1 /* 2 * Copyright 2010 Matt Turner. 3 * Copyright 2012 Red Hat 4 * 5 * This file is subject to the terms and conditions of the GNU General 6 * Public License version 2. See the file COPYING in the main 7 * directory of this archive for more details. 8 * 9 * Authors: Matthew Garrett 10 * Matt Turner 11 * Dave Airlie 12 */ 13 14 #include <linux/delay.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_crtc_helper.h> 18 19 #include "mgag200_drv.h" 20 21 #define MGAG200_LUT_SIZE 256 22 23 /* 24 * This file contains setup code for the CRTC. 25 */ 26 27 static void mga_crtc_load_lut(struct drm_crtc *crtc) 28 { 29 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 30 struct drm_device *dev = crtc->dev; 31 struct mga_device *mdev = dev->dev_private; 32 struct drm_framebuffer *fb = crtc->fb; 33 int i; 34 35 if (!crtc->enabled) 36 return; 37 38 WREG8(DAC_INDEX + MGA1064_INDEX, 0); 39 40 if (fb && fb->bits_per_pixel == 16) { 41 int inc = (fb->depth == 15) ? 8 : 4; 42 u8 r, b; 43 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) { 44 if (fb->depth == 16) { 45 if (i > (MGAG200_LUT_SIZE >> 1)) { 46 r = b = 0; 47 } else { 48 r = mga_crtc->lut_r[i << 1]; 49 b = mga_crtc->lut_b[i << 1]; 50 } 51 } else { 52 r = mga_crtc->lut_r[i]; 53 b = mga_crtc->lut_b[i]; 54 } 55 /* VGA registers */ 56 WREG8(DAC_INDEX + MGA1064_COL_PAL, r); 57 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 58 WREG8(DAC_INDEX + MGA1064_COL_PAL, b); 59 } 60 return; 61 } 62 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 63 /* VGA registers */ 64 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]); 65 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 66 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]); 67 } 68 } 69 70 static inline void mga_wait_vsync(struct mga_device *mdev) 71 { 72 unsigned long timeout = jiffies + HZ/10; 73 unsigned int status = 0; 74 75 do { 76 status = RREG32(MGAREG_Status); 77 } while ((status & 0x08) && time_before(jiffies, timeout)); 78 timeout = jiffies + HZ/10; 79 status = 0; 80 do { 81 status = RREG32(MGAREG_Status); 82 } while (!(status & 0x08) && time_before(jiffies, timeout)); 83 } 84 85 static inline void mga_wait_busy(struct mga_device *mdev) 86 { 87 unsigned long timeout = jiffies + HZ; 88 unsigned int status = 0; 89 do { 90 status = RREG8(MGAREG_Status + 2); 91 } while ((status & 0x01) && time_before(jiffies, timeout)); 92 } 93 94 /* 95 * The core passes the desired mode to the CRTC code to see whether any 96 * CRTC-specific modifications need to be made to it. We're in a position 97 * to just pass that straight through, so this does nothing 98 */ 99 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc, 100 const struct drm_display_mode *mode, 101 struct drm_display_mode *adjusted_mode) 102 { 103 return true; 104 } 105 106 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) 107 { 108 unsigned int vcomax, vcomin, pllreffreq; 109 unsigned int delta, tmpdelta, permitteddelta; 110 unsigned int testp, testm, testn; 111 unsigned int p, m, n; 112 unsigned int computed; 113 114 m = n = p = 0; 115 vcomax = 320000; 116 vcomin = 160000; 117 pllreffreq = 25000; 118 119 delta = 0xffffffff; 120 permitteddelta = clock * 5 / 1000; 121 122 for (testp = 8; testp > 0; testp /= 2) { 123 if (clock * testp > vcomax) 124 continue; 125 if (clock * testp < vcomin) 126 continue; 127 128 for (testn = 17; testn < 256; testn++) { 129 for (testm = 1; testm < 32; testm++) { 130 computed = (pllreffreq * testn) / 131 (testm * testp); 132 if (computed > clock) 133 tmpdelta = computed - clock; 134 else 135 tmpdelta = clock - computed; 136 if (tmpdelta < delta) { 137 delta = tmpdelta; 138 m = testm - 1; 139 n = testn - 1; 140 p = testp - 1; 141 } 142 } 143 } 144 } 145 146 if (delta > permitteddelta) { 147 printk(KERN_WARNING "PLL delta too large\n"); 148 return 1; 149 } 150 151 WREG_DAC(MGA1064_PIX_PLLC_M, m); 152 WREG_DAC(MGA1064_PIX_PLLC_N, n); 153 WREG_DAC(MGA1064_PIX_PLLC_P, p); 154 return 0; 155 } 156 157 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) 158 { 159 unsigned int vcomax, vcomin, pllreffreq; 160 unsigned int delta, tmpdelta, permitteddelta; 161 unsigned int testp, testm, testn; 162 unsigned int p, m, n; 163 unsigned int computed; 164 int i, j, tmpcount, vcount; 165 bool pll_locked = false; 166 u8 tmp; 167 168 m = n = p = 0; 169 vcomax = 550000; 170 vcomin = 150000; 171 pllreffreq = 48000; 172 173 delta = 0xffffffff; 174 permitteddelta = clock * 5 / 1000; 175 176 for (testp = 1; testp < 9; testp++) { 177 if (clock * testp > vcomax) 178 continue; 179 if (clock * testp < vcomin) 180 continue; 181 182 for (testm = 1; testm < 17; testm++) { 183 for (testn = 1; testn < 151; testn++) { 184 computed = (pllreffreq * testn) / 185 (testm * testp); 186 if (computed > clock) 187 tmpdelta = computed - clock; 188 else 189 tmpdelta = clock - computed; 190 if (tmpdelta < delta) { 191 delta = tmpdelta; 192 n = testn - 1; 193 m = (testm - 1) | ((n >> 1) & 0x80); 194 p = testp - 1; 195 } 196 } 197 } 198 } 199 200 for (i = 0; i <= 32 && pll_locked == false; i++) { 201 if (i > 0) { 202 WREG8(MGAREG_CRTC_INDEX, 0x1e); 203 tmp = RREG8(MGAREG_CRTC_DATA); 204 if (tmp < 0xff) 205 WREG8(MGAREG_CRTC_DATA, tmp+1); 206 } 207 208 /* set pixclkdis to 1 */ 209 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 210 tmp = RREG8(DAC_DATA); 211 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 212 WREG8(DAC_DATA, tmp); 213 214 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 215 tmp = RREG8(DAC_DATA); 216 tmp |= MGA1064_REMHEADCTL_CLKDIS; 217 WREG8(DAC_DATA, tmp); 218 219 /* select PLL Set C */ 220 tmp = RREG8(MGAREG_MEM_MISC_READ); 221 tmp |= 0x3 << 2; 222 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 223 224 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 225 tmp = RREG8(DAC_DATA); 226 