_crtc_funcs mga_crtc_funcs = {
1295 	.cursor_set = mga_crtc_cursor_set,
1296 	.cursor_move = mga_crtc_cursor_move,
1297 	.gamma_set = mga_crtc_gamma_set,
1298 	.set_config = drm_crtc_helper_set_config,
1299 	.destroy = mga_crtc_destroy,
1300 };
1301 
1302 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1303 	.disable = mga_crtc_disable,
1304 	.dpms = mga_crtc_dpms,
1305 	.mode_fixup = mga_crtc_mode_fixup,
1306 	.mode_set = mga_crtc_mode_set,
1307 	.mode_set_base = mga_crtc_mode_set_base,
1308 	.prepare = mga_crtc_prepare,
1309 	.commit = mga_crtc_commit,
1310 	.load_lut = mga_crtc_load_lut,
1311 };
1312 
1313 /* CRTC setup */
1314 static void mga_crtc_init(struct mga_device *mdev)
1315 {
1316 	struct mga_crtc *mga_crtc;
1317 	int i;
1318 
1319 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1320 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1321 			      GFP_KERNEL);
1322 
1323 	if (mga_crtc == NULL)
1324 		return;
1325 
1326 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1327 
1328 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1329 	mdev->mode_info.crtc = mga_crtc;
1330 
1331 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1332 		mga_crtc->lut_r[i] = i;
1333 		mga_crtc->lut_g[i] = i;
1334 		mga_crtc->lut_b[i] = i;
1335 	}
1336 
1337 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1338 }
1339 
1340 /** Sets the color ramps on behalf of fbcon */
1341 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1342 			      u16 blue, int regno)
1343 {
1344 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1345 
1346 	mga_crtc->lut_r[regno] = red >> 8;
1347 	mga_crtc->lut_g[regno] = green >> 8;
1348 	mga_crtc->lut_b[regno] = blue >> 8;
1349 }
1350 
1351 /** Gets the color ramps on behalf of fbcon */
1352 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1353 			      u16 *blue, int regno)
1354 {
1355 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1356 
1357 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1358 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1359 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1360 }
1361 
1362 /*
1363  * The encoder comes after the CRTC in the output pipeline, but before
1364  * the connector. It's responsible for ensuring that the digital
1365  * stream is appropriately converted into the output format. Setup is
1366  * very simple in this case - all we have to do is inform qemu of the
1367  * colour depth in order to ensure that it displays appropriately
1368  */
1369 
1370 /*
1371  * These functions are analagous to those in the CRTC code, but are intended
1372  * to handle any encoder-specific limitations
1373  */
1374 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1375 				   const struct drm_display_mode *mode,
1376 				   struct drm_display_mode *adjusted_mode)
1377 {
1378 	return true;
1379 }
1380 
1381 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1382 				struct drm_display_mode *mode,
1383 				struct drm_display_mode *adjusted_mode)
1384 {
1385 
1386 }
1387 
1388 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1389 {
1390 	return;
1391 }
1392 
1393 static void mga_encoder_prepare(struct drm_encoder *encoder)
1394 {
1395 }
1396 
1397 static void mga_encoder_commit(struct drm_encoder *encoder)
1398 {
1399 }
1400 
1401 static void mga_encoder_destroy(struct drm_encoder *encoder)
1402 {
1403 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1404 	drm_encoder_cleanup(encoder);
1405 	kfree(mga_encoder);
1406 }
1407 
1408 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1409 	.dpms = mga_encoder_dpms,
1410 	.mode_fixup = mga_encoder_mode_fixup,
1411 	.mode_set = mga_encoder_mode_set,
1412 	.prepare = mga_encoder_prepare,
1413 	.commit = mga_encoder_commit,
1414 };
1415 
1416 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1417 	.destroy = mga_encoder_destroy,
