1 /* 2 * Copyright 2010 Matt Turner. 3 * Copyright 2012 Red Hat 4 * 5 * This file is subject to the terms and conditions of the GNU General 6 * Public License version 2. See the file COPYING in the main 7 * directory of this archive for more details. 8 * 9 * Authors: Matthew Garrett 10 * Matt Turner 11 * Dave Airlie 12 */ 13 14 #include <linux/delay.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_crtc_helper.h> 18 19 #include "mgag200_drv.h" 20 21 #define MGAG200_LUT_SIZE 256 22 23 /* 24 * This file contains setup code for the CRTC. 25 */ 26 27 static void mga_crtc_load_lut(struct drm_crtc *crtc) 28 { 29 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 30 struct drm_device *dev = crtc->dev; 31 struct mga_device *mdev = dev->dev_private; 32 int i; 33 34 if (!crtc->enabled) 35 return; 36 37 WREG8(DAC_INDEX + MGA1064_INDEX, 0); 38 39 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 40 /* VGA registers */ 41 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]); 42 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 43 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]); 44 } 45 } 46 47 static inline void mga_wait_vsync(struct mga_device *mdev) 48 { 49 unsigned long timeout = jiffies + HZ/10; 50 unsigned int status = 0; 51 52 do { 53 status = RREG32(MGAREG_Status); 54 } while ((status & 0x08) && time_before(jiffies, timeout)); 55 timeout = jiffies + HZ/10; 56 status = 0; 57 do { 58 status = RREG32(MGAREG_Status); 59 } while (!(status & 0x08) && time_before(jiffies, timeout)); 60 } 61 62 static inline void mga_wait_busy(struct mga_device *mdev) 63 { 64 unsigned long timeout = jiffies + HZ; 65 unsigned int status = 0; 66 do { 67 status = RREG8(MGAREG_Status + 2); 68 } while ((status & 0x01) && time_before(jiffies, timeout)); 69 } 70 71 /* 72 * The core passes the desired mode to the CRTC code to see whether any 73 * CRTC-specific modifications need to be made to it. We're in a position 74 * to just pass that straight through, so this does nothing 75 */ 76 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc, 77 const struct drm_display_mode *mode, 78 struct drm_display_mode *adjusted_mode) 79 { 80 return true; 81 } 82 83 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) 84 { 85 unsigned int vcomax, vcomin, pllreffreq; 86 unsigned int delta, tmpdelta, permitteddelta; 87 unsigned int testp, testm, testn; 88 unsigned int p, m, n; 89 unsigned int computed; 90 91 m = n = p = 0; 92 vcomax = 320000; 93 vcomin = 160000; 94 pllreffreq = 25000; 95 96 delta = 0xffffffff; 97 permitteddelta = clock * 5 / 1000; 98 99 for (testp = 8; testp > 0; testp /= 2) { 100 if (clock * testp > vcomax) 101 continue; 102 if (clock * testp < vcomin) 103 continue; 104 105 for (testn = 17; testn < 256; testn++) { 106 for (testm = 1; testm < 32; testm++) { 107 computed = (pllreffreq * testn) / 108 (testm * testp); 109 if (computed > clock) 110 tmpdelta = computed - clock; 111 else 112 tmpdelta = clock - computed; 113 if (tmpdelta < delta) { 114 delta = tmpdelta; 115 m = testm - 1; 116 n = testn - 1; 117 p = testp - 1; 118 } 119 } 120 } 121 } 122 123 if (delta > permitteddelta) { 124 printk(KERN_WARNING "PLL delta too large\n"); 125 return 1; 126 } 127 128 WREG_DAC(MGA1064_PIX_PLLC_M, m); 129 WREG_DAC(MGA1064_PIX_PLLC_N, n); 130 WREG_DAC(MGA1064_PIX_PLLC_P, p); 131 return 0; 132 } 133 134 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) 135 { 136 unsigned int vcomax, vcomin, pllreffreq; 137 unsigned int delta, tmpdelta, permitteddelta; 138 unsigned int testp, testm, testn; 139 unsigned int p, m, n; 140 unsigned int computed; 141 int i, j, tmpcount, vcount; 142 bool pll_locked = false; 143 u8 tmp; 144 145 m = n = p = 0; 146 vcomax = 550000; 147 vcomin = 150000; 148 pllreffreq = 48000; 149 150 delta = 0xffffffff; 151 permitteddelta = clock * 5 / 1000; 152 153 for (testp = 1; testp < 9; testp++) { 154 if (clock * testp > vcomax) 155 continue; 156 if (clock * testp < vcomin) 157 continue; 158 159 for (testm = 1; testm < 17; testm++) { 160 for (testn = 1; testn < 151; testn++) { 161 computed = (pllreffreq * testn) / 162 (testm * testp); 163 if (computed > clock) 164 tmpdelta = computed - clock; 165 else 166 tmpdelta = clock - computed; 167 if (tmpdelta < delta) { 168 delta = tmpdelta; 169 n = testn - 1; 170 m = (testm - 1) | ((n >> 1) & 0x80); 171 p = testp - 1; 172 } 173 } 174 } 175 } 176 177 for (i = 0; i <= 32 && pll_locked == false; i++) { 178 if (i > 0) { 179 WREG8(MGAREG_CRTC_INDEX, 0x1e); 180 tmp = RREG8(MGAREG_CRTC_DATA); 181 if (tmp < 0xff) 182 WREG8(MGAREG_CRTC_DATA, tmp+1); 183 } 184 185 /* set pixclkdis to 1 */ 186 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 187 tmp = RREG8(DAC_DATA); 188 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 189 WREG8(DAC_DATA, tmp); 190 191 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 192 tmp = RREG8(DAC_DATA); 193 tmp |= MGA1064_REMHEADCTL_CLKDIS; 194 WREG8(DAC_DATA, tmp); 195 196 /* select PLL Set C */ 197 tmp = RREG8(MGAREG_MEM_MISC_READ); 198 tmp |= 0x3 << 2; 199 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 200 201 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 202 tmp = RREG8(DAC_DATA); 203 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; 204 WREG8(DAC_DATA, tmp); 205 206 udelay(500); 207 208 /* reset the PLL */ 209 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 210 tmp = RREG8(DAC_DATA); 