1 /* 2 * Copyright 2010 Matt Turner. 3 * Copyright 2012 Red Hat 4 * 5 * This file is subject to the terms and conditions of the GNU General 6 * Public License version 2. See the file COPYING in the main 7 * directory of this archive for more details. 8 * 9 * Authors: Matthew Garrett 10 * Matt Turner 11 * Dave Airlie 12 */ 13 14 #include <linux/delay.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_crtc_helper.h> 18 19 #include "mgag200_drv.h" 20 21 #define MGAG200_LUT_SIZE 256 22 23 /* 24 * This file contains setup code for the CRTC. 25 */ 26 27 static void mga_crtc_load_lut(struct drm_crtc *crtc) 28 { 29 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 30 struct drm_device *dev = crtc->dev; 31 struct mga_device *mdev = dev->dev_private; 32 int i; 33 34 if (!crtc->enabled) 35 return; 36 37 WREG8(DAC_INDEX + MGA1064_INDEX, 0); 38 39 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 40 /* VGA registers */ 41 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]); 42 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 43 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]); 44 } 45 } 46 47 static inline void mga_wait_vsync(struct mga_device *mdev) 48 { 49 unsigned int count = 0; 50 unsigned int status = 0; 51 52 do { 53 status = RREG32(MGAREG_Status); 54 count++; 55 } while ((status & 0x08) && (count < 250000)); 56 count = 0; 57 status = 0; 58 do { 59 status = RREG32(MGAREG_Status); 60 count++; 61 } while (!(status & 0x08) && (count < 250000)); 62 } 63 64 static inline void mga_wait_busy(struct mga_device *mdev) 65 { 66 unsigned int count = 0; 67 unsigned int status = 0; 68 do { 69 status = RREG8(MGAREG_Status + 2); 70 count++; 71 } while ((status & 0x01) && (count < 500000)); 72 } 73 74 /* 75 * The core passes the desired mode to the CRTC code to see whether any 76 * