1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 
19 #include "mgag200_drv.h"
20 
21 #define MGAG200_LUT_SIZE 256
22 
23 /*
24  * This file contains setup code for the CRTC.
25  */
26 
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
28 {
29 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
30 	struct drm_device *dev = crtc->dev;
31 	struct mga_device *mdev = dev->dev_private;
32 	int i;
33 
34 	if (!crtc->enabled)
35 		return;
36 
37 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
38 
39 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
40 		/* VGA registers */
41 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
42 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
43 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
44 	}
45 }
46 
47 static inline void mga_wait_vsync(struct mga_device *mdev)
48 {
49 	unsigned long timeout = jiffies + HZ/10;
50 	unsigned int status = 0;
51 
52 	do {
53 		status = RREG32(MGAREG_Status);
54 	} while ((status & 0x08) && time_before(jiffies, timeout));
55 	timeout = jiffies + HZ/10;
56 	status = 0;
57 	do {
58 		status = RREG32(MGAREG_Status);
59 	} while (!(status & 0x08) && time_before(jiffies, timeout));
60 }
61 
62 static inline void mga_wait_busy(struct mga_device *mdev)
63 {
64 	unsigned long timeout = jiffies + HZ;
65 	unsigned int status = 0;
66 	do {
67 		status = RREG8(MGAREG_Status + 2);
68 	} while ((status & 0x01) && time_before(jiffies, timeout));
69 }
70 
71 /*
72  * The core passes the desired mode to the CRTC code to see whether any
73  * CRTC-specific modifications need to be made to it. We're in a position
74  * to just pass that straight through, so this does nothing
75  */
76 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
77 				const struct drm_display_mode *mode,
78 				struct drm_display_mode *adjusted_mode)
79 {
80 	return true;
81 }
82 
83 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
84 {
85 	unsigned int vcomax, vcomin, pllreffreq;
86 	unsigned int delta, tmpdelta, permitteddelta;
87 	unsigned int testp, testm, testn;
88 	unsigned int p, m, n;
89 	unsigned int computed;
90 
91 	m = n = p = 0;
92 	vcomax = 320000;
93 	vcomin = 160000;
94 	pllreffreq = 25000;
95 
96 	delta = 0xffffffff;
97 	permitteddelta = clock * 5 / 1000;
98 
99 	for (testp = 8; testp > 0; testp /= 2) {
100 		if (clock * testp > vcomax)
101 			continue;
102 		if (clock * testp < vcomin)
103 			continue;
104 
105 		for (testn = 17; testn < 256; testn++) {
106 			for (testm = 1; testm < 32; testm++) {
107 				computed = (pllreffreq * testn) /
108 					(testm * testp);
109 				if (computed > clock)
110 					tmpdelta = computed - clock;
111 				else
112 					tmpdelta = clock - computed;
113 				if (tmpdelta < delta) {
114 					delta = tmpdelta;
115 					m = testm - 1;
116 					n = testn - 1;
117 					p = testp - 1;
118 				}
119 			}
120 		}
121 	}
122 
123 	if (delta > permitteddelta) {
124 		printk(KERN_WARNING "PLL delta too large\n");
125 		return 1;
126 	}
127 
128 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
129 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
130 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
131 	return 0;
132 }
133 
134 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
135 {
136 	unsigned int vcomax, vcomin, pllreffreq;
137 	unsigned int delta, tmpdelta, permitteddelta;
138 	unsigned int testp, testm, testn;
139 	unsigned int p, m, n;
140 	unsigned int computed;
141 	int i, j, tmpcount, vcount;
142 	bool pll_locked = false;
143 	u8 tmp;
144 
145 	m = n = p = 0;
146 	vcomax = 550000;
147 	vcomin = 150000;
148 	pllreffreq = 48000;
149 
150 	delta = 0xffffffff;
151 	permitteddelta = clock * 5 / 1000;
152 
153 	for (testp = 1; testp < 9; testp++) {
154 		if (clock * testp > vcomax)
155 			continue;
156 		if (clock * testp < vcomin)
157 			continue;
158 
159 		for (testm = 1; testm < 17; testm++) {
160 			for (testn = 1; testn < 151; testn++) {
161 				computed = (pllreffreq * testn) /
162 					(testm * testp);
163 				if (computed > clock)
164 					tmpdelta = computed - clock;
165 				else
166 					tmpdelta = clock - computed;
167 				if (tmpdelta < delta) {
168 					delta = tmpdelta;
169 					n = testn - 1;
170 					m = (testm - 1) | ((n >> 1) & 0x80);
171 					p = testp - 1;
172 				}
173 			}
174 		}
175 	}
176 
177 	for (i = 0; i <= 32 && pll_locked == false; i++) {
178 		if (i > 0) {
179 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
180 			tmp = RREG8(MGAREG_CRTC_DATA);
181 			if (tmp < 0xff)
182 				WREG8(MGAREG_CRTC_DATA, tmp+1);
183 		}
184 
185 		/* set pixclkdis to 1 */
186 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
187 		tmp = RREG8(DAC_DATA);
188 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
189 		WREG8(DAC_DATA, tmp);
190 
191 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
192 		tmp = RREG8(DAC_DATA);
193 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
194 		WREG8(DAC_DATA, tmp);
195 
196 		/* select PLL Set C */
197 		tmp = RREG8(MGAREG_MEM_MISC_READ);
198 		tmp |= 0x3 << 2;
199 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
200 
201 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
202 		tmp = RREG8(DAC_DATA);
203 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
204 		WREG8(DAC_DATA, tmp);
205 
206 		udelay(500);
207 
208 		/* reset the PLL */
209 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
210 		tmp = RREG8(DAC_DATA);
211 		tmp &= ~0x04;
212 		WREG8(DAC_DATA, tmp);
213 
214 		udelay(50);
215 
216 		/* program pixel pll register */
217 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
218 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
219 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
220 
221 		udelay(50);
222 
223 		/* turn pll on */
224 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
225 		tmp = RREG8(DAC_DATA);
226 		tmp |= 0x04;
227 		WREG_DAC(MGA1064_VREF_CTL, tmp);
228 
229 		udelay(500);
230 
231 		/* select the pixel pll */
232 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
233 		tmp = RREG8(DAC_DATA);
234 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
235 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
236 		WREG8(DAC_DATA, tmp);
237 
238 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
239 		tmp = RREG8(DAC_DATA);
240 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