211 tmp &= ~0x04; 212 WREG8(DAC_DATA, tmp); 213 214 udelay(50); 215 216 /* program pixel pll register */ 217 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); 218 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); 219 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); 220 221 udelay(50); 222 223 /* turn pll on */ 224 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 225 tmp = RREG8(DAC_DATA); 226 tmp |= 0x04; 227 WREG_DAC(MGA1064_VREF_CTL, tmp); 228 229 udelay(500); 230 231 /* select the pixel pll */ 232 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 233 tmp = RREG8(DAC_DATA); 234 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 235 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 236 WREG8(DAC_DATA, tmp); 237 238 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 239 tmp = RREG8(DAC_DATA); 240 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; 241 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; 242 WREG8(DAC_DATA, tmp); 243 244 /* reset dotclock rate bit */ 245 WREG8(MGAREG_SEQ_INDEX, 1); 246 tmp = RREG8(MGAREG_SEQ_DATA); 247 tmp &= ~0x8; 248 WREG8(MGAREG_SEQ_DATA, tmp); 249 250 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 251 tmp = RREG8(DAC_DATA); 252 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 253 WREG8(DAC_DATA, tmp); 254 255 vcount = RREG8(MGAREG_VCOUNT); 256 257 for (j = 0; j < 30 && pll_locked == false; j++) { 258 tmpcount = RREG8(MGAREG_VCOUNT); 259 if (tmpcount < vcount) 260 vcount = 0; 261 if ((tmpcount - vcount) > 2) 262 pll_locked = true; 263 else 264 udelay(5); 265 } 266 } 267 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 268 tmp = RREG8(DAC_DATA); 269 tmp &= ~MGA1064_REMHEADCTL_CLKDIS; 270 WREG_DAC(MGA1064_REMHEADCTL, tmp); 271 return 0; 272 } 273 274 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) 275 { 276 unsigned int vcomax, vcomin, pllreffreq; 277 unsigned int delta, tmpdelta, permitteddelta; 278 unsigned int testp, testm, testn; 279 unsigned int p, m, n; 280 unsigned int computed; 281 u8 tmp; 282 283 m = n = p = 0; 284 vcomax = 550000; 285 vcomin = 150000; 286 pllreffreq = 50000; 287 288 delta = 0xffffffff; 289 permitteddelta = clock * 5 / 1000; 290 291 for (testp = 16; testp > 0; testp--) { 292 if (clock * testp > vcomax) 293 continue; 294 if (clock * testp < vcomin) 295 continue; 296 297 for (testn = 1; testn < 257; testn++) { 298 for (testm = 1; testm < 17; testm++) { 299 computed = (pllreffreq * testn) / 300 (testm * testp); 301 if (computed > clock) 302 tmpdelta = computed - clock; 303 else 304 tmpdelta = clock - computed; 305 if (tmpdelta < delta) { 306 delta = tmpdelta; 307 n = testn - 1; 308 m = testm - 1; 309 p = testp - 1; 310 } 311 } 312 } 313 } 314 315 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 316 tmp = RREG8(DAC_DATA); 317 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 318 WREG8(DAC_DATA, tmp); 319 320 tmp = RREG8(MGAREG_MEM_MISC_READ); 321 tmp |= 0x3 << 2; 322 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 323 324 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 325 tmp = RREG8(DAC_DATA); 326 WREG8(DAC_DATA, tmp & ~0x40); 327 328 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 329 tmp = RREG8(DAC_DATA); 330 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 331 WREG8(DAC_DATA, tmp); 332 333 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); 334 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); 335 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); 336 337 udelay(50); 338 339 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 340 tmp = RREG8(DAC_DATA); 341 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 342 WREG8(DAC_DATA, tmp); 343 344 udelay(500); 345 346 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 347 tmp = RREG8(DAC_DATA); 348 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 349 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 350 WREG8(DAC_DATA, tmp); 351 352 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 353 tmp = RREG8(DAC_DATA); 354 WREG8(DAC_DATA, tmp | 0x40); 355 356 tmp = RREG8(MGAREG_MEM_MISC_READ); 357 tmp |= (0x3 << 2); 358 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 359 360 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 361 tmp = RREG8(DAC_DATA); 362 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 363 WREG8(DAC_DATA, tmp); 364 365 return 0; 366 } 367 368 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) 369 { 370 unsigned int vcomax, vcomin, pllreffreq; 371 unsigned int delta, tmpdelta, permitteddelta; 372 unsigned int testp, testm, testn; 373 unsigned int p, m, n; 374 unsigned int computed; 375 int i, j, tmpcount, vcount; 376 u8 tmp; 377 bool pll_locked = false; 378 379 m = n = p = 0; 380 vcomax = 800000; 381 vcomin = 400000; 382 pllreffreq = 33333; 383 384 delta = 0xffffffff; 385 permitteddelta = clock * 5 / 1000; 386 387 for (testp = 16; testp > 0; testp >>= 1) { 388 if (clock * testp > vcomax) 389 continue; 390 if (clock * testp < vcomin) 391 continue; 392 393 for (testm = 1; testm < 33; testm++) { 394 for (testn = 17; testn < 257; testn++) { 395 computed = (pllreffreq * testn) / 396 (testm * testp); 397 if (computed > clock) 398 tmpdelta = computed - clock; 399 else 400 tmpdelta = clock - computed; 401 if (tmpdelta < delta) { 402 delta = tmpdelta; 403 n = testn - 1; 404 m = (testm - 1); 405 p = testp - 1; 406 } 