1418 };
1419 
1420 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1421 {
1422 	struct drm_encoder *encoder;
1423 	struct mga_encoder *mga_encoder;
1424 
1425 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1426 	if (!mga_encoder)
1427 		return NULL;
1428 
1429 	encoder = &mga_encoder->base;
1430 	encoder->possible_crtcs = 0x1;
1431 
1432 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1433 			 DRM_MODE_ENCODER_DAC);
1434 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1435 
1436 	return encoder;
1437 }
1438 
1439 
1440 static int mga_vga_get_modes(struct drm_connector *connector)
1441 {
1442 	struct mga_connector *mga_connector = to_mga_connector(connector);
1443 	struct edid *edid;
1444 	int ret = 0;
1445 
1446 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1447 	if (edid) {
1448 		drm_mode_connector_update_edid_property(connector, edid);
1449 		ret = drm_add_edid_modes(connector, edid);
1450 		kfree(edid);
1451 	}
1452 	return ret;
1453 }
1454 
1455 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1456 							int bits_per_pixel)
1457 {
1458 	uint32_t total_area, divisor;
1459 	int64_t active_area, pixels_per_second, bandwidth;
1460 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1461 
1462 	divisor = 1024;
1463 
1464 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1465 		return 0;
1466 
1467 	active_area = mode->hdisplay * mode->vdisplay;
1468 	total_area = mode->htotal * mode->vtotal;
1469 
1470 	pixels_per_second = active_area * mode->clock * 1000;
1471 	do_div(pixels_per_second, total_area);
1472 
1473 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1474 	do_div(bandwidth, divisor);
1475 
1476 	return (uint32_t)(bandwidth);
1477 }
1478 
1479 #define MODE_BANDWIDTH	MODE_BAD
1480 
1481 static int mga_vga_mode_valid(struct drm_connector *connector,
1482 				 struct drm_display_mode *mode)
1483 {
1484 	struct drm_device *dev = connector->dev;
1485 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1486 	struct mga_fbdev *mfbdev = mdev->mfbdev;
1487 	struct drm_fb_helper *fb_helper = &mfbdev->helper;
1488 	struct drm_fb_helper_connector *fb_helper_conn = NULL;
1489 	int bpp = 32;
1490 	int i = 0;
1491 
1492 	if (IS_G200_SE(mdev)) {
1493 		if (mdev->unique_rev_id == 0x01) {
1494 			if (mode->hdisplay > 1600)
1495 				return MODE_VIRTUAL_X;
1496 			if (mode->vdisplay > 1200)
1497 				return MODE_VIRTUAL_Y;
1498 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1499 				> (24400 * 1024))
1500 				return MODE_BANDWIDTH;
1501 		} else if (mdev->unique_rev_id >= 0x02) {
1502 			if (mode->hdisplay > 1920)
1503 				return MODE_VIRTUAL_X;
1504 			if (mode->vdisplay > 1200)
1505 				return MODE_VIRTUAL_Y;
1506 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1507 				> (30100 * 1024))
1508 				return MODE_BANDWIDTH;
1509 		}
1510 	} else if (mdev->type == G200_WB) {
1511 		if (mode->hdisplay > 1280)
1512 			return MODE_VIRTUAL_X;
1513 		if (mode->vdisplay > 1024)
1514 			return MODE_VIRTUAL_Y;
1515 		if (mga_vga_calculate_mode_bandwidth(mode,
1516 			bpp > (31877 * 1024)))
1517 			return MODE_BANDWIDTH;
1518 	} else if (mdev->type == G200_EV &&
1519 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1520 			> (32700 * 1024))) {
1521 		return MODE_BANDWIDTH;
1522 	} else if (mdev->type == G200_EH &&
1523 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1524 			> (37500 * 1024))) {
1525 		return MODE_BANDWIDTH;
1526 	} else if (mdev->type == G200_ER &&
1527 		(mga_vga_calculate_mode_bandwidth(mode,
1528 			bpp) > (55000 * 1024))) {
1529 		return MODE_BANDWIDTH;
1530 	}
1531 
1532 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1533 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1534 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1535 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1536 		return MODE_BAD;
1537 	}