241 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
242 		WREG8(DAC_DATA, tmp);
243 
244 		/* reset dotclock rate bit */
245 		WREG8(MGAREG_SEQ_INDEX, 1);
246 		tmp = RREG8(MGAREG_SEQ_DATA);
247 		tmp &= ~0x8;
248 		WREG8(MGAREG_SEQ_DATA, tmp);
249 
250 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
251 		tmp = RREG8(DAC_DATA);
252 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
253 		WREG8(DAC_DATA, tmp);
254 
255 		vcount = RREG8(MGAREG_VCOUNT);
256 
257 		for (j = 0; j < 30 && pll_locked == false; j++) {
258 			tmpcount = RREG8(MGAREG_VCOUNT);
259 			if (tmpcount < vcount)
260 				vcount = 0;
261 			if ((tmpcount - vcount) > 2)
262 				pll_locked = true;
263 			else
264 				udelay(5);
265 		}
266 	}
267 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
268 	tmp = RREG8(DAC_DATA);
269 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
270 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
271 	return 0;
272 }
273 
274 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
275 {
276 	unsigned int vcomax, vcomin, pllreffreq;
277 	unsigned int delta, tmpdelta, permitteddelta;
278 	unsigned int testp, testm, testn;
279 	unsigned int p, m, n;
280 	unsigned int computed;
281 	u8 tmp;
282 
283 	m = n = p = 0;
284 	vcomax = 550000;
285 	vcomin = 150000;
286 	pllreffreq = 50000;
287 
288 	delta = 0xffffffff;
289 	permitteddelta = clock * 5 / 1000;
290 
291 	for (testp = 16; testp > 0; testp--) {
292 		if (clock * testp > vcomax)
293 			continue;
294 		if (clock * testp < vcomin)
295 			continue;
296 
297 		for (testn = 1; testn < 257; testn++) {
298 			for (testm = 1; testm < 17; testm++) {
299 				computed = (pllreffreq * testn) /
300 					(testm * testp);
301 				if (computed > clock)
302 					tmpdelta = computed - clock;
303 				else
304 					tmpdelta = clock - computed;
305 				if (tmpdelta < delta) {
306 					delta = tmpdelta;
307 					n = testn - 1;
308 					m = testm - 1;
309 					p = testp - 1;
310 				}
311 			}
312 		}
313 	}
314 
315 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
316 	tmp = RREG8(DAC_DATA);
317 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
318 	WREG8(DAC_DATA, tmp);
319 
320 	tmp = RREG8(MGAREG_MEM_MISC_READ);
321 	tmp |= 0x3 << 2;
322 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
323 
324 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
325 	tmp = RREG8(DAC_DATA);
326 	WREG8(DAC_DATA, tmp & ~0x40);
327 
328 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
329 	tmp = RREG8(DAC_DATA);
330 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
331 	WREG8(DAC_DATA, tmp);
332 
333 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
334 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
335 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
336 
337 	udelay(50);
338 
339 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
340 	tmp = RREG8(DAC_DATA);
341 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
342 	WREG8(DAC_DATA, tmp);
343 
344 	udelay(500);
345 
346 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
347 	tmp = RREG8(DAC_DATA);
348 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
349 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
350 	WREG8(DAC_DATA, tmp);
351 
352 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
353 	tmp = RREG8(DAC_DATA);
354 	WREG8(DAC_DATA, tmp | 0x40);
355 
356 	tmp = RREG8(MGAREG_MEM_MISC_READ);
357 	tmp |= (0x3 << 2);
358 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
359 
360 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
361 	tmp = RREG8(DAC_DATA);
362 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
363 	WREG8(DAC_DATA, tmp);
364 
365 	return 0;
366 }
367 
368 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
369 {
370 	unsigned int vcomax, vcomin, pllreffreq;
371 	unsigned int delta, tmpdelta, permitteddelta;
372 	unsigned int testp, testm, testn;
373 	unsigned int p, m, n;
374 	unsigned int computed;
375 	int i, j, tmpcount, vcount;
376 	u8 tmp;
377 	bool pll_locked = false;
378 
379 	m = n = p = 0;
380 	vcomax = 800000;
381 	vcomin = 400000;
382 	pllreffreq = 33333;
383 
384 	delta = 0xffffffff;
385 	permitteddelta = clock * 5 / 1000;
386 
387 	for (testp = 16; testp > 0; testp >>= 1) {
388 		if (clock * testp > vcomax)
389 			continue;
390 		if (clock * testp < vcomin)
391 			continue;
392 
393 		for (testm = 1; testm < 33; testm++) {
394 			for (testn = 17; testn < 257; testn++) {
395 				computed = (pllreffreq * testn) /
396 					(testm * testp);
397 				if (computed > clock)
398 					tmpdelta = computed - clock;
399 				else
400 					tmpdelta = clock - computed;
401 				if (tmpdelta < delta) {
402 					delta = tmpdelta;
403 					n = testn - 1;
404 					m = (testm - 1);
405 					p = testp - 1;
406 				}
407 				if ((clock * testp) >= 600000)
408 					p |= 0x80;
409 			}
410 		}
411 	}
412 	for (i = 0; i <= 32 && pll_locked == false; i++) {
413 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
414 		tmp = RREG8(DAC_DATA);
415 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
416 		WREG8(DAC_DATA, tmp);
417 
418 		tmp = RREG8(MGAREG_MEM_MISC_READ);
419 		tmp |= 0x3 << 2;
420 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
421 
422 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
423 		tmp = RREG8(DAC_DATA);
424 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
425 		WREG8(DAC_DATA, tmp);
426 
427 		udelay(500);
428 
429 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
430 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
431 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
432 
433 		udelay(500);
434 
435 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
436 		tmp = RREG8(DAC_DATA);
437 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
438 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
439 		WREG8(DAC_DATA, tmp);
440 
441 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
442 		tmp = RREG8(DAC_DATA);
443 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
444 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
445 		WREG8(DAC_DATA, tmp);
446 
447 		vcount = RREG8(MGAREG_VCOUNT);
448 
449 		for (j = 0; j < 30 && pll_locked == false; j++) {
450 			tmpcount = RREG8(MGAREG_VCOUNT);
451 			if (tmpcount < vcount)
452 				vcount = 0;
453 			if ((tmpcount - vcount) > 2)
454 				pll_locked = true;