407 if ((clock * testp) >= 600000) 408 p |= 0x80; 409 } 410 } 411 } 412 for (i = 0; i <= 32 && pll_locked == false; i++) { 413 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 414 tmp = RREG8(DAC_DATA); 415 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 416 WREG8(DAC_DATA, tmp); 417 418 tmp = RREG8(MGAREG_MEM_MISC_READ); 419 tmp |= 0x3 << 2; 420 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 421 422 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 423 tmp = RREG8(DAC_DATA); 424 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 425 WREG8(DAC_DATA, tmp); 426 427 udelay(500); 428 429 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); 430 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); 431 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); 432 433 udelay(500); 434 435 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 436 tmp = RREG8(DAC_DATA); 437 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 438 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 439 WREG8(DAC_DATA, tmp); 440 441 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 442 tmp = RREG8(DAC_DATA); 443 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 444 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 445 WREG8(DAC_DATA, tmp); 446 447 vcount = RREG8(MGAREG_VCOUNT); 448 449 for (j = 0; j < 30 && pll_locked == false; j++) { 450 tmpcount = RREG8(MGAREG_VCOUNT); 451 if (tmpcount < vcount) 452 vcount = 0; 453 if ((tmpcount - vcount) > 2) 454 pll_locked = true; 455 else 456 udelay(5); 457 } 458 } 459 460 return 0; 461 } 462 463 static int mga_g200er_set_plls(struct mga_device *mdev, long clock) 464 { 465 unsigned int vcomax, vcomin, pllreffreq; 466 unsigned int delta, tmpdelta; 467 int testr, testn, testm, testo; 468 unsigned int p, m, n; 469 unsigned int computed, vco; 470 int tmp; 471 const unsigned int m_div_val[] = { 1, 2, 4, 8 }; 472 473 m = n = p = 0; 474 vcomax = 1488000; 475 vcomin = 1056000; 476 pllreffreq = 48000; 477 478 delta = 0xffffffff; 479 480 for (testr = 0; testr < 4; testr++) { 481 if (delta == 0) 482 break; 483 for (testn = 5; testn < 129; testn++) { 484 if (delta == 0) 485 break; 486 for (testm = 3; testm >= 0; testm--) { 487 if (delta == 0) 488 break; 489 for (testo = 5; testo < 33; testo++) { 490 vco = pllreffreq * (testn + 1) / 491 (testr + 1); 492 if (vco < vcomin) 493 continue; 494 if (vco > vcomax) 495 continue; 496 computed = vco / (m_div_val[testm] * (testo + 1)); 497 if (computed > clock) 498 tmpdelta = computed - clock; 499 else 500 tmpdelta = clock - computed; 501 if (tmpdelta < delta) { 502 delta = tmpdelta; 503 m = testm | (testo << 3); 504 n = testn; 505 p = testr | (testr << 3); 506 } 507 } 508 } 509 } 510 } 511 512 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 513 tmp = RREG8(DAC_DATA); 514 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 515 WREG8(DAC_DATA, tmp); 516 517 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 518 tmp = RREG8(DAC_DATA); 519 tmp |= MGA1064_REMHEADCTL_CLKDIS; 520 WREG8(DAC_DATA, tmp); 521 522 tmp = RREG8(MGAREG_MEM_MISC_READ); 523 tmp |= (0x3<<2) | 0xc0; 524 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 525 526 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 527 tmp = RREG8(DAC_DATA); 528 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 529 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 530 WREG8(DAC_DATA, tmp); 531 532 udelay(500); 533 534 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); 535 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); 536 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); 537 538 udelay(50); 539 540 return 0; 541 } 542 543 static int mga_crtc_set_plls(struct mga_device *mdev, long clock) 544 { 545 switch(mdev->type) { 546 case G200_SE_A: 547 case G200_SE_B: 548 return mga_g200se_set_plls(mdev, clock); 549 break; 550 case G200_WB: 551 return mga_g200wb_set_plls(mdev, clock); 552 break; 553 case G200_EV: 554 return mga_g200ev_set_plls(mdev, clock); 555 break; 556 case G200_EH: 557 return mga_g200eh_set_plls(mdev, clock); 558 break; 559 case G200_ER: 560 return mga_g200er_set_plls(mdev, clock); 561 break; 562 } 563 return 0; 564 } 565 566 static void mga_g200wb_prepare(struct drm_crtc *crtc) 567 { 568 struct mga_device *mdev = crtc->dev->dev_private; 569 u8 tmp; 570 int iter_max; 571 572 /* 1- The first step is to warn the BMC of an upcoming mode change. 573 * We are putting the misc<0> to output.*/ 574 575 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); 576 tmp = RREG8(DAC_DATA); 577 tmp |= 0x10; 578 WREG_DAC(MGA1064_GEN_IO_CTL, tmp); 579 580 /* we are putting a 1 on the misc<0> line */ 581 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 582 tmp = RREG8(DAC_DATA); 583 tmp |= 0x10; 584 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 585 586 /* 2- Second step to mask and further scan request 587 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) 588 */ 589 WREG8(DAC_INDEX, MGA1064_SPAREREG); 590 tmp = RREG8(DAC_DATA); 591 tmp |= 0x80; 592 WREG_DAC(MGA1064_SPAREREG, tmp); 593 594 /* 3a- the third step is to verifu if there is an active scan 595 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>) 596 */ 597 iter_max = 300; 598 while (!(tmp & 0x1) && iter_max) { 599 WREG8(DAC_INDEX, MGA1064_SPAREREG); 600 tmp = RREG8(DAC_DATA); 601 udelay(1000); 602 iter_max--; 603 } 604 605 /* 3b- this step occurs only if the remove is actually scanning 606 * we are waiting for the end of the frame which is a 1 on 607 * remvsyncsts (XSPAREREG<1>) 608 */ 609 if (iter_max) { 610 iter_max = 300; 611 while ((tmp & 0x2) && iter_max) { 612 WREG8(DAC_INDEX, MGA1064_SPAREREG); 613 tmp = RREG8(DAC_DATA); 614 udelay(1000); 615 iter_max--; 616 } 617 } 618 } 619 620 static void mga_g200wb_commit(struct drm_crtc *crtc) 621 { 622 u8 tmp; 623 struct mga_device *mdev = crtc->dev->dev_private; 624 625 /* 1- The first step is to ensure that the vrsten and hrsten are set */ 626 WREG8(MGAREG_CRTCEXT_INDEX, 1); 627 tmp = RREG8(MGAREG_CRTCEXT_DATA); 628 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); 629 630 /* 2- second step is to assert the rstlvl2 */ 631 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 632 tmp = RREG8(DAC_DATA); 633 tmp |= 0x8; 634 WREG8(DAC_DATA, tmp); 635 636 /* wait 10 us */ 637 udelay(10); 638 639 /* 3- deassert rstlvl2 */ 640 tmp &= ~0x08; 641 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 642 WREG8(DAC_DATA, tmp); 643 644 /* 4- remove mask of scan request */ 645 WREG8(DAC_INDEX, MGA1064_SPAREREG); 646 tmp = RREG8(DAC_DATA); 647 tmp &= ~0x80; 648 WREG8(DAC_DATA, tmp); 649 650 /* 5- put back a 0 on the misc<0> line */ 651 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 652 tmp = RREG8(DAC_DATA); 653 tmp &= ~0x10; 654 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 655 } 656 657 /* 658 This is how the framebuffer base address is stored in g200 cards: 659 * Assume @offset is the gpu_addr variable of the framebuffer object 660 * Then addr is the number of _pixels_ (not bytes) from the start of 661 VRAM to the first pixel we want to display. (divided by 2 for 32bit 662 framebuffers) 663 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers 664 addr<20> -> CRTCEXT0<6> 665 addr<19-16> -> CRTCEXT0<3-0> 666 addr<15-8> -> CRTCC<7-0> 667 addr<7-0> -> CRTCD<7-0> 668 CRTCEXT0 has to be programmed last to trigger an update and make the 669 new addr variable take effect. 670 */ 671 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) 672 { 673 struct mga_device *mdev = crtc->dev->dev_private; 674 u32 addr; 675 int count; 676 u8 crtcext0; 677 678 while (RREG8(0x1fda) & 0x08); 679 while (!(RREG8(0x1fda) & 0x08)); 680 681 count = RREG8(MGAREG_VCOUNT) + 2; 682 while (RREG8(MGAREG_VCOUNT) < count); 683 684 WREG8(MGAREG_CRTCEXT_INDEX, 0); 685 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA); 686 crtcext0 &= 0xB0; 687 addr = offset / 8; 688 /* Can't store addresses any higher than that... 689 but we also don't have more than 16MB of memory, so it should be fine. */ 690 WARN_ON(addr > 0x1fffff); 691 crtcext0 |= (!!(addr & (1<<20)))<<6; 692 WREG_CRT(0x0d, (u8)(addr & 0xff)); 693 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); 694 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0); 695 } 696 697 698 /* ast is different - we will force move buffers out of VRAM */ 699 static int mga_crtc_do_set_base(struct drm_crtc *crtc, 700 struct drm_framebuffer *fb, 701 int x, int y, int atomic) 702 { 703 struct mga_device *mdev = crtc->dev->dev_private; 704 struct drm_gem_object *obj; 705 struct mga_framebuffer *mga_fb; 706 struct mgag200_bo *bo; 707 int ret; 708 u64 gpu_addr; 709 710 /* push the previous fb to system ram */ 711 if (!atomic && fb) { 712 mga_fb = to_mga_framebuffer(fb); 713 obj = mga_fb->obj; 714 bo = gem_to_mga_bo(obj); 715 ret = mgag200_bo_reserve(bo, false); 716 if (ret) 717 return ret; 718 mgag200_bo_push_sysram(bo); 719 mgag200_bo_unreserve(bo); 720 } 721 722 mga_fb = to_mga_framebuffer(crtc->fb); 723 obj = mga_fb->obj; 724 bo = gem_to_mga_bo(obj); 725 726 ret = mgag200_bo_reserve(bo, false); 727 if (ret) 728 return ret; 729 730 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); 731 if (ret) { 732 mgag200_bo_unreserve(bo); 733 return ret; 734 } 735 736 if (&mdev->mfbdev->mfb == mga_fb) { 737 /* if pushing console in kmap it */ 738 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); 739 if (ret) 740 DRM_ERROR("failed to kmap fbcon\n"); 741 742 } 743 mgag200_bo_unreserve(bo); 744 745 DRM_INFO("mga base %llx\n", gpu_addr); 746 747 mga_set_start_address(crtc, (u32)gpu_addr); 748 749 return 0; 750 } 751 752 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, 753 struct drm_framebuffer *old_fb) 754 { 755 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 756 } 757 758 static int mga_crtc_mode_set(struct drm_crtc *crtc, 759 struct drm_display_mode *mode, 760 struct drm_display_mode *adjusted_mode, 761 int x, int y, struct drm_framebuffer *old_fb) 762 { 763 struct drm_device *dev = crtc->dev; 764 struct mga_device *mdev = dev->dev_private; 765 int hdisplay, hsyncstart, hsyncend, htotal; 766 int vdisplay, vsyncstart, vsyncend, vtotal; 767 int pitch; 768 int option = 0, option2 = 0; 769 int i; 770 unsigned char misc = 0; 771 unsigned char ext_vga[6]; 772 u8 bppshift; 773 774 static unsigned char dacvalue[] = { 775 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, 776 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, 777 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, 778 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, 779 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 780 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, 781 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, 782 