1538 
1539 	/* Validate the mode input by the user */
1540 	for (i = 0; i < fb_helper->connector_count; i++) {
1541 		if (fb_helper->connector_info[i]->connector == connector) {
1542 			/* Found the helper for this connector */
1543 			fb_helper_conn = fb_helper->connector_info[i];
1544 			if (fb_helper_conn->cmdline_mode.specified) {
1545 				if (fb_helper_conn->cmdline_mode.bpp_specified) {
1546 					bpp = fb_helper_conn->cmdline_mode.bpp;
1547 				}
1548 			}
1549 		}
1550 	}
1551 
1552 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1553 		if (fb_helper_conn)
1554 			fb_helper_conn->cmdline_mode.specified = false;
1555 		return MODE_BAD;
1556 	}
1557 
1558 	return MODE_OK;
1559 }
1560 
1561 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1562 						  *connector)
1563 {
1564 	int enc_id = connector->encoder_ids[0];
1565 	struct drm_mode_object *obj;
1566 	struct drm_encoder *encoder;
1567 
1568 	/* pick the encoder ids */
1569 	if (enc_id) {
1570 		obj =
1571 		    drm_mode_object_find(connector->dev, enc_id,
1572 					 DRM_MODE_OBJECT_ENCODER);
1573 		if (!obj)
1574 			return NULL;
1575 		encoder = obj_to_encoder(obj);
1576 		return encoder;
1577 	}
1578 	return NULL;
1579 }
1580 
1581 static enum drm_connector_status mga_vga_detect(struct drm_connector
1582 						   *connector, bool force)
1583 {
1584 	return connector_status_connected;
1585 }
1586 
1587 static void mga_connector_destroy(struct drm_connector *connector)
1588 {
1589 	struct mga_connector *mga_connector = to_mga_connector(connector);
1590 	mgag200_i2c_destroy(mga_connector->i2c);
1591 	drm_connector_cleanup(connector);
1592 	kfree(connector);
1593 }
1594 
1595 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1596 	.get_modes = mga_vga_get_modes,
1597 	.mode_valid = mga_vga_mode_valid,
1598 	.best_encoder = mga_connector_best_encoder,
1599 };
1600 
1601 struct drm_connector_funcs mga_vga_connector_funcs = {
1602 	.dpms = drm_helper_connector_dpms,
1603 	.detect = mga_vga_detect,
1604 	.fill_modes = drm_helper_probe_single_connector_modes,
1605 	.destroy = mga_connector_destroy,
1606 };
1607 
1608 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1609 {
1610 	struct drm_connector *connector;
1611 	struct mga_connector *mga_connector;
1612 
1613 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1614 	if (!mga_connector)
1615 		return NULL;
1616 
1617 	connector = &mga_connector->base;
1618 
1619 	drm_connector_init(dev, connector,
1620 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1621 
1622 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1623 
1624 	drm_sysfs_connector_add(connector);
1625 
1626 	mga_connector->i2c = mgag200_i2c_create(dev);
1627 	if (!mga_connector->i2c)
1628 		DRM_ERROR("failed to add ddc bus\n");
1629 
1630 	return connector;
1631 }
1632 
1633 
1634 int mgag200_modeset_init(struct mga_device *mdev)
1635 {
1636 	struct drm_encoder *encoder;
1637 	struct drm_connector *connector;
1638 	int ret;
1639 
1640 	mdev->mode_info.mode_config_initialized = true;
1641 
1642 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1643 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1644 
1645 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1646 
1647 	mga_crtc_init(mdev);
1648 
1649 	encoder = mga_encoder_init(mdev->dev);
1650 	if (!encoder) {
1651 		DRM_ERROR("mga_encoder_init failed\n");
1652 		return -1;
1653 	}
1654 
1655 	connector = mga_vga_init(mdev->dev);
1656 	if (!connector) {
1657 		DRM_ERROR("mga_vga_init failed\n");
1658 		return -1;
1659 	}
1660 
1661 	drm_mode_connector_attach_encoder(connector, encoder);
1662 
1663 	ret = mgag200_fbdev_init(mdev);
1664 	if (ret) {
1665 		DRM_ERROR("mga_fbdev_init failed\n");
1666 		return ret;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 void mgag200_modeset_fini(struct mga_device *mdev)
1673 {
1674 
1675 }
1676