455 			else
456 				udelay(5);
457 		}
458 	}
459 
460 	return 0;
461 }
462 
463 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
464 {
465 	unsigned int vcomax, vcomin, pllreffreq;
466 	unsigned int delta, tmpdelta;
467 	int testr, testn, testm, testo;
468 	unsigned int p, m, n;
469 	unsigned int computed, vco;
470 	int tmp;
471 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
472 
473 	m = n = p = 0;
474 	vcomax = 1488000;
475 	vcomin = 1056000;
476 	pllreffreq = 48000;
477 
478 	delta = 0xffffffff;
479 
480 	for (testr = 0; testr < 4; testr++) {
481 		if (delta == 0)
482 			break;
483 		for (testn = 5; testn < 129; testn++) {
484 			if (delta == 0)
485 				break;
486 			for (testm = 3; testm >= 0; testm--) {
487 				if (delta == 0)
488 					break;
489 				for (testo = 5; testo < 33; testo++) {
490 					vco = pllreffreq * (testn + 1) /
491 						(testr + 1);
492 					if (vco < vcomin)
493 						continue;
494 					if (vco > vcomax)
495 						continue;
496 					computed = vco / (m_div_val[testm] * (testo + 1));
497 					if (computed > clock)
498 						tmpdelta = computed - clock;
499 					else
500 						tmpdelta = clock - computed;
501 					if (tmpdelta < delta) {
502 						delta = tmpdelta;
503 						m = testm | (testo << 3);
504 						n = testn;
505 						p = testr | (testr << 3);
506 					}
507 				}
508 			}
509 		}
510 	}
511 
512 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
513 	tmp = RREG8(DAC_DATA);
514 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
515 	WREG8(DAC_DATA, tmp);
516 
517 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
518 	tmp = RREG8(DAC_DATA);
519 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
520 	WREG8(DAC_DATA, tmp);
521 
522 	tmp = RREG8(MGAREG_MEM_MISC_READ);
523 	tmp |= (0x3<<2) | 0xc0;
524 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
525 
526 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
527 	tmp = RREG8(DAC_DATA);
528 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
529 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
530 	WREG8(DAC_DATA, tmp);
531 
532 	udelay(500);
533 
534 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
535 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
536 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
537 
538 	udelay(50);
539 
540 	return 0;
541 }
542 
543 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
544 {
545 	switch(mdev->type) {
546 	case G200_SE_A:
547 	case G200_SE_B:
548 		return mga_g200se_set_plls(mdev, clock);
549 		break;
550 	case G200_WB:
551 		return mga_g200wb_set_plls(mdev, clock);
552 		break;
553 	case G200_EV:
554 		return mga_g200ev_set_plls(mdev, clock);
555 		break;
556 	case G200_EH:
557 		return mga_g200eh_set_plls(mdev, clock);
558 		break;
559 	case G200_ER:
560 		return mga_g200er_set_plls(mdev, clock);
561 		break;
562 	}
563 	return 0;
564 }
565 
566 static void mga_g200wb_prepare(struct drm_crtc *crtc)
567 {
568 	struct mga_device *mdev = crtc->dev->dev_private;
569 	u8 tmp;
570 	int iter_max;
571 
572 	/* 1- The first step is to warn the BMC of an upcoming mode change.
573 	 * We are putting the misc<0> to output.*/
574 
575 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
576 	tmp = RREG8(DAC_DATA);
577 	tmp |= 0x10;
578 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
579 
580 	/* we are putting a 1 on the misc<0> line */
581 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
582 	tmp = RREG8(DAC_DATA);
583 	tmp |= 0x10;
584 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
585 
586 	/* 2- Second step to mask and further scan request
587 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
588 	 */
589 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
590 	tmp = RREG8(DAC_DATA);
591 	tmp |= 0x80;
592 	WREG_DAC(MGA1064_SPAREREG, tmp);
593 
594 	/* 3a- the third step is to verifu if there is an active scan
595 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
596 	 */
597 	iter_max = 300;
598 	while (!(tmp & 0x1) && iter_max) {
599 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
600 		tmp = RREG8(DAC_DATA);
601 		udelay(1000);
602 		iter_max--;
603 	}
604 
605 	/* 3b- this step occurs only if the remove is actually scanning
606 	 * we are waiting for the end of the frame which is a 1 on
607 	 * remvsyncsts (XSPAREREG<1>)
608 	 */
609 	if (iter_max) {
610 		iter_max = 300;
611 		while ((tmp & 0x2) && iter_max) {
612 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
613 			tmp = RREG8(DAC_DATA);
614 			udelay(1000);
615 			iter_max--;
616 		}
617 	}
618 }
619 
620 static void mga_g200wb_commit(struct drm_crtc *crtc)
621 {
622 	u8 tmp;
623 	struct mga_device *mdev = crtc->dev->dev_private;
624 
625 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
626 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
627 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
628 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
629 
630 	/* 2- second step is to assert the rstlvl2 */
631 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
632 	tmp = RREG8(DAC_DATA);
633 	tmp |= 0x8;
634 	WREG8(DAC_DATA, tmp);
635 
636 	/* wait 10 us */
637 	udelay(10);
638 
639 	/* 3- deassert rstlvl2 */
640 	tmp &= ~0x08;
641 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
642 	WREG8(DAC_DATA, tmp);
643 
644 	/* 4- remove mask of scan request */
645 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
646 	tmp = RREG8(DAC_DATA);
647 	tmp &= ~0x80;
648 	WREG8(DAC_DATA, tmp);
649 
650 	/* 5- put back a 0 on the misc<0> line */
651 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
652 	tmp = RREG8(DAC_DATA);
653 	tmp &= ~0x10;
654 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
655 }
656 
657 /*
658    This is how the framebuffer base address is stored in g200 cards:
659    * Assume @offset is the gpu_addr variable of the framebuffer object
660    * Then addr is the number of _pixels_ (not bytes) from the start of
661      VRAM to the first pixel we want to display. (divided by 2 for 32bit
662      framebuffers)
663    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
664    addr<20> -> CRTCEXT0<6>
665    addr<19-16> -> CRTCEXT0<3-0>
666    addr<15-8> -> CRTCC<7-0>
667    addr<7-0> -> CRTCD<7-0>
668    CRTCEXT0 has to be programmed last to trigger an update and make the
669    new addr variable take effect.