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; 227 WREG8(DAC_DATA, tmp); 228 229 udelay(500); 230 231 /* reset the PLL */ 232 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 233 tmp = RREG8(DAC_DATA); 234 tmp &= ~0x04; 235 WREG8(DAC_DATA, tmp); 236 237 udelay(50); 238 239 /* program pixel pll register */ 240 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); 241 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); 242 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); 243 244 udelay(50); 245 246 /* turn pll on */ 247 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 248 tmp = RREG8(DAC_DATA); 249 tmp |= 0x04; 250 WREG_DAC(MGA1064_VREF_CTL, tmp); 251 252 udelay(500); 253 254 /* select the pixel pll */ 255 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 256 tmp = RREG8(DAC_DATA); 257 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 258 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 259 WREG8(DAC_DATA, tmp); 260 261 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 262 tmp = RREG8(DAC_DATA); 263 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; 264 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; 265 WREG8(DAC_DATA, tmp); 266 267 /* reset dotclock rate bit */ 268 WREG8(MGAREG_SEQ_INDEX, 1); 269 tmp = RREG8(MGAREG_SEQ_DATA); 270 tmp &= ~0x8; 271 WREG8(MGAREG_SEQ_DATA, tmp); 272 273 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 274 tmp = RREG8(DAC_DATA); 275 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 276 WREG8(DAC_DATA, tmp); 277 278 vcount = RREG8(MGAREG_VCOUNT); 279 280 for (j = 0; j < 30 && pll_locked == false; j++) { 281 tmpcount = RREG8(MGAREG_VCOUNT); 282 if (tmpcount < vcount) 283 vcount = 0; 284 if ((tmpcount - vcount) > 2) 285 pll_locked = true; 286 else 287 udelay(5); 288 } 289 } 290 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 291 tmp = RREG8(DAC_DATA); 292 tmp &= ~MGA1064_REMHEADCTL_CLKDIS; 293 WREG_DAC(MGA1064_REMHEADCTL, tmp); 294 return 0; 295 } 296 297 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) 298 { 299 unsigned int vcomax, vcomin, pllreffreq; 300 unsigned int delta, tmpdelta, permitteddelta; 301 unsigned int testp, testm, testn; 302 unsigned int p, m, n; 303 unsigned int computed; 304 u8 tmp; 305 306 m = n = p = 0; 307 vcomax = 550000; 308 vcomin = 150000; 309 pllreffreq = 50000; 310 311 delta = 0xffffffff; 312 permitteddelta = clock * 5 / 1000; 313 314 for (testp = 16; testp > 0; testp--) { 315 if (clock * testp > vcomax) 316 continue; 317 if (clock * testp < vcomin) 318 continue; 319 320 for (testn = 1; testn < 257; testn++) { 321 for (testm = 1; testm < 17; testm++) { 322 computed = (pllreffreq * testn) / 323 (testm * testp); 324 if (computed > clock) 325 tmpdelta = computed - clock; 326 else 327 tmpdelta = clock - computed; 328 if (tmpdelta < delta) { 329 delta = tmpdelta; 330 n = testn - 1; 331 m = testm - 1; 332 p = testp - 1; 333 } 334 } 335 } 336 } 337 338 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 339 tmp = RREG8(DAC_DATA); 340 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 341 WREG8(DAC_DATA, tmp); 342 343 tmp = RREG8(MGAREG_MEM_MISC_READ); 344 tmp |= 0x3 << 2; 345 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 346 347 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 348 tmp = RREG8(DAC_DATA); 349 WREG8(DAC_DATA, tmp & ~0x40); 350 351 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 352 tmp = RREG8(DAC_DATA); 353 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 354 WREG8(DAC_DATA, tmp); 355 356 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); 357 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); 358 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); 359 360 udelay(50); 361 362 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 363 tmp = RREG8(DAC_DATA); 364 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 365 WREG8(DAC_DATA, tmp); 366 367 udelay(500); 368 369 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 370 tmp = RREG8(DAC_DATA); 371 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 372 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 373 WREG8(DAC_DATA, tmp); 374 375 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 376 tmp = RREG8(DAC_DATA); 377 WREG8(DAC_DATA, tmp | 0x40); 378 379 tmp = RREG8(MGAREG_MEM_MISC_READ); 380 tmp |= (0x3 << 2); 381 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 382 383 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 384 tmp = RREG8(DAC_DATA); 385 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 386 WREG8(DAC_DATA, tmp); 387 388 return 0; 389 } 390 391 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) 392 { 393 unsigned int vcomax, vcomin, pllreffreq; 394 unsigned int delta, tmpdelta, permitteddelta; 395 unsigned int testp, testm, testn; 396 unsigned int p, m, n; 397 unsigned int computed; 398 int i, j, tmpcount, vcount; 399 u8 tmp; 400 bool pll_locked = false; 401 402 m = n = p = 0; 403 vcomax = 800000; 404 vcomin = 400000; 405 pllreffreq = 33333; 406 407 delta = 0xffffffff; 408 permitteddelta = clock * 5 / 1000; 409 410 for (testp = 16; testp > 0; testp >>= 1) { 411 if (clock * testp > vcomax) 412 continue; 413 if (clock * testp < vcomin) 414 continue; 415 416 for (testm = 1; testm < 33; testm++) { 417 for (testn = 17; testn < 257; testn++) { 418 computed = (pllreffreq * testn) / 419 (testm * testp); 420 if (computed > clock) 421 tmpdelta = computed - clock; 422 else 423 tmpdelta = clock - computed; 424 if (tmpdelta < delta) { 425 delta = tmpdelta; 426 n = testn - 1; 427 m = (testm - 1); 428 p = testp - 1; 429 } 430 if ((clock * testp) >= 600000) 431 p |= 0x80; 432 } 433 } 434 } 435 for (i = 0; i <= 32 && pll_locked == false; i++) { 436 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 437 tmp = RREG8(DAC_DATA); 438 