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, 783 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, 784 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 785 }; 786 787 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1]; 788 789 switch (mdev->type) { 790 case G200_SE_A: 791 case G200_SE_B: 792 dacvalue[MGA1064_VREF_CTL] = 0x03; 793 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 794 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | 795 MGA1064_MISC_CTL_VGA8 | 796 MGA1064_MISC_CTL_DAC_RAM_CS; 797 if (mdev->has_sdram) 798 option = 0x40049120; 799 else 800 option = 0x4004d120; 801 option2 = 0x00008000; 802 break; 803 case G200_WB: 804 dacvalue[MGA1064_VREF_CTL] = 0x07; 805 option = 0x41049120; 806 option2 = 0x0000b000; 807 break; 808 case G200_EV: 809 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 810 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 811 MGA1064_MISC_CTL_DAC_RAM_CS; 812 option = 0x00000120; 813 option2 = 0x0000b000; 814 break; 815 case G200_EH: 816 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 817 MGA1064_MISC_CTL_DAC_RAM_CS; 818 option = 0x00000120; 819 option2 = 0x0000b000; 820 break; 821 case G200_ER: 822 break; 823 } 824 825 switch (crtc->fb->bits_per_pixel) { 826 case 8: 827 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; 828 break; 829 case 16: 830 if (crtc->fb->depth == 15) 831 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; 832 else 833 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; 834 break; 835 case 24: 836 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; 837 break; 838 case 32: 839 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; 840 break; 841 } 842 843 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 844 misc |= 0x40; 845 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 846 misc |= 0x80; 847 848 849 for (i = 0; i < sizeof(dacvalue); i++) { 850 if ((i <= 0x17) || 851 (i == 0x1b) || 852 (i == 0x1c) || 853 ((i >= 0x1f) && (i <= 0x29)) || 854 ((i >= 0x30) && (i <= 0x37))) 855 continue; 856 if (IS_G200_SE(mdev) && 857 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) 858 continue; 859 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) && 860 (i >= 0x44) && (i <= 0x4e)) 861 continue; 862 863 WREG_DAC(i, dacvalue[i]); 864 } 865 866 if (mdev->type == G200_ER) 867 WREG_DAC(0x90, 0); 868 869 if (option) 870 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); 871 if (option2) 872 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); 873 874 WREG_SEQ(2, 0xf); 875 WREG_SEQ(3, 0); 876 WREG_SEQ(4, 0xe); 877 878 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8); 879 if (crtc->fb->bits_per_pixel == 24) 880 pitch = pitch >> (4 - bppshift); 881 else 882 pitch = pitch >> (4 - bppshift); 883 884 hdisplay = mode->hdisplay / 8 - 1; 885 hsyncstart = mode->hsync_start / 8 - 1; 886 hsyncend = mode->hsync_end / 8 - 1; 887 htotal = mode->htotal / 8 - 1; 888 889 /* Work around hardware quirk */ 890 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) 891 htotal++; 892 893 vdisplay = mode->vdisplay - 1; 894 vsyncstart = mode->vsync_start - 1; 895 vsyncend = mode->vsync_end - 1; 896 vtotal = mode->vtotal - 2; 897 898 WREG_GFX(0, 0); 899 WREG_GFX(1, 0); 900 WREG_GFX(2, 0); 901 WREG_GFX(3, 0); 902 WREG_GFX(4, 0); 903 WREG_GFX(5, 0x40); 904 WREG_GFX(6, 0x5); 905 WREG_GFX(7, 0xf); 906 WREG_GFX(8, 0xf); 907 908 WREG_CRT(0, htotal - 4); 909 WREG_CRT(1, hdisplay); 910 WREG_CRT(2, hdisplay); 911 WREG_CRT(3, (htotal & 0x1F) | 0x80); 912 WREG_CRT(4, hsyncstart); 913 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); 914 WREG_CRT(6, vtotal & 0xFF); 915 WREG_CRT(7, ((vtotal & 0x100) >> 8) | 916 ((vdisplay & 0x100) >> 7) | 917 ((vsyncstart & 0x100) >> 6) | 918 ((vdisplay & 0x100) >> 5) | 919 ((vdisplay & 0x100) >> 4) | /* linecomp */ 920 ((vtotal & 0x200) >> 4)| 921 ((vdisplay & 0x200) >> 3) | 922 ((vsyncstart & 0x200) >> 2)); 923 WREG_CRT(9, ((vdisplay & 0x200) >> 4) | 924 ((vdisplay & 0x200) >> 3)); 925 WREG_CRT(10, 0); 926 WREG_CRT(11, 0); 927 WREG_CRT(12, 0); 928 WREG_CRT(13, 0); 929 WREG_CRT(14, 0); 930 WREG_CRT(15, 0); 931 WREG_CRT(16, vsyncstart & 0xFF); 932 WREG_CRT(17, (vsyncend & 0x0F) | 0x20); 933 WREG_CRT(18, vdisplay & 0xFF); 934 WREG_CRT(19, pitch & 0xFF); 935 WREG_CRT(20, 0); 936 WREG_CRT(21, vdisplay & 0xFF); 937 WREG_CRT(22, (vtotal + 1) & 0xFF); 938 WREG_CRT(23, 0xc3); 939 WREG_CRT(24, vdisplay & 0xFF); 940 941 ext_vga[0] = 0; 942 ext_vga[5] = 0; 943 944 /* TODO interlace */ 945 946 ext_vga[0] |= (pitch & 0x300) >> 4; 947 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | 948 ((hdisplay & 0x100) >> 7) | 949 ((hsyncstart & 0x100) >> 6) | 950 (htotal & 0x40); 951 ext_vga[2] = ((vtotal & 0xc00) >> 10) | 952 ((vdisplay & 0x400) >> 8) | 953 ((vdisplay & 0xc00) >> 7) | 954 ((vsyncstart & 0xc00) >> 5) | 955 ((vdisplay & 0x400) >> 3); 956 if (crtc->fb->bits_per_pixel == 24) 957 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; 958 else 959 ext_vga[3] = ((1 << bppshift) - 1) | 0x80; 960 ext_vga[4] = 0; 961 if (mdev->type == G200_WB) 962 ext_vga[1] |= 0x88; 963 964 /* Set pixel clocks */ 965 misc = 0x2d; 966 WREG8(MGA_MISC_OUT, misc); 967 968 mga_crtc_set_plls(mdev, mode->clock); 969 970 for (i = 0; i < 6; i++) { 971 WREG_ECRT(i, ext_vga[i]); 972 } 973 974 if (mdev->type == G200_ER) 975 WREG_ECRT(0x24, 0x5); 976 977 if (mdev->type == G200_EV) { 978 