670  */
671 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
672 {
673 	struct mga_device *mdev = crtc->dev->dev_private;
674 	u32 addr;
675 	int count;
676 	u8 crtcext0;
677 
678 	while (RREG8(0x1fda) & 0x08);
679 	while (!(RREG8(0x1fda) & 0x08));
680 
681 	count = RREG8(MGAREG_VCOUNT) + 2;
682 	while (RREG8(MGAREG_VCOUNT) < count);
683 
684 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
685 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
686 	crtcext0 &= 0xB0;
687 	addr = offset / 8;
688 	/* Can't store addresses any higher than that...
689 	   but we also don't have more than 16MB of memory, so it should be fine. */
690 	WARN_ON(addr > 0x1fffff);
691 	crtcext0 |= (!!(addr & (1<<20)))<<6;
692 	WREG_CRT(0x0d, (u8)(addr & 0xff));
693 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
694 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
695 }
696 
697 
698 /* ast is different - we will force move buffers out of VRAM */
699 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
700 				struct drm_framebuffer *fb,
701 				int x, int y, int atomic)
702 {
703 	struct mga_device *mdev = crtc->dev->dev_private;
704 	struct drm_gem_object *obj;
705 	struct mga_framebuffer *mga_fb;
706 	struct mgag200_bo *bo;
707 	int ret;
708 	u64 gpu_addr;
709 
710 	/* push the previous fb to system ram */
711 	if (!atomic && fb) {
712 		mga_fb = to_mga_framebuffer(fb);
713 		obj = mga_fb->obj;
714 		bo = gem_to_mga_bo(obj);
715 		ret = mgag200_bo_reserve(bo, false);
716 		if (ret)
717 			return ret;
718 		mgag200_bo_push_sysram(bo);
719 		mgag200_bo_unreserve(bo);
720 	}
721 
722 	mga_fb = to_mga_framebuffer(crtc->fb);
723 	obj = mga_fb->obj;
724 	bo = gem_to_mga_bo(obj);
725 
726 	ret = mgag200_bo_reserve(bo, false);
727 	if (ret)
728 		return ret;
729 
730 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
731 	if (ret) {
732 		mgag200_bo_unreserve(bo);
733 		return ret;
734 	}
735 
736 	if (&mdev->mfbdev->mfb == mga_fb) {
737 		/* if pushing console in kmap it */
738 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
739 		if (ret)
740 			DRM_ERROR("failed to kmap fbcon\n");
741 
742 	}
743 	mgag200_bo_unreserve(bo);
744 
745 	DRM_INFO("mga base %llx\n", gpu_addr);
746 
747 	mga_set_start_address(crtc, (u32)gpu_addr);
748 
749 	return 0;
750 }
751 
752 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
753 				  struct drm_framebuffer *old_fb)
754 {
755 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
756 }
757 
758 static int mga_crtc_mode_set(struct drm_crtc *crtc,
759 				struct drm_display_mode *mode,
760 				struct drm_display_mode *adjusted_mode,
761 				int x, int y, struct drm_framebuffer *old_fb)
762 {
763 	struct drm_device *dev = crtc->dev;
764 	struct mga_device *mdev = dev->dev_private;
765 	int hdisplay, hsyncstart, hsyncend, htotal;
766 	int vdisplay, vsyncstart, vsyncend, vtotal;
767 	int pitch;
768 	int option = 0, option2 = 0;
769 	int i;
770 	unsigned char misc = 0;
771 	unsigned char ext_vga[6];
772 	u8 bppshift;
773 
774 	static unsigned char dacvalue[] = {
775 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
776 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
777 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
778 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
779 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
780 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
781 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
782 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
783 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
784 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
785 	};
786 
787 	bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
788 
789 	switch (mdev->type) {
790 	case G200_SE_A:
791 	case G200_SE_B:
792 		dacvalue[MGA1064_VREF_CTL] = 0x03;
793 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
794 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
795 					     MGA1064_MISC_CTL_VGA8 |
796 					     MGA1064_MISC_CTL_DAC_RAM_CS;
797 		if (mdev->has_sdram)
798 			option = 0x40049120;
799 		else
800 			option = 0x4004d120;
801 		option2 = 0x00008000;
802 		break;
803 	case G200_WB:
804 		dacvalue[MGA1064_VREF_CTL] = 0x07;
805 		option = 0x41049120;
806 		option2 = 0x0000b000;
807 		break;
808 	case G200_EV:
809 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
810 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
811 					     MGA1064_MISC_CTL_DAC_RAM_CS;
812 		option = 0x00000120;
813 		option2 = 0x0000b000;
814 		break;
815 	case G200_EH:
816 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
817 					     MGA1064_MISC_CTL_DAC_RAM_CS;
818 		option = 0x00000120;
819 		option2 = 0x0000b000;
820 		break;
821 	case G200_ER:
822 		break;
823 	}
824 
825 	switch (crtc->fb->bits_per_pixel) {
826 	case 8:
827 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
828 		break;
829 	case 16:
830 		if (crtc->fb->depth == 15)
831 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
832 		else
833 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
834 		break;
835 	case 24:
836 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
837 		break;
838 	case 32:
839 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
840 		break;
841 	}
842 
843 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
844 		misc |= 0x40;
845 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
846 		misc |= 0x80;
847 
848 
849 	for (i = 0; i < sizeof(dacvalue); i++) {
850 		if ((i <= 0x17) ||
851 		    (i == 0x1b) ||
852 		    (i == 0x1c) ||
853 		    ((i >= 0x1f) && (i <= 0x29)) ||
854 		    ((i >= 0x30) && (i <= 0x37)))
855 			continue;
856 		if (IS_G200_SE(mdev) &&
857 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
858 			continue;
859 		if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
860 		    (i >= 0x44) && (i <= 0x4e))
861 			continue;
862 
863 		WREG_DAC(i, dacvalue[i]);
864 	}
865 
866 	if (mdev->type == G200_ER)
867 		WREG_DAC(0x90, 0);
868 
869 	if (option)
870 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
871 	if (option2)
872 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
873 
874 	WREG_SEQ(2, 0xf);
875 	WREG_SEQ(3, 0);
876 	WREG_SEQ(4, 0xe);
877 
878 	pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
879 	if (crtc->fb->bits_per_pixel == 24)
880 		pitch = pitch >> (4 - bppshift);
881 	else
882 		pitch = pitch >> (4 - bppshift);
883 
884 	hdisplay = mode->hdisplay / 8 - 1;
885 	hsyncstart = mode->hsync_start / 8 - 1;
886 	hsyncend = mode->hsync_end / 8 - 1;
887 	htotal = mode->htotal / 8 - 1;
888 
889 	/* Work around hardware quirk */
890 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
891 		htotal++;
892 
893 	vdisplay = mode->vdisplay - 1;
894 	vsyncstart = mode->vsync_start - 1;
895 	vsyncend = mode->vsync_end - 1;
896 	vtotal = mode->vtotal - 2;
897 
898 	WREG_GFX(0, 0);
899 	WREG_GFX(1, 0);
900 	WREG_GFX(2, 0);
901 	WREG_GFX(3, 0);
902 	WREG_GFX(4, 0);
903 	WREG_GFX(5, 0x40);
904 	WREG_GFX(6, 0x5);
905 	WREG_GFX(7, 0xf);
906 	WREG_GFX(8, 0xf);
907 
908 	WREG_CRT(0, htotal - 4);
909 	WREG_CRT(1, hdisplay);
910 	WREG_CRT(2, hdisplay);
911 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
912 	WREG_CRT(4, hsyncstart);
913 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
914 	WREG_CRT(6, vtotal & 0xFF);
915 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
916 		 ((vdisplay & 0x100) >> 7) |
917 		 ((vsyncstart & 0x100) >> 6) |
918 		 ((vdisplay & 0x100) >> 5) |
919 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
920 		 ((vtotal & 0x200) >> 4)|
921 		 ((vdisplay & 0x200) >> 3) |
922 		 ((vsyncstart & 0x200) >> 2));
923 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
924 		 ((vdisplay & 0x200) >> 3));
925 	WREG_CRT(10, 0);
926 	WREG_CRT(11, 0);
927 	WREG_CRT(12, 0);
928 	WREG_CRT(13, 0);
929 	WREG_CRT(14, 0);
930 	WREG_CRT(15, 0);
931 	WREG_CRT(16, vsyncstart & 0xFF);
932 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
933 	WREG_CRT(18, vdisplay & 0xFF);
934 	WREG_CRT(19, pitch & 0xFF);
935 	WREG_CRT(20, 0);
936 	WREG_CRT(21, vdisplay & 0xFF);
937 	WREG_CRT(22, (vtotal + 1) & 0xFF);
938 	WREG_CRT(23, 0xc3);
939 	WREG_CRT(24, vdisplay & 0xFF);
940 
941 	ext_vga[0] = 0;
942 	ext_vga[5] = 0;
943 
944 	/* TODO interlace */
945 
946 	ext_vga[0] |= (pitch & 0x300) >> 4;
947 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
948 		((hdisplay & 0x100) >> 7) |
949 		((hsyncstart & 0x100) >> 6) |
950 		(htotal & 0x40);
951 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
952 		((vdisplay & 0x400) >> 8) |
953 		((vdisplay & 0xc00) >> 7) |
954 		((vsyncstart & 0xc00) >> 5) |
955 		((vdisplay & 0x400) >> 3);
956 	if (crtc->fb->bits_per_pixel == 24)
957 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
958 	else
959 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
960 	ext_vga[4] = 0;
961 	if (mdev->type == G200_WB)
962 		ext_vga[1] |= 0x88;
963 
964 	/* Set pixel clocks */
965 	misc = 0x2d;
966 	WREG8(MGA_MISC_OUT, misc);
967 
968 	mga_crtc_set_plls(mdev, mode->clock);
969 
970 	for (i = 0; i < 6; i++) {
971 		WREG_ECRT(i, ext_vga[i]);
972 	}
973 
974 	if (mdev->type == G200_ER)
975 		WREG_ECRT(0x24, 0x5);
976 
977 	if (mdev->type == G200_EV) {
978 		WREG_ECRT(6, 0);
979 	}
980 
981 	WREG_ECRT(0, ext_vga[0]);
982 	/* Enable mga pixel clock */
983 	misc = 0x2d;
984 
985 	WREG8(MGA_MISC_OUT, misc);
986 
987 	if (adjusted_mode)
988 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
989 
990 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
991 
992 	/* reset tagfifo */
993 	if (mdev->type == G200_ER) {
994 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
995 		u8 seq1;
996 
997 		/* screen off */
998 		WREG8(MGAREG_SEQ_INDEX, 0x01);
999 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1000 		WREG8(MGAREG_SEQ_DATA, seq1);
1001 
1002 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1003 		udelay(1000);
1004 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1005 
1006 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1007 	}
1008 
1009 
1010 	if (IS_G200_SE(mdev)) {
1011 		if (mdev->reg_1e24 >= 0x02) {
1012 			u8 hi_pri_lvl;
1013 			u32 bpp;
1014 			u32 mb;
1015 
1016 			if (crtc->fb->bits_per_pixel > 16)
1017 				bpp = 32;
1018 			else if (crtc->fb->bits_per_pixel > 8)
1019 				bpp = 16;
1020 			else
1021 				bpp = 8;
1022 
1023 			mb = (mode->clock * bpp) / 1000;
1024 			if (mb > 3100)
1025 				hi_pri_lvl = 0;
1026 			else if (mb > 2600)
1027 				hi_pri_lvl = 1;