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 439 WREG8(DAC_DATA, tmp); 440 441 tmp = RREG8(MGAREG_MEM_MISC_READ); 442 tmp |= 0x3 << 2; 443 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 444 445 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 446 tmp = RREG8(DAC_DATA); 447 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 448 WREG8(DAC_DATA, tmp); 449 450 udelay(500); 451 452 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); 453 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); 454 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); 455 456 udelay(500); 457 458 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 459 tmp = RREG8(DAC_DATA); 460 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 461 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 462 WREG8(DAC_DATA, tmp); 463 464 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 465 tmp = RREG8(DAC_DATA); 466 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 467 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 468 WREG8(DAC_DATA, tmp); 469 470 vcount = RREG8(MGAREG_VCOUNT); 471 472 for (j = 0; j < 30 && pll_locked == false; j++) { 473 tmpcount = RREG8(MGAREG_VCOUNT); 474 if (tmpcount < vcount) 475 vcount = 0; 476 if ((tmpcount - vcount) > 2) 477 pll_locked = true; 478 else 479 udelay(5); 480 } 481 } 482 483 return 0; 484 } 485 486 static int mga_g200er_set_plls(struct mga_device *mdev, long clock) 487 { 488 unsigned int vcomax, vcomin, pllreffreq; 489 unsigned int delta, tmpdelta; 490 int testr, testn, testm, testo; 491 unsigned int p, m, n; 492 unsigned int computed, vco; 493 int tmp; 494 const unsigned int m_div_val[] = { 1, 2, 4, 8 }; 495 496 m = n = p = 0; 497 vcomax = 1488000; 498 vcomin = 1056000; 499 pllreffreq = 48000; 500 501 delta = 0xffffffff; 502 503 for (testr = 0; testr < 4; testr++) { 504 if (delta == 0) 505 break; 506 for (testn = 5; testn < 129; testn++) { 507 if (delta == 0) 508 break; 509 for (testm = 3; testm >= 0; testm--) { 510 if (delta == 0) 511 break; 512 for (testo = 5; testo < 33; testo++) { 513 vco = pllreffreq * (testn + 1) / 514 (testr + 1); 515 if (vco < vcomin) 516 continue; 517 if (vco > vcomax) 518 continue; 519 computed = vco / (m_div_val[testm] * (testo + 1)); 520 if (computed > clock) 521 tmpdelta = computed - clock; 522 else 523 tmpdelta = clock - computed; 524 if (tmpdelta < delta) { 525 delta = tmpdelta; 526 m = testm | (testo << 3); 527 n = testn; 528 p = testr | (testr << 3); 529 } 530 } 531 } 532 } 533 } 534 535 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 536 tmp = RREG8(DAC_DATA); 537 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 538 WREG8(DAC_DATA, tmp); 539 540 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 541 tmp = RREG8(DAC_DATA); 542 tmp |= MGA1064_REMHEADCTL_CLKDIS; 543 WREG8(DAC_DATA, tmp); 544 545 tmp = RREG8(MGAREG_MEM_MISC_READ); 546 tmp |= (0x3<<2) | 0xc0; 547 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 548 549 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 550 tmp = RREG8(DAC_DATA); 551 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 552 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 553 WREG8(DAC_DATA, tmp); 554 555 udelay(500); 556 557 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); 558 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); 559 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); 560 561 udelay(50); 562 563 return 0; 564 } 565 566 static int mga_crtc_set_plls(struct mga_device *mdev, long clock) 567 { 568 switch(mdev->type) { 569 case G200_SE_A: 570 case G200_SE_B: 571 return mga_g200se_set_plls(mdev, clock); 572 break; 573 case G200_WB: 574 return mga_g200wb_set_plls(mdev, clock); 575 break; 576 case G200_EV: 577 return mga_g200ev_set_plls(mdev, clock); 578 break; 579 case G200_EH: 580 return mga_g200eh_set_plls(mdev, clock); 581 break; 582 case G200_ER: 583 return mga_g200er_set_plls(mdev, clock); 584 break; 585 } 586 return 0; 587 } 588 589 static void mga_g200wb_prepare(struct drm_crtc *crtc) 590 { 591 struct mga_device *mdev = crtc->dev->dev_private; 592 u8 tmp; 593 int iter_max; 594 595 /* 1- The first step is to warn the BMC of an upcoming mode change. 596 * We are putting the misc<0> to output.*/ 597 598 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); 599 tmp = RREG8(DAC_DATA); 600 tmp |= 0x10; 601 WREG_DAC(MGA1064_GEN_IO_CTL, tmp); 602 603 /* we are putting a 1 on the misc<0> line */ 604 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 605 tmp = RREG8(DAC_DATA); 606 tmp |= 0x10; 607 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 608 609 /* 2- Second step to mask and further scan request 610 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) 611 */ 612 WREG8(DAC_INDEX, MGA1064_SPAREREG); 613 tmp = RREG8(DAC_DATA); 614 tmp |= 0x80; 615 WREG_DAC(MGA1064_SPAREREG, tmp); 616 617 /* 3a- the third step is to verifu if there is an active scan 618 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>) 619 */ 620 iter_max = 300; 621 while (!(tmp & 0x1) && iter_max) { 622 WREG8(DAC_INDEX, MGA1064_SPAREREG); 623 tmp = RREG8(DAC_DATA); 624 udelay(1000); 625 iter_max--; 626 } 627 628 /* 3b- this step occurs only if the remove is actually scanning 629 * we are waiting for the end of the frame which is a 1 on 630 * remvsyncsts (XSPAREREG<1>) 631 */ 632 if (iter_max) { 633 iter_max = 300; 634 while ((tmp & 0x2) && iter_max) { 635 WREG8(DAC_INDEX, MGA1064_SPAREREG); 636 tmp = RREG8(DAC_DATA); 637 udelay(1000); 638 iter_max--; 639 } 640 } 641 } 642 643 static void mga_g200wb_commit(struct drm_crtc *crtc) 644 { 645 u8 tmp; 646 struct mga_device *mdev = crtc->dev->dev_private; 647 648 /* 1- The first step is to ensure that the vrsten and hrsten are set */ 649 WREG8(MGAREG_CRTCEXT_INDEX, 1); 650 tmp = RREG8(MGAREG_CRTCEXT_DATA); 651 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); 652 653 /* 2- second step is to assert the rstlvl2 */ 654 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 655 tmp = RREG8(DAC_DATA); 656 tmp |= 0x8; 657 WREG8(DAC_DATA, tmp); 658 659 /* wait 10 us */ 660 udelay(10); 661 662 /* 3- deassert rstlvl2 */ 663 tmp &= ~0x08; 664 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 665 WREG8(DAC_DATA, tmp); 666 667 /* 4- remove mask of scan request */ 668 WREG8(DAC_INDEX, MGA1064_SPAREREG); 669 tmp = RREG8(DAC_DATA); 670 tmp &= ~0x80; 671 WREG8(DAC_DATA, tmp); 672 673 /* 5- put back a 0 on the misc<0> line */ 674 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 675 tmp = RREG8(DAC_DATA); 676 tmp &= ~0x10; 677 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 678 } 679 680 /* 681 This is how the framebuffer base address is stored in g200 cards: 682 * Assume @offset is the gpu_addr variable of the framebuffer object 683 * Then addr is the number of _pixels_ (not bytes) from the start of 684 VRAM to the first pixel we want to display. (divided by 2 for 32bit 685 framebuffers) 686 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers 687 addr<20> -> CRTCEXT0<6> 688 addr<19-16> -> CRTCEXT0<3-0> 689 addr<15-8> -> CRTCC<7-0> 690 addr<7-0> -> CRTCD<7-0> 691 CRTCEXT0 has to be programmed last to trigger an update and make the 692 new addr variable take effect. 693 */ 694 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) 695 { 696 struct mga_device *mdev = crtc->dev->dev_private; 697 u32 addr; 698 int count; 699 u8 crtcext0; 700 701 while (RREG8(0x1fda) & 0x08); 702 while (!(RREG8(0x1fda) & 0x08)); 703 704 count = RREG8(MGAREG_VCOUNT) + 2; 705 while (RREG8(MGAREG_VCOUNT) < count); 706 707 WREG8(MGAREG_CRTCEXT_INDEX, 0); 708 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA); 709 crtcext0 &= 0xB0; 710 addr = offset / 8; 711 /* Can't store addresses any higher than that... 712 but we also don't have more than 16MB of memory, so it should be fine. */ 713 WARN_ON(addr > 0x1fffff); 714 crtcext0 |= (!!(addr & (1<<20)))<<6; 715 WREG_CRT(0x0d, (u8)(addr & 0xff)); 716 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); 717 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0); 718 } 719 720 721 /* ast is different - we will force move buffers out of VRAM */ 722 static int mga_crtc_do_set_base(struct drm_crtc *crtc, 723 struct drm_framebuffer *fb, 724 int x, int y, int atomic) 725 { 726 struct mga_device *mdev = crtc->dev->dev_private; 727 struct drm_gem_object *obj; 728 struct mga_framebuffer *mga_fb; 729 struct mgag200_bo *bo; 730 int ret; 731 u64 gpu_addr; 732 733 /* push the previous fb to system ram */ 734 if (!atomic && fb) { 735 mga_fb = to_mga_framebuffer(fb); 736 obj = mga_fb->obj; 737 bo = gem_to_mga_bo(obj); 738 ret = mgag200_bo_reserve(bo, false); 739 if (ret) 740 return ret; 741 mgag200_bo_push_sysram(bo); 742 mgag200_bo_unreserve(bo); 743 } 744 745 mga_fb = to_mga_framebuffer(crtc->fb); 746 obj = mga_fb->obj; 747 bo = gem_to_mga_bo(obj); 748 749 ret = mgag200_bo_reserve(bo, false); 750 if (ret) 751 return ret; 752 753 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); 754 if (ret) { 755 mgag200_bo_unreserve(bo); 756 return ret; 757 } 758 759 if (&mdev->mfbdev->mfb == mga_fb) { 760 /* if pushing console in kmap it */ 761 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); 762 if (ret) 763 DRM_ERROR("failed to kmap fbcon\n"); 764 765 } 766 mgag200_bo_unreserve(bo); 767 768 mga_set_start_address(crtc, (u32)gpu_addr); 769 770 return 0; 771 } 772 773 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, 774 struct drm_framebuffer *old_fb) 775 { 776 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 777 } 778 779 static int mga_crtc_mode_set(struct drm_crtc *crtc, 780 struct drm_display_mode *mode, 781 struct drm_display_mode *adjusted_mode, 782 int x, int y, struct drm_framebuffer *old_fb) 783 { 784 struct drm_device *dev = crtc->dev; 785 struct mga_device *mdev = dev->dev_private; 786 int hdisplay, hsyncstart, hsyncend, htotal; 787 int vdisplay, vsyncstart, vsyncend, vtotal; 788 int pitch; 789 int option = 0, option2 = 0; 790 int i; 791 unsigned char misc = 0; 792 unsigned char ext_vga[6]; 793 u8 bppshift; 794 795 static unsigned char dacvalue[] = { 796 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, 797 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, 798 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, 799 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, 800 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 801 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, 802 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, 803 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, 804 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, 805 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 806 }; 807 808 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1]; 809 810 switch (mdev->type) { 811 case G200_SE_A: 812 case G200_SE_B: 813 dacvalue[MGA1064_VREF_CTL] = 0x03; 814 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 815 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | 816 MGA1064_MISC_CTL_VGA8 | 817 MGA1064_MISC_CTL_DAC_RAM_CS; 818 if (mdev->has_sdram) 819 option = 0x40049120; 820 else 821 option = 0x4004d120; 822 option2 = 0x00008000; 823 break; 824 case G200_WB: 825 dacvalue[MGA1064_VREF_CTL] = 0x07; 826 option = 0x41049120; 827 option2 = 0x0000b000; 828 break; 829 case G200_EV: 830 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 831 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 832 MGA1064_MISC_CTL_DAC_RAM_CS; 833 option = 0x00000120; 834 option2 = 0x0000b000; 835 break; 836 case G200_EH: 837 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 838 MGA1064_MISC_CTL_DAC_RAM_CS; 839 option = 0x00000120; 840 option2 = 