WREG_ECRT(6, 0); 979 } 980 981 WREG_ECRT(0, ext_vga[0]); 982 /* Enable mga pixel clock */ 983 misc = 0x2d; 984 985 WREG8(MGA_MISC_OUT, misc); 986 987 if (adjusted_mode) 988 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); 989 990 mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 991 992 /* reset tagfifo */ 993 if (mdev->type == G200_ER) { 994 u32 mem_ctl = RREG32(MGAREG_MEMCTL); 995 u8 seq1; 996 997 /* screen off */ 998 WREG8(MGAREG_SEQ_INDEX, 0x01); 999 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; 1000 WREG8(MGAREG_SEQ_DATA, seq1); 1001 1002 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); 1003 udelay(1000); 1004 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); 1005 1006 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); 1007 } 1008 1009 1010 if (IS_G200_SE(mdev)) { 1011 if (mdev->reg_1e24 >= 0x02) { 1012 u8 hi_pri_lvl; 1013 u32 bpp; 1014 u32 mb; 1015 1016 if (crtc->fb->bits_per_pixel > 16) 1017 bpp = 32; 1018 else if (crtc->fb->bits_per_pixel > 8) 1019 bpp = 16; 1020 else 1021 bpp = 8; 1022 1023 mb = (mode->clock * bpp) / 1000; 1024 if (mb > 3100) 1025 hi_pri_lvl = 0; 1026 else if (mb > 2600) 1027 hi_pri_lvl = 1; 1028 else if (mb > 1900) 1029 hi_pri_lvl = 2; 1030 else if (mb > 1160) 1031 hi_pri_lvl = 3; 1032 else if (mb > 440) 1033 hi_pri_lvl = 4; 1034 else 1035 hi_pri_lvl = 5; 1036 1037 WREG8(0x1fde, 0x06); 1038 WREG8(0x1fdf, hi_pri_lvl); 1039 } else { 1040 if (mdev->reg_1e24 >= 0x01) 1041 WREG8(0x1fdf, 0x03); 1042 else 1043 WREG8(0x1fdf, 0x04); 1044 } 1045 } 1046 return 0; 1047 } 1048 1049 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ 1050 static int mga_suspend(struct drm_crtc *crtc) 1051 { 1052 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1053 struct drm_device *dev = crtc->dev; 1054 struct mga_device *mdev = dev->dev_private; 1055 struct pci_dev *pdev = dev->pdev; 1056 int option; 1057 1058 if (mdev->suspended) 1059 return 0; 1060 1061 WREG_SEQ(1, 0x20); 1062 WREG_ECRT(1, 0x30); 1063 /* Disable the pixel clock */ 1064 WREG_DAC(0x1a, 0x05); 1065 /* Power down the DAC */ 1066 WREG_DAC(0x1e, 0x18); 1067 /* Power down the pixel PLL */ 1068 WREG_DAC(0x1a, 0x0d); 1069 1070 /* Disable PLLs and clocks */ 1071 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1072 option &= ~(0x1F8024); 1073 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1074 pci_set_power_state(pdev, PCI_D3hot); 1075 pci_disable_device(pdev); 1076 1077 mdev->suspended = true; 1078 1079 return 0; 1080 } 1081 1082 static int mga_resume(struct drm_crtc *crtc) 1083 { 1084 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1085 struct drm_device *dev = crtc->dev; 1086 struct mga_device *mdev = dev->dev_private; 1087 struct pci_dev *pdev = dev->pdev; 1088 int option; 1089 1090 if (!mdev->suspended) 1091 return 0; 1092 1093 pci_set_power_state(pdev, PCI_D0); 1094 pci_enable_device(pdev); 1095 1096 /* Disable sysclk */ 1097 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1098 option &= ~(0x4); 1099 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1100 1101 mdev->suspended = false; 1102 1103 return 0; 1104 } 1105 1106 #endif 1107 1108 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) 1109 { 1110 struct drm_device *dev = crtc->dev; 1111 struct mga_device *mdev = dev->dev_private; 1112 u8 seq1 = 0, crtcext1 = 0; 1113 1114 switch (mode) { 1115 case DRM_MODE_DPMS_ON: 1116 seq1 = 0; 1117 crtcext1 = 0; 1118 mga_crtc_load_lut(crtc); 1119 break; 1120 case DRM_MODE_DPMS_STANDBY: 1121 seq1 = 0x20; 1122 crtcext1 = 0x10; 1123 break; 1124 case DRM_MODE_DPMS_SUSPEND: 1125 seq1 = 0x20; 1126 crtcext1 = 0x20; 1127 break; 1128 case DRM_MODE_DPMS_OFF: 1129 seq1 = 0x20; 1130 crtcext1 = 0x30; 1131 break; 1132 } 1133 1134 #if 0 1135 if (mode == DRM_MODE_DPMS_OFF) { 1136 mga_suspend(crtc); 1137 } 1138 #endif 1139 WREG8(MGAREG_SEQ_INDEX, 0x01); 1140 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; 1141 mga_wait_vsync(mdev); 1142 mga_wait_busy(mdev); 1143 WREG8(MGAREG_SEQ_DATA, seq1); 1144 msleep(20); 1145 WREG8(MGAREG_CRTCEXT_INDEX, 0x01); 1146 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; 1147 WREG8(MGAREG_CRTCEXT_DATA, crtcext1); 1148 1149 #if 0 1150 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { 1151 mga_resume(crtc); 1152 drm_helper_resume_force_mode(dev); 1153 } 1154 #endif 1155 } 1156 1157 /* 1158 * This is called before a mode is programmed. A typical use might be to 1159 * enable DPMS during the programming to avoid seeing intermediate stages, 1160 * but that's not relevant to us 1161 */ 1162 static void mga_crtc_prepare(struct drm_crtc *crtc) 1163 { 1164 struct drm_device *dev = crtc->dev; 1165 struct mga_device *mdev = dev->dev_private; 1166 u8 tmp; 1167 1168 /* mga_resume(crtc);*/ 1169 1170 WREG8(MGAREG_CRTC_INDEX, 0x11); 1171 tmp = RREG8(MGAREG_CRTC_DATA); 1172 WREG_CRT(0x11, tmp | 0x80); 1173 1174 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1175 WREG_SEQ(0, 1); 1176 msleep(50); 1177 WREG_SEQ(1, 0x20); 1178 msleep(20); 1179 } else { 1180 WREG8(MGAREG_SEQ_INDEX, 0x1); 1181 tmp = RREG8(MGAREG_SEQ_DATA); 1182 1183 /* start sync reset */ 1184 WREG_SEQ(0, 1); 1185 WREG_SEQ(1, tmp | 0x20); 1186 } 1187 1188 if (mdev->type == G200_WB) 1189 mga_g200wb_prepare(crtc); 1190 1191 WREG_CRT(17, 0); 1192 } 1193 1194 /* 1195 * This is called after a mode is programmed. It should reverse anything done 1196 * by the prepare function 1197 */ 1198 static void mga_crtc_commit(struct drm_crtc *crtc) 1199 { 1200 struct drm_device *dev = crtc->dev; 1201 struct mga_device *mdev = dev->dev_private; 1202 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1203 u8 tmp; 1204 1205 if (mdev->type == G200_WB) 1206 mga_g200wb_commit(crtc); 1207 1208 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1209 msleep(50); 1210 WREG_SEQ(1, 0x0); 1211 msleep(20); 1212 WREG_SEQ(0, 0x3); 1213 } else { 1214 WREG8(MGAREG_SEQ_INDEX, 0x1); 1215 tmp = RREG8(MGAREG_SEQ_DATA); 1216 1217 tmp &= ~0x20; 1218 WREG_SEQ(0x1, tmp); 1219 WREG_SEQ(0, 3); 1220 } 1221 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 1222 } 1223 1224 /* 1225 * The core can pass us a set of gamma values to program. We actually only 1226 * use this for 8-bit mode so can't perform smooth fades on deeper modes, 1227 * but it's a requirement that we provide the function 1228 */ 1229 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 1230 u16 *blue, uint32_t start, uint32_t size) 1231 { 1232 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1233 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size; 1234 int i; 1235 1236 for (i = start; i < end; i++) { 1237 mga_crtc->lut_r[i] = red[i] >> 8; 1238 mga_crtc->lut_g[i] = green[i] >> 8; 1239 mga_crtc->lut_b[i] = blue[i] >> 8; 1240 } 1241 mga_crtc_load_lut(crtc); 1242 } 1243 1244 /* Simple cleanup function */ 1245 static void mga_crtc_destroy(struct drm_crtc *crtc) 1246 { 1247 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1248 1249 drm_crtc_cleanup(crtc); 1250 kfree(mga_crtc); 1251 } 1252 1253 /* These provide the minimum set of functions required to handle a CRTC */ 1254 static const struct drm_crtc_funcs mga_crtc_funcs = { 1255 .gamma_set = mga_crtc_gamma_set, 1256 .set_config = drm_crtc_helper_set_config, 1257 .destroy = mga_crtc_destroy, 1258 }; 1259 1260 static const struct drm_crtc_helper_funcs mga_helper_funcs = { 1261 .dpms = mga_crtc_dpms, 1262 .mode_fixup = mga_crtc_mode_fixup, 1263 .mode_set = mga_crtc_mode_set, 1264 .mode_set_base = mga_crtc_mode_set_base, 1265 .prepare = mga_crtc_prepare, 1266 .commit = mga_crtc_commit, 1267 .load_lut = mga_crtc_load_lut, 1268 }; 1269 1270 /* CRTC setup */ 1271 static void mga_crtc_init(struct mga_device *mdev) 1272 { 1273 struct mga_crtc *mga_crtc; 1274 int i; 1275 1276 mga_crtc = kzalloc(sizeof(struct mga_crtc) + 1277 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), 1278 GFP_KERNEL); 1279 1280 if (mga_crtc == NULL) 1281 return; 1282 1283 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs); 1284 1285 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); 1286 mdev->mode_info.crtc = mga_crtc; 1287 1288 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 1289 mga_crtc->lut_r[i] = i; 1290 mga_crtc->lut_g[i] = i; 1291 mga_crtc->lut_b[i] = i; 1292 } 1293 1294 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); 1295 } 1296 1297 /** Sets the color ramps on behalf of fbcon */ 1298 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, 1299 u16 blue, int regno) 1300 { 1301 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1302 1303 mga_crtc->lut_r[regno] = red >> 8; 1304 mga_crtc->lut_g[regno] = green >> 8; 1305 mga_crtc->lut_b[regno] = blue >> 8; 1306 } 1307 1308 /** Gets the color ramps on behalf of fbcon */ 1309 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, 1310 u16 *blue, int regno) 1311 { 1312 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1313 1314 *red = (u16)mga_crtc->lut_r[regno] << 8; 1315 *green = (u16)mga_crtc->lut_g[regno] << 8; 1316 *blue = (u16)mga_crtc->lut_b[regno] << 8; 1317 } 1318 1319 /* 1320 * The encoder comes after the CRTC in the output pipeline, but before 1321 * the connector. It's responsible for ensuring that the digital 1322 * stream is appropriately converted into the output format. Setup is 1323 * very simple in this case - all we have to do is inform qemu of the 1324 * colour depth in order to ensure that it displays appropriately 1325 */ 1326 1327 /* 1328 * These functions are analagous to those in the CRTC code, but are intended 1329 * to handle any encoder-specific limitations 1330 */ 1331 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder, 1332 const struct drm_display_mode *mode, 1333 struct drm_display_mode *adjusted_mode) 1334 { 1335 return true; 1336 } 1337 1338 static void mga_encoder_mode_set(struct drm_encoder *encoder, 1339 struct drm_display_mode *mode, 1340 struct drm_display_mode *adjusted_mode) 1341 { 1342 1343 } 1344 1345 static void mga_encoder_dpms(struct drm_encoder *encoder, int state) 1346 { 1347 return; 1348 } 1349 1350 static void mga_encoder_prepare(struct drm_encoder *encoder) 1351 { 1352 } 1353 1354 static void mga_encoder_commit(struct drm_encoder *encoder) 1355 { 1356 } 1357 1358 void mga_encoder_destroy(struct drm_encoder *encoder) 1359 { 1360 struct mga_encoder *mga_encoder = to_mga_encoder(encoder); 1361 drm_encoder_cleanup(encoder); 1362 kfree(mga_encoder); 1363 } 1364 1365 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { 1366 .dpms = mga_encoder_dpms, 1367 .mode_fixup = mga_encoder_mode_fixup, 1368 .mode_set = mga_encoder_mode_set, 1369 .prepare = mga_encoder_prepare, 1370 .commit = mga_encoder_commit, 1371 }; 1372 1373 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { 1374 .destroy = mga_encoder_destroy, 1375 }; 1376 1377 static struct drm_encoder *mga_encoder_init(struct drm_device *dev) 1378 { 1379 struct drm_encoder *encoder; 1380 struct mga_encoder *mga_encoder; 1381 1382 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); 1383 if (!mga_encoder) 1384 return NULL; 1385 1386 encoder = &mga_encoder->base; 1387 encoder->possible_crtcs = 0x1; 1388 1389 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, 1390 DRM_MODE_ENCODER_DAC); 1391 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); 1392 1393 return encoder; 1394 } 1395 1396 1397 static int mga_vga_get_modes(struct drm_connector *connector) 1398 { 1399 struct mga_connector *mga_connector = to_mga_connector(connector); 1400 struct edid *edid; 1401 int ret = 0; 1402 1403 edid = drm_get_edid(connector, &mga_connector->i2c->adapter); 1404 if (edid) { 1405 drm_mode_connector_update_edid_property(connector, edid); 1406 ret = drm_add_edid_modes(connector, edid); 1407 kfree(edid); 1408 } 1409 return ret; 1410 } 1411 1412 static int mga_vga_mode_valid(struct drm_connector *connector, 1413 struct drm_display_mode *mode) 1414 { 1415 struct drm_device *dev = connector->dev; 1416 struct mga_device *mdev = (struct mga_device*)dev->dev_private; 1417 struct mga_fbdev *mfbdev = mdev->mfbdev; 1418 struct drm_fb_helper *fb_helper = &mfbdev->helper; 1419 struct drm_fb_helper_connector *fb_helper_conn = NULL; 1420 int bpp = 32; 1421 int i = 0; 1422 1423 /* FIXME: Add bandwidth and g200se limitations */ 1424 1425 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || 1426 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || 1427 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || 1428 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { 1429 return MODE_BAD; 1430 } 1431 1432 /* Validate the mode input by the user */ 1433 for (i = 0; i < fb_helper->connector_count; i++) { 1434 if (fb_helper->connector_info[i]->connector == connector) { 1435 /* Found the helper for this connector */ 1436 fb_helper_conn = fb_helper->connector_info[i]; 1437 if (fb_helper_conn->cmdline_mode.specified) { 1438 if (fb_helper_conn->cmdline_mode.bpp_specified) { 1439 bpp = fb_helper_conn->cmdline_mode.bpp; 1440 } 1441 } 1442 } 1443 } 1444 1445 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { 1446 if (fb_helper_conn) 1447 fb_helper_conn->cmdline_mode.specified = false; 1448 return MODE_BAD; 1449 } 1450 1451 return MODE_OK; 1452 } 1453 1454 struct drm_encoder *mga_connector_best_encoder(struct drm_connector 1455 *connector) 1456 { 1457 int enc_id = connector->encoder_ids[0]; 1458 struct drm_mode_object *obj; 1459 struct drm_encoder *encoder; 1460 1461 /* pick the encoder ids */ 1462 if (enc_id) { 1463 obj = 1464 drm_mode_object_find(connector->dev, enc_id, 1465 DRM_MODE_OBJECT_ENCODER); 1466 if (!obj) 1467 return NULL; 1468 encoder = obj_to_encoder(obj); 1469 return encoder; 1470 } 1471 return NULL; 1472 } 1473 1474 static enum drm_connector_status mga_vga_detect(struct drm_connector 1475 *connector, bool force) 1476 { 1477 return connector_status_connected; 1478 } 1479 1480 static void mga_connector_destroy(struct drm_connector *connector) 1481 { 1482 struct mga_connector *mga_connector = to_mga_connector(connector); 1483 mgag200_i2c_destroy(mga_connector->i2c); 1484 drm_connector_cleanup(connector); 1485 kfree(connector); 1486 } 1487 1488 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { 1489 .get_modes = mga_vga_get_modes, 1490 .mode_valid = mga_vga_mode_valid, 1491 .best_encoder = mga_connector_best_encoder, 1492 }; 1493 1494 struct drm_connector_funcs mga_vga_connector_funcs = { 1495 .dpms = drm_helper_connector_dpms, 1496 .detect = mga_vga_detect, 1497 .fill_modes = drm_helper_probe_single_connector_modes, 1498 .destroy = mga_connector_destroy, 1499 }; 1500 1501 static struct drm_connector *mga_vga_init(struct drm_device *dev) 1502 { 1503 struct drm_connector *connector; 1504 struct mga_connector *mga_connector; 1505 1506 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); 1507 if (!mga_connector) 1508 return NULL; 1509 1510 connector = &mga_connector->base; 1511 1512 drm_connector_init(dev, connector, 1513 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1514 1515 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); 1516 1517 mga_connector->i2c = mgag200_i2c_create(dev); 1518 if (!mga_connector->i2c) 1519 DRM_ERROR("failed to add ddc bus\n"); 1520 1521 return connector; 1522 } 1523 1524 1525 int mgag200_modeset_init(struct mga_device *mdev) 1526 { 1527 struct drm_encoder *encoder; 1528 struct drm_connector *connector; 1529 int ret; 1530 1531 mdev->mode_info.mode_config_initialized = true; 1532 1533 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; 1534 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; 1535 1536 mdev->dev->mode_config.fb_base = mdev->mc.vram_base; 1537 1538 mga_crtc_init(mdev); 1539 1540 encoder = mga_encoder_init(mdev->dev); 1541 if (!encoder) { 1542 DRM_ERROR("mga_encoder_init failed\n"); 1543 return -1; 1544 } 1545 1546 connector = mga_vga_init(mdev->dev); 1547 if (!connector) { 1548 DRM_ERROR("mga_vga_init failed\n"); 1549 return -1; 1550 } 1551 1552 drm_mode_connector_attach_encoder(connector, encoder); 1553 1554 ret = mgag200_fbdev_init(mdev); 1555 if (ret) { 1556 DRM_ERROR("mga_fbdev_init failed\n"); 1557 return ret; 1558 } 1559 1560 return 0; 1561 } 1562 1563 void mgag200_modeset_fini(struct mga_device *mdev) 1564 { 1565 1566 } 1567