1028 			else if (mb > 1900)
1029 				hi_pri_lvl = 2;
1030 			else if (mb > 1160)
1031 				hi_pri_lvl = 3;
1032 			else if (mb > 440)
1033 				hi_pri_lvl = 4;
1034 			else
1035 				hi_pri_lvl = 5;
1036 
1037 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1038 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1039 		} else {
1040 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1041 			if (mdev->reg_1e24 >= 0x01)
1042 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1043 			else
1044 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1045 		}
1046 	}
1047 	return 0;
1048 }
1049 
1050 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1051 static int mga_suspend(struct drm_crtc *crtc)
1052 {
1053 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1054 	struct drm_device *dev = crtc->dev;
1055 	struct mga_device *mdev = dev->dev_private;
1056 	struct pci_dev *pdev = dev->pdev;
1057 	int option;
1058 
1059 	if (mdev->suspended)
1060 		return 0;
1061 
1062 	WREG_SEQ(1, 0x20);
1063 	WREG_ECRT(1, 0x30);
1064 	/* Disable the pixel clock */
1065 	WREG_DAC(0x1a, 0x05);
1066 	/* Power down the DAC */
1067 	WREG_DAC(0x1e, 0x18);
1068 	/* Power down the pixel PLL */
1069 	WREG_DAC(0x1a, 0x0d);
1070 
1071 	/* Disable PLLs and clocks */
1072 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1073 	option &= ~(0x1F8024);
1074 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1075 	pci_set_power_state(pdev, PCI_D3hot);
1076 	pci_disable_device(pdev);
1077 
1078 	mdev->suspended = true;
1079 
1080 	return 0;
1081 }
1082 
1083 static int mga_resume(struct drm_crtc *crtc)
1084 {
1085 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1086 	struct drm_device *dev = crtc->dev;
1087 	struct mga_device *mdev = dev->dev_private;
1088 	struct pci_dev *pdev = dev->pdev;
1089 	int option;
1090 
1091 	if (!mdev->suspended)
1092 		return 0;
1093 
1094 	pci_set_power_state(pdev, PCI_D0);
1095 	pci_enable_device(pdev);
1096 
1097 	/* Disable sysclk */
1098 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1099 	option &= ~(0x4);
1100 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1101 
1102 	mdev->suspended = false;
1103 
1104 	return 0;
1105 }
1106 
1107 #endif
1108 
1109 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1110 {
1111 	struct drm_device *dev = crtc->dev;
1112 	struct mga_device *mdev = dev->dev_private;
1113 	u8 seq1 = 0, crtcext1 = 0;
1114 
1115 	switch (mode) {
1116 	case DRM_MODE_DPMS_ON:
1117 		seq1 = 0;
1118 		crtcext1 = 0;
1119 		mga_crtc_load_lut(crtc);
1120 		break;
1121 	case DRM_MODE_DPMS_STANDBY:
1122 		seq1 = 0x20;
1123 		crtcext1 = 0x10;
1124 		break;
1125 	case DRM_MODE_DPMS_SUSPEND:
1126 		seq1 = 0x20;
1127 		crtcext1 = 0x20;
1128 		break;
1129 	case DRM_MODE_DPMS_OFF:
1130 		seq1 = 0x20;
1131 		crtcext1 = 0x30;
1132 		break;
1133 	}
1134 
1135 #if 0
1136 	if (mode == DRM_MODE_DPMS_OFF) {
1137 		mga_suspend(crtc);
1138 	}
1139 #endif
1140 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1141 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1142 	mga_wait_vsync(mdev);
1143 	mga_wait_busy(mdev);
1144 	WREG8(MGAREG_SEQ_DATA, seq1);
1145 	msleep(20);
1146 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1147 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1148 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1149 
1150 #if 0
1151 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1152 		mga_resume(crtc);
1153 		drm_helper_resume_force_mode(dev);
1154 	}
1155 #endif
1156 }
1157 
1158 /*
1159  * This is called before a mode is programmed. A typical use might be to
1160  * enable DPMS during the programming to avoid seeing intermediate stages,
1161  * but that's not relevant to us
1162  */
1163 static void mga_crtc_prepare(struct drm_crtc *crtc)
1164 {
1165 	struct drm_device *dev = crtc->dev;
1166 	struct mga_device *mdev = dev->dev_private;
1167 	u8 tmp;
1168 
1169 	/*	mga_resume(crtc);*/
1170 
1171 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1172 	tmp = RREG8(MGAREG_CRTC_DATA);
1173 	WREG_CRT(0x11, tmp | 0x80);
1174 
1175 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1176 		WREG_SEQ(0, 1);
1177 		msleep(50);
1178 		WREG_SEQ(1, 0x20);
1179 		msleep(20);
1180 	} else {
1181 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1182 		tmp = RREG8(MGAREG_SEQ_DATA);
1183 
1184 		/* start sync reset */
1185 		WREG_SEQ(0, 1);
1186 		WREG_SEQ(1, tmp | 0x20);
1187 	}
1188 
1189 	if (mdev->type == G200_WB)
1190 		mga_g200wb_prepare(crtc);
1191 
1192 	WREG_CRT(17, 0);
1193 }
1194 
1195 /*
1196  * This is called after a mode is programmed. It should reverse anything done
1197  * by the prepare function
1198  */
1199 static void mga_crtc_commit(struct drm_crtc *crtc)
1200 {
1201 	struct drm_device *dev = crtc->dev;
1202 	struct mga_device *mdev = dev->dev_private;
1203 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1204 	u8 tmp;
1205 
1206 	if (mdev->type == G200_WB)
1207 		mga_g200wb_commit(crtc);
1208 
1209 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1210 		msleep(50);
1211 		WREG_SEQ(1, 0x0);
1212 		msleep(20);
1213 		WREG_SEQ(0, 0x3);
1214 	} else {
1215 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1216 		tmp = RREG8(MGAREG_SEQ_DATA);