0x0000b000; 841 break; 842 case G200_ER: 843 break; 844 } 845 846 switch (crtc->fb->bits_per_pixel) { 847 case 8: 848 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; 849 break; 850 case 16: 851 if (crtc->fb->depth == 15) 852 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; 853 else 854 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; 855 break; 856 case 24: 857 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; 858 break; 859 case 32: 860 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; 861 break; 862 } 863 864 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 865 misc |= 0x40; 866 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 867 misc |= 0x80; 868 869 870 for (i = 0; i < sizeof(dacvalue); i++) { 871 if ((i <= 0x17) || 872 (i == 0x1b) || 873 (i == 0x1c) || 874 ((i >= 0x1f) && (i <= 0x29)) || 875 ((i >= 0x30) && (i <= 0x37))) 876 continue; 877 if (IS_G200_SE(mdev) && 878 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) 879 continue; 880 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) && 881 (i >= 0x44) && (i <= 0x4e)) 882 continue; 883 884 WREG_DAC(i, dacvalue[i]); 885 } 886 887 if (mdev->type == G200_ER) 888 WREG_DAC(0x90, 0); 889 890 if (option) 891 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); 892 if (option2) 893 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); 894 895 WREG_SEQ(2, 0xf); 896 WREG_SEQ(3, 0); 897 WREG_SEQ(4, 0xe); 898 899 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8); 900 if (crtc->fb->bits_per_pixel == 24) 901 pitch = (pitch * 3) >> (4 - bppshift); 902 else 903 pitch = pitch >> (4 - bppshift); 904 905 hdisplay = mode->hdisplay / 8 - 1; 906 hsyncstart = mode->hsync_start / 8 - 1; 907 hsyncend = mode->hsync_end / 8 - 1; 908 htotal = mode->htotal / 8 - 1; 909 910 /* Work around hardware quirk */ 911 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) 912 htotal++; 913 914 vdisplay = mode->vdisplay - 1; 915 vsyncstart = mode->vsync_start - 1; 916 vsyncend = mode->vsync_end - 1; 917 vtotal = mode->vtotal - 2; 918 919 WREG_GFX(0, 0); 920 WREG_GFX(1, 0); 921 WREG_GFX(2, 0); 922 WREG_GFX(3, 0); 923 WREG_GFX(4, 0); 924 WREG_GFX(5, 0x40); 925 WREG_GFX(6, 0x5); 926 WREG_GFX(7, 0xf); 927 WREG_GFX(8, 0xf); 928 929 WREG_CRT(0, htotal - 4); 930 WREG_CRT(1, hdisplay); 931 WREG_CRT(2, hdisplay); 932 WREG_CRT(3, (htotal & 0x1F) | 0x80); 933 WREG_CRT(4, hsyncstart); 934 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); 935 WREG_CRT(6, vtotal & 0xFF); 936 WREG_CRT(7, ((vtotal & 0x100) >> 8) | 937 ((vdisplay & 0x100) >> 7) | 938 ((vsyncstart & 0x100) >> 6) | 939 ((vdisplay & 0x100) >> 5) | 940 ((vdisplay & 0x100) >> 4) | /* linecomp */ 941 ((vtotal & 0x200) >> 4)| 942 ((vdisplay & 0x200) >> 3) | 943 ((vsyncstart & 0x200) >> 2)); 944 WREG_CRT(9, ((vdisplay & 0x200) >> 4) | 945 ((vdisplay & 0x200) >> 3)); 946 WREG_CRT(10, 0); 947 WREG_CRT(11, 0); 948 WREG_CRT(12, 0); 949 WREG_CRT(13, 0); 950 WREG_CRT(14, 0); 951 WREG_CRT(15, 0); 952 WREG_CRT(16, vsyncstart & 0xFF); 953 WREG_CRT(17, (vsyncend & 0x0F) | 0x20); 954 WREG_CRT(18, vdisplay & 0xFF); 955 WREG_CRT(19, pitch & 0xFF); 956 WREG_CRT(20, 0); 957 WREG_CRT(21, vdisplay & 0xFF); 958 WREG_CRT(22, (vtotal + 1) & 0xFF); 959 WREG_CRT(23, 0xc3); 960 WREG_CRT(24, vdisplay & 0xFF); 961 962 ext_vga[0] = 0; 963 ext_vga[5] = 0; 964 965 /* TODO interlace */ 966 967 ext_vga[0] |= (pitch & 0x300) >> 4; 968 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | 969 ((hdisplay & 0x100) >> 7) | 970 ((hsyncstart & 0x100) >> 6) | 971 (htotal & 0x40); 972 ext_vga[2] = ((vtotal & 0xc00) >> 10) | 973 ((vdisplay & 0x400) >> 8) | 974 ((vdisplay & 0xc00) >> 7) | 975 ((vsyncstart & 0xc00) >> 5) | 976 ((vdisplay & 0x400) >> 3); 977 if (crtc->fb->bits_per_pixel == 24) 978 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; 979 else 980 ext_vga[3] = ((1 << bppshift) - 1) | 0x80; 981 ext_vga[4] = 0; 982 if (mdev->type == G200_WB) 983 ext_vga[1] |= 0x88; 984 985 /* Set pixel clocks */ 986 misc = 0x2d; 987 WREG8(MGA_MISC_OUT, misc); 988 989 mga_crtc_set_plls(mdev, mode->clock); 990 991 for (i = 0; i < 6; i++) { 992 WREG_ECRT(i, ext_vga[i]); 993 } 994 995 if (mdev->type == G200_ER) 996 WREG_ECRT(0x24, 0x5); 997 998 if (mdev->type == G200_EV) { 999 WREG_ECRT(6, 0); 1000 } 1001 1002 WREG_ECRT(0, ext_vga[0]); 1003 /* Enable mga pixel clock */ 1004 misc = 0x2d; 1005 1006 WREG8(MGA_MISC_OUT, misc); 1007 1008 if (adjusted_mode) 1009 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); 1010 1011 mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 1012 1013 /* reset tagfifo */ 1014 if (mdev->type == G200_ER) { 1015 u32 mem_ctl = RREG32(MGAREG_MEMCTL); 1016 u8 seq1; 1017 1018 /* screen off */ 1019 WREG8(MGAREG_SEQ_INDEX, 0x01); 1020 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; 1021 WREG8(MGAREG_SEQ_DATA, seq1); 1022 1023 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); 1024 udelay(1000); 1025 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); 1026 1027 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); 1028 } 1029 1030 1031 if (IS_G200_SE(mdev)) { 1032 if (mdev->unique_rev_id >= 0x02) { 1033 u8 hi_pri_lvl; 1034 u32 bpp; 1035 u32 mb; 1036 1037 if (crtc->fb->bits_per_pixel > 16) 1038 bpp = 32; 1039 else if (crtc->fb->bits_per_pixel > 8) 1040 bpp = 16; 1041 else 1042 bpp = 8; 1043 1044 mb = (mode->clock * bpp) / 1000; 1045 if (mb > 3100) 1046 hi_pri_lvl = 0; 1047 else if (mb > 2600) 1048 hi_pri_lvl = 1; 1049 else if (mb > 1900) 1050 hi_pri_lvl = 2; 1051 else if (mb > 1160) 1052 hi_pri_lvl = 3; 1053 else if (mb > 440) 1054 hi_pri_lvl = 4; 1055 else 1056 hi_pri_lvl = 5; 1057 1058 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1059 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl); 1060 } else { 1061 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1062 if (mdev->unique_rev_id >= 0x01) 1063 WREG8(MGAREG_CRTCEXT_DATA, 0x03); 1064 else 1065 WREG8(MGAREG_CRTCEXT_DATA, 0x04); 1066 } 1067 } 1068 return 0; 1069 } 1070 1071 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ 1072 static int mga_suspend(struct drm_crtc *crtc) 1073 { 1074 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1075 struct drm_device *dev = crtc->dev; 1076 struct mga_device *mdev = dev->dev_private; 1077 struct pci_dev *pdev = dev->pdev; 1078 int option; 1079 1080 if (mdev->suspended) 1081 return 0; 1082 1083 WREG_SEQ(1, 0x20); 1084 WREG_ECRT(1, 0x30); 1085 /* Disable the pixel clock */ 1086 WREG_DAC(0x1a, 0x05); 1087 /* Power down the DAC */ 1088 WREG_DAC(0x1e, 0x18); 1089 /* Power down the pixel PLL */ 1090 WREG_DAC(0x1a, 0x0d); 1091 1092 /* Disable PLLs and clocks */ 1093 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1094 option &= ~(0x1F8024); 1095 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1096 pci_set_power_state(pdev, PCI_D3hot); 1097 pci_disable_device(pdev); 1098 1099 mdev->suspended = true; 1100 1101 return 0; 1102 } 1103 1104 static int mga_resume(struct drm_crtc *crtc) 1105 { 1106 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1107 struct drm_device *dev = crtc->dev; 1108 struct mga_device *mdev = dev->dev_private; 1109 struct pci_dev *pdev = dev->pdev; 1110 int option; 1111 1112 if (!mdev->suspended) 1113 return 0; 1114 1115 pci_set_power_state(pdev, PCI_D0); 1116 pci_enable_device(pdev); 1117 1118 /* Disable sysclk */ 1119 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1120 option &= ~(0x4); 1121 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1122 1123 mdev->suspended = false; 1124 1125 return 0; 1126 } 1127 1128 #endif 1129 1130 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) 1131 { 1132 struct drm_device *dev = crtc->dev; 1133 struct mga_device *mdev = dev->dev_private; 1134 u8 seq1 = 0, crtcext1 = 0; 1135 1136 switch (mode) { 1137 case DRM_MODE_DPMS_ON: 1138 seq1 = 0; 1139 crtcext1 = 0; 1140 mga_crtc_load_lut(crtc); 1141 break; 1142 case DRM_MODE_DPMS_STANDBY: 1143 seq1 = 0x20; 1144 crtcext1 = 0x10; 1145 break; 1146 case DRM_MODE_DPMS_SUSPEND: 1147 seq1 = 0x20; 1148 crtcext1 = 0x20; 1149 break; 1150 case DRM_MODE_DPMS_OFF: 1151 seq1 = 0x20; 1152 crtcext1 = 0x30; 1153 break; 1154 } 1155 1156 #if 0 1157 if (mode == DRM_MODE_DPMS_OFF) { 1158 mga_suspend(crtc); 1159 } 1160 #endif 1161 WREG8(MGAREG_SEQ_INDEX, 0x01); 1162 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; 1163 mga_wait_vsync(mdev); 1164 mga_wait_busy(mdev); 1165 WREG8(MGAREG_SEQ_DATA, seq1); 1166 msleep(20); 1167 WREG8(MGAREG_CRTCEXT_INDEX, 0x01); 1168 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; 1169 WREG8(MGAREG_CRTCEXT_DATA, crtcext1); 1170 1171 #if 0 1172 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { 1173 mga_resume(crtc); 1174 drm_helper_resume_force_mode(dev); 1175 } 1176 #endif 1177 } 1178 1179 /* 1180 * This is called before a mode is programmed. A typical use might be to 1181 * enable DPMS during the programming to avoid seeing intermediate stages, 1182 * but that's not relevant to us 1183 */ 1184 static void mga_crtc_prepare(struct drm_crtc *crtc) 1185 { 1186 struct drm_device *dev = crtc->dev; 1187 struct mga_device *mdev = dev->dev_private; 1188 u8 tmp; 1189 1190 /* mga_resume(crtc);*/ 1191 1192 WREG8(MGAREG_CRTC_INDEX, 0x11); 1193 tmp = RREG8(MGAREG_CRTC_DATA); 1194 WREG_CRT(0x11, tmp | 0x80); 1195 1196 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1197 WREG_SEQ(0, 1); 1198 msleep(50); 1199 WREG_SEQ(1, 0x20); 1200 msleep(20); 1201 } else { 1202 WREG8(MGAREG_SEQ_INDEX, 0x1); 1203 tmp = RREG8(MGAREG_SEQ_DATA); 1204 1205 /* start sync reset */ 1206 WREG_SEQ(0, 1); 1207 WREG_SEQ(1, tmp | 0x20); 1208 } 1209 1210 if (mdev->type == G200_WB) 1211 mga_g200wb_prepare(crtc); 1212 1213 WREG_CRT(17, 0); 1214 } 1215 1216 /* 1217 * This is called after a mode is programmed. It should reverse anything done 1218 * by the prepare function 1219 */ 1220 static void mga_crtc_commit(struct drm_crtc *crtc) 1221 { 1222 struct drm_device *dev = crtc->dev; 1223 struct mga_device *mdev = dev->dev_private; 1224 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1225 u8 tmp; 1226 1227 if (mdev->type == G200_WB) 1228 mga_g200wb_commit(crtc); 1229 1230 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1231 msleep(50); 1232 WREG_SEQ(1, 0x0); 1233 msleep(20); 1234 WREG_SEQ(0, 0x3); 1235 } else { 1236 WREG8(MGAREG_SEQ_INDEX, 0x1); 1237 tmp = RREG8(MGAREG_SEQ_DATA); 1238 1239 tmp &= ~0x20; 1240 WREG_SEQ(0x1, tmp); 1241 WREG_SEQ(0, 3); 1242 } 1243 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 1244 } 1245 1246 /* 1247 * The core can pass us a set of gamma values to program. We actually only 1248 * use this for 8-bit mode so can't perform smooth fades on deeper modes, 1249 * but it's a requirement that we provide the function 1250 */ 1251 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 1252 u16 *blue, uint32_t start, uint32_t size) 1253 { 1254 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1255 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size; 1256 int i; 1257 1258 for (i = start; i < end; i++) { 1259 mga_crtc->lut_r[i] = red[i] >> 8; 1260 mga_crtc->lut_g[i] = green[i] >> 8; 1261 mga_crtc->lut_b[i] = blue[i] >> 8; 1262 } 1263 mga_crtc_load_lut(crtc); 1264 } 1265 1266 /* Simple cleanup function */ 1267 static void mga_crtc_destroy(struct drm_crtc *crtc) 1268 { 1269 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1270 1271 drm_crtc_cleanup(crtc); 1272 kfree(mga_crtc); 1273 } 1274 1275 static void mga_crtc_disable(struct drm_crtc *crtc) 1276 { 1277 int ret; 1278 DRM_DEBUG_KMS("\n"); 1279 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 1280 if (crtc->fb) { 1281 struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->fb); 1282 struct drm_gem_object *obj = mga_fb->obj; 1283 struct mgag200_bo *bo = gem_to_mga_bo(obj); 1284 ret = mgag200_bo_reserve(bo, false); 1285 if (ret) 1286 return; 1287 mgag200_bo_push_sysram(bo); 1288 mgag200_bo_unreserve(bo); 1289 } 1290 crtc->fb = NULL; 1291 } 1292 1293 /* These provide the minimum set of functions required to handle a CRTC */ 1294 static const struct drm_crtc_funcs mga_crtc_funcs = { 1295 .cursor_set = mga_crtc_cursor_set, 1296 .cursor_move = mga_crtc_cursor_move, 1297 .gamma_set = mga_crtc_gamma_set, 1298 .set_config = drm_crtc_helper_set_config, 1299 .destroy = mga_crtc_destroy, 1300 }; 1301 1302 static const struct drm_crtc_helper_funcs mga_helper_funcs = { 1303 .disable = mga_crtc_disable, 1304 .dpms = mga_crtc_dpms, 1305 .mode_fixup = mga_crtc_mode_fixup, 1306 .mode_set = mga_crtc_mode_set, 1307 .mode_set_base = mga_crtc_mode_set_base, 1308 .prepare = mga_crtc_prepare, 1309 .commit = mga_crtc_commit, 1310 .load_lut = mga_crtc_load_lut, 1311 }; 1312 1313 /* CRTC setup */ 1314 static void mga_crtc_init(struct mga_device *mdev) 1315 { 1316 struct mga_crtc *mga_crtc; 1317 int i; 1318 1319 mga_crtc = kzalloc(sizeof(struct mga_crtc) + 1320 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), 1321 GFP_KERNEL); 1322 1323 if (mga_crtc == NULL) 1324 return; 1325 1326 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs); 1327 1328 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); 1329 mdev->mode_info.crtc = mga_crtc; 1330 1331 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 1332 mga_crtc->lut_r[i] = i; 1333 mga_crtc->lut_g[i] = i; 1334 mga_crtc->lut_b[i] = i; 1335 } 1336 1337 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); 1338 } 1339 1340 /** Sets the color ramps on behalf of fbcon */ 1341 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, 1342 u16 blue, int regno) 1343 { 1344 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1345 1346 mga_crtc->lut_r[regno] = red >> 8; 1347 mga_crtc->lut_g[regno] = green >> 8; 1348 mga_crtc->lut_b[regno] = blue >> 8; 1349 } 1350 1351 /** Gets the color ramps on behalf of fbcon */ 1352 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, 1353 u16 *blue, int regno) 1354 { 1355 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1356 1357 *red = (u16)mga_crtc->lut_r[regno] << 8; 1358 *green = (u16)mga_crtc->lut_g[regno] << 8; 1359 *blue = (u16)mga_crtc->lut_b[regno] << 8; 1360 } 1361 1362 /* 1363 * The encoder comes after the CRTC in the output pipeline, but before 1364 * the connector. It's responsible for ensuring that the digital 1365 * stream is appropriately converted into the output format. Setup is 1366 * very simple in this case - all we have to do is inform qemu of the 1367 * colour depth in order to ensure that it displays appropriately 1368 */ 1369 1370 /* 1371 * These functions are analagous to those in the CRTC code, but are intended 1372 * to handle any encoder-specific limitations 1373 */ 1374 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder, 1375 const struct drm_display_mode *mode, 1376 struct drm_display_mode *adjusted_mode) 1377 { 1378 return true; 1379 } 1380 1381 static void mga_encoder_mode_set(struct drm_encoder *encoder, 1382 struct drm_display_mode *mode, 1383 struct drm_display_mode *adjusted_mode) 1384 { 1385 1386 } 1387 1388 static void mga_encoder_dpms(struct drm_encoder *encoder, int state) 1389 { 1390 return; 1391 } 1392 1393 static void mga_encoder_prepare(struct drm_encoder *encoder) 1394 { 1395 } 1396 1397 static void mga_encoder_commit(struct drm_encoder *encoder) 1398 { 1399 } 1400 1401 void mga_encoder_destroy(struct drm_encoder *encoder) 1402 { 1403 struct mga_encoder *mga_encoder = to_mga_encoder(encoder); 1404 drm_encoder_cleanup(encoder); 1405 kfree(mga_encoder); 1406 } 1407 1408 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { 1409 .dpms = mga_encoder_dpms, 1410 .mode_fixup = mga_encoder_mode_fixup, 1411 .mode_set = mga_encoder_mode_set, 1412 .prepare = mga_encoder_prepare, 1413 .commit = mga_encoder_commit, 1414 }; 1415 1416 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { 1417 .destroy = mga_encoder_destroy, 1418 }; 1419 1420 static struct drm_encoder *mga_encoder_init(struct drm_device *dev) 1421 { 1422 struct drm_encoder *encoder; 1423 struct mga_encoder *mga_encoder; 1424 1425 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); 1426 if (!mga_encoder) 1427 return NULL; 1428 1429 encoder = &mga_encoder->base; 1430 encoder->possible_crtcs = 0x1; 1431 1432 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, 1433 DRM_MODE_ENCODER_DAC); 1434 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); 1435 1436 return encoder; 1437 } 1438 1439 1440 static int mga_vga_get_modes(struct drm_connector *connector) 1441 { 1442 struct mga_connector *mga_connector = to_mga_connector(connector); 1443 struct edid *edid; 1444 int ret = 0; 1445 1446 edid = drm_get_edid(connector, &mga_connector->i2c->adapter); 1447 if (edid) { 1448 drm_mode_connector_update_edid_property(connector, edid); 1449 ret = drm_add_edid_modes(connector, edid); 1450 kfree(edid); 1451 } 1452 return ret; 1453 } 1454 1455 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode, 1456 int bits_per_pixel) 1457 { 1458 uint32_t total_area, divisor; 1459 int64_t active_area, pixels_per_second, bandwidth; 1460 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8; 1461 1462 divisor = 1024; 1463 1464 if (!mode->htotal || !mode->vtotal || !mode->clock) 1465 return 0; 1466 1467 active_area = mode->hdisplay * mode->vdisplay; 1468 total_area = mode->htotal * mode->vtotal; 1469 1470 pixels_per_second = active_area * mode->clock * 1000; 1471 do_div(pixels_per_second, total_area); 1472 1473 bandwidth = pixels_per_second * bytes_per_pixel * 100; 1474 do_div(bandwidth, divisor); 1475 1476 return (uint32_t)(bandwidth); 1477 } 1478 1479 #define MODE_BANDWIDTH MODE_BAD 1480 1481 static int mga_vga_mode_valid(struct drm_connector *connector, 1482 struct drm_display_mode *mode) 1483 { 1484 struct drm_device *dev = connector->dev; 1485 struct mga_device *mdev = (struct mga_device*)dev->dev_private; 1486 struct mga_fbdev *mfbdev = mdev->mfbdev; 1487 struct drm_fb_helper *fb_helper = &mfbdev->helper; 1488 struct drm_fb_helper_connector *fb_helper_conn = NULL; 1489 int bpp = 32; 1490 int i = 0; 1491 1492 if (IS_G200_SE(mdev)) { 1493 if (mdev->unique_rev_id == 0x01) { 1494 if (mode->hdisplay > 1600) 1495 return MODE_VIRTUAL_X; 1496 if (mode->vdisplay > 1200) 1497 return MODE_VIRTUAL_Y; 1498 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1499 > (24400 * 1024)) 1500 return MODE_BANDWIDTH; 1501 } else if (mdev->unique_rev_id >= 0x02) { 1502 if (mode->hdisplay > 1920) 1503 return MODE_VIRTUAL_X; 1504 if (mode->vdisplay > 1200) 1505 return MODE_VIRTUAL_Y; 1506 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1507 > (30100 * 1024)) 1508 return MODE_BANDWIDTH; 1509 } 1510 } else if (mdev->type == G200_WB) { 1511 if (mode->hdisplay > 1280) 1512 return MODE_VIRTUAL_X; 1513 if (mode->vdisplay > 1024) 1514 return MODE_VIRTUAL_Y; 1515 if (mga_vga_calculate_mode_bandwidth(mode, 1516 bpp > (31877 * 1024))) 1517 return MODE_BANDWIDTH; 1518 } else if (mdev->type == G200_EV && 1519 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1520 > (32700 * 1024))) { 1521 return MODE_BANDWIDTH; 1522 } else if (mode->type == G200_EH && 1523 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1524 > (37500 * 1024))) { 1525 return MODE_BANDWIDTH; 1526 } else if (mode->type == G200_ER && 1527 (mga_vga_calculate_mode_bandwidth(mode, 1528 bpp) > (55000 * 1024))) { 1529 return MODE_BANDWIDTH; 1530 } 1531 1532 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || 1533 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || 1534 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || 1535 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { 1536 return MODE_BAD; 1537 } 1538 1539 /* Validate the mode input by the user */ 1540 for (i = 0; i < fb_helper->connector_count; i++) { 1541 if (fb_helper->connector_info[i]->connector == connector) { 1542 /* Found the helper for this connector */ 1543 fb_helper_conn = fb_helper->connector_info[i]; 1544 if (fb_helper_conn->cmdline_mode.specified) { 1545 if (fb_helper_conn->cmdline_mode.bpp_specified) { 1546 bpp = fb_helper_conn->cmdline_mode.bpp; 1547 } 1548 } 1549 } 1550 } 1551 1552 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { 1553 if (fb_helper_conn) 1554 fb_helper_conn->cmdline_mode.specified = false; 1555 return MODE_BAD; 1556 } 1557 1558 return MODE_OK; 1559 } 1560 1561 struct drm_encoder *mga_connector_best_encoder(struct drm_connector 1562 *connector) 1563 { 1564 int enc_id = connector->encoder_ids[0]; 1565 struct drm_mode_object *obj; 1566 struct drm_encoder *encoder; 1567 1568 /* pick the encoder ids */ 1569 if (enc_id) { 1570 obj = 1571 drm_mode_object_find(connector->dev, enc_id, 1572 DRM_MODE_OBJECT_ENCODER); 1573 if (!obj) 1574 return NULL; 1575 encoder = obj_to_encoder(obj); 1576 return encoder; 1577 } 1578 return NULL; 1579 } 1580 1581 static enum drm_connector_status mga_vga_detect(struct drm_connector 1582 *connector, bool force) 1583 { 1584 return connector_status_connected; 1585 } 1586 1587 static void mga_connector_destroy(struct drm_connector *connector) 1588 { 1589 struct mga_connector *mga_connector = to_mga_connector(connector); 1590 mgag200_i2c_destroy(mga_connector->i2c); 1591 drm_connector_cleanup(connector); 1592 kfree(connector); 1593 } 1594 1595 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { 1596 .get_modes = mga_vga_get_modes, 1597 .mode_valid = mga_vga_mode_valid, 1598 .best_encoder = mga_connector_best_encoder, 1599 }; 1600 1601 struct drm_connector_funcs mga_vga_connector_funcs = { 1602 .dpms = drm_helper_connector_dpms, 1603 .detect = mga_vga_detect, 1604 .fill_modes = drm_helper_probe_single_connector_modes, 1605 .destroy = mga_connector_destroy, 1606 }; 1607 1608 static struct drm_connector *mga_vga_init(struct drm_device *dev) 1609 { 1610 struct drm_connector *connector; 1611 struct mga_connector *mga_connector; 1612 1613 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); 1614 if (!mga_connector) 1615 return NULL; 1616 1617 connector = &mga_connector->base; 1618 1619 drm_connector_init(dev, connector, 1620 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1621 1622 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); 1623 1624 drm_sysfs_connector_add(connector); 1625 1626 mga_connector->i2c = mgag200_i2c_create(dev); 1627 if (!mga_connector->i2c) 1628 DRM_ERROR("failed to add ddc bus\n"); 1629 1630 return connector; 1631 } 1632 1633 1634 int mgag200_modeset_init(struct mga_device *mdev) 1635 { 1636 struct drm_encoder *encoder; 1637 struct drm_connector *connector; 1638 int ret; 1639 1640 mdev->mode_info.mode_config_initialized = true; 1641 1642 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; 1643 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; 1644 1645 mdev->dev->mode_config.fb_base = mdev->mc.vram_base; 1646 1647 mga_crtc_init(mdev); 1648 1649 encoder = mga_encoder_init(mdev->dev); 1650 if (!encoder) { 1651 DRM_ERROR("mga_encoder_init failed\n"); 1652 return -1; 1653 } 1654 1655 connector = mga_vga_init(mdev->dev); 1656 if (!connector) { 1657 DRM_ERROR("mga_vga_init failed\n"); 1658 return -1; 1659 } 1660 1661 drm_mode_connector_attach_encoder(connector, encoder); 1662 1663 ret = mgag200_fbdev_init(mdev); 1664 if (ret) { 1665 DRM_ERROR("mga_fbdev_init failed\n"); 1666 return ret; 1667 } 1668 1669 return 0; 1670 } 1671 1672 void mgag200_modeset_fini(struct mga_device *mdev) 1673 { 1674 1675 } 1676