1217 
1218 		tmp &= ~0x20;
1219 		WREG_SEQ(0x1, tmp);
1220 		WREG_SEQ(0, 3);
1221 	}
1222 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1223 }
1224 
1225 /*
1226  * The core can pass us a set of gamma values to program. We actually only
1227  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1228  * but it's a requirement that we provide the function
1229  */
1230 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1231 				  u16 *blue, uint32_t start, uint32_t size)
1232 {
1233 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1234 	int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1235 	int i;
1236 
1237 	for (i = start; i < end; i++) {
1238 		mga_crtc->lut_r[i] = red[i] >> 8;
1239 		mga_crtc->lut_g[i] = green[i] >> 8;
1240 		mga_crtc->lut_b[i] = blue[i] >> 8;
1241 	}
1242 	mga_crtc_load_lut(crtc);
1243 }
1244 
1245 /* Simple cleanup function */
1246 static void mga_crtc_destroy(struct drm_crtc *crtc)
1247 {
1248 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1249 
1250 	drm_crtc_cleanup(crtc);
1251 	kfree(mga_crtc);
1252 }
1253 
1254 /* These provide the minimum set of functions required to handle a CRTC */
1255 static const struct drm_crtc_funcs mga_crtc_funcs = {
1256 	.gamma_set = mga_crtc_gamma_set,
1257 	.set_config = drm_crtc_helper_set_config,
1258 	.destroy = mga_crtc_destroy,
1259 };
1260 
1261 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1262 	.dpms = mga_crtc_dpms,
1263 	.mode_fixup = mga_crtc_mode_fixup,
1264 	.mode_set = mga_crtc_mode_set,
1265 	.mode_set_base = mga_crtc_mode_set_base,
1266 	.prepare = mga_crtc_prepare,
1267 	.commit = mga_crtc_commit,
1268 	.load_lut = mga_crtc_load_lut,
1269 };
1270 
1271 /* CRTC setup */
1272 static void mga_crtc_init(struct mga_device *mdev)
1273 {
1274 	struct mga_crtc *mga_crtc;
1275 	int i;
1276 
1277 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1278 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1279 			      GFP_KERNEL);
1280 
1281 	if (mga_crtc == NULL)
1282 		return;
1283 
1284 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1285 
1286 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1287 	mdev->mode_info.crtc = mga_crtc;
1288 
1289 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1290 		mga_crtc->lut_r[i] = i;
1291 		mga_crtc->lut_g[i] = i;
1292 		mga_crtc->lut_b[i] = i;
1293 	}
1294 
1295 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1296 }
1297 
1298 /** Sets the color ramps on behalf of fbcon */
1299 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1300 			      u16 blue, int regno)
1301 {
1302 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1303 
1304 	mga_crtc->lut_r[regno] = red >> 8;
1305 	mga_crtc->lut_g[regno] = green >> 8;
1306 	mga_crtc->lut_b[regno] = blue >> 8;
1307 }
1308 
1309 /** Gets the color ramps on behalf of fbcon */
1310 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1311 			      u16 *blue, int regno)
1312 {
1313 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1314 
1315 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1316 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1317 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1318 }
1319 
1320 /*
1321  * The encoder comes after the CRTC in the output pipeline, but before
1322  * the connector. It's responsible for ensuring that the digital
1323  * stream is appropriately converted into the output format. Setup is
1324  * very simple in this case - all we have to do is inform qemu of the
1325  * colour depth in order to ensure that it displays appropriately
1326  */
1327 
1328 /*
1329  * These functions are analagous to those in the CRTC code, but are intended
1330  * to handle any encoder-specific limitations
1331  */
1332 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1333 				   const struct drm_display_mode *mode,
1334 				   struct drm_display_mode *adjusted_mode)
1335 {
1336 	return true;
1337 }
1338 
1339 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1340 				struct drm_display_mode *mode,
1341 				struct drm_display_mode *adjusted_mode)
1342 {
1343 
1344 }
1345 
1346 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1347 {
1348 	return;
1349 }
1350 
1351 static void mga_encoder_prepare(struct drm_encoder *encoder)
1352 {
1353 }
1354 
1355 static void mga_encoder_commit(struct drm_encoder *encoder)
1356 {
1357 }
1358 
1359 void mga_encoder_destroy(struct drm_encoder *encoder)
1360 {
1361 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1362 	drm_encoder_cleanup(encoder);
1363 	kfree(mga_encoder);
1364 }
1365 
1366 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1367 	.dpms = mga_encoder_dpms,
1368 	.mode_fixup = mga_encoder_mode_fixup,
1369 	.mode_set = mga_encoder_mode_set,
1370 	.prepare = mga_encoder_prepare,
1371 	.commit = mga_encoder_commit,
1372 };
1373 
1374 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1375 	.destroy = mga_encoder_destroy,
1376 };
1377 
1378 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1379 {
1380 	struct drm_encoder *encoder;
1381 	struct mga_encoder *mga_encoder;
1382 
1383 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1384 	if (!mga_encoder)
1385 		return NULL;
1386 
1387 	encoder = &mga_encoder->base;
1388 	encoder->possible_crtcs = 0x1;
1389 
1390 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1391 			 DRM_MODE_ENCODER_DAC);
1392 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1393 
1394 	return encoder;
1395 }
1396 
1397 
1398 static int mga_vga_get_modes(struct drm_connector *connector)
1399 {
1400 	struct mga_connector *mga_connector = to_mga_connector(connector);
1401 	struct edid *edid;
1402 	int ret = 0;
1403 
1404 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1405 	if (edid) {
1406 		drm_mode_connector_update_edid_property(connector, edid);
1407 		ret = drm_add_edid_modes(connector, edid);
1408 		kfree(edid);
1409 	}
1410 	return ret;
1411 }
1412 
1413 static int mga_vga_mode_valid(struct drm_connector *connector,
1414 				 struct drm_display_mode *mode)
1415 {
1416 	struct drm_device *dev = connector->dev;
1417 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1418 	struct mga_fbdev *mfbdev = mdev->mfbdev;
1419 	struct drm_fb_helper *fb_helper = &mfbdev->helper;
1420 	struct drm_fb_helper_connector *fb_helper_conn = NULL;
1421 	int bpp = 32;
1422 	int i = 0;
1423 
1424 	/* FIXME: Add bandwidth and g200se limitations */
1425 
1426 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1427 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1428 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1429 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1430 		return MODE_BAD;
1431 	}
1432 
1433 	/* Validate the mode input by the user */
1434 	for (i = 0; i < fb_helper->connector_count; i++) {
1435 		if (fb_helper->connector_info[i]->connector == connector) {
1436 			/* Found the helper for this connector */
1437 			fb_helper_conn = fb_helper->connector_info[i];
1438 			if (fb_helper_conn->cmdline_mode.specified) {
1439 				if (fb_helper_conn->cmdline_mode.bpp_specified) {
1440 					bpp = fb_helper_conn->cmdline_mode.bpp;
1441 				}
1442 			}
1443 		}
1444 	}
1445 
1446 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1447 		if (fb_helper_conn)
1448 			fb_helper_conn->cmdline_mode.specified = false;
1449 		return MODE_BAD;
1450 	}
1451 
1452 	return MODE_OK;
1453 }
1454 
1455 struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1456 						  *connector)
1457 {
1458 	int enc_id = connector->encoder_ids[0];
1459 	struct drm_mode_object *obj;
1460 	struct drm_encoder *encoder;
1461 
1462 	/* pick the encoder ids */
1463 	if (enc_id) {
1464 		obj =
1465 		    drm_mode_object_find(connector->dev, enc_id,
1466 					 DRM_MODE_OBJECT_ENCODER);
1467 		if (!obj)
1468 			return NULL;
1469 		encoder = obj_to_encoder(obj);
1470 		return encoder;
1471 	}
1472 	return NULL;
1473 }
1474 
1475 static enum drm_connector_status mga_vga_detect(struct drm_connector
1476 						   *connector, bool force)
1477 {
1478 	return connector_status_connected;
1479 }
1480 
1481 static void mga_connector_destroy(struct drm_connector *connector)
1482 {
1483 	struct mga_connector *mga_connector = to_mga_connector(connector);
1484 	mgag200_i2c_destroy(mga_connector->i2c);
1485 	drm_connector_cleanup(connector);
1486 	kfree(connector);
1487 }
1488 
1489 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1490 	.get_modes = mga_vga_get_modes,
1491 	.mode_valid = mga_vga_mode_valid,
1492 	.best_encoder = mga_connector_best_encoder,
1493 };
1494 
1495 struct drm_connector_funcs mga_vga_connector_funcs = {
1496 	.dpms = drm_helper_connector_dpms,
1497 	.detect = mga_vga_detect,
1498 	.fill_modes = drm_helper_probe_single_connector_modes,
1499 	.destroy = mga_connector_destroy,
1500 };
1501 
1502 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1503 {
1504 	struct drm_connector *connector;
1505 	struct mga_connector *mga_connector;
1506 
1507 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1508 	if (!mga_connector)
1509 		return NULL;
1510 
1511 	connector = &mga_connector->base;
1512 
1513 	drm_connector_init(dev, connector,
1514 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1515 
1516 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1517 
1518 	mga_connector->i2c = mgag200_i2c_create(dev);
1519 	if (!mga_connector->i2c)
1520 		DRM_ERROR("failed to add ddc bus\n");
1521 
1522 	return connector;
1523 }
1524 
1525 
1526 int mgag200_modeset_init(struct mga_device *mdev)
1527 {
1528 	struct drm_encoder *encoder;
1529 	struct drm_connector *connector;
1530 	int ret;
1531 
1532 	mdev->mode_info.mode_config_initialized = true;
1533 
1534 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1535 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1536 
1537 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1538 
1539 	mga_crtc_init(mdev);
1540 
1541 	encoder = mga_encoder_init(mdev->dev);
1542 	if (!encoder) {
1543 		DRM_ERROR("mga_encoder_init failed\n");
1544 		return -1;
1545 	}
1546 
1547 	connector = mga_vga_init(mdev->dev);
1548 	if (!connector) {
1549 		DRM_ERROR("mga_vga_init failed\n");
1550 		return -1;
1551 	}
1552 
1553 	drm_mode_connector_attach_encoder(connector, encoder);
1554 
1555 	ret = mgag200_fbdev_init(mdev);
1556 	if (ret) {
1557 		DRM_ERROR("mga_fbdev_init failed\n");
1558 		return ret;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 void mgag200_modeset_fini(struct mga_device *mdev)
1565 {
1566 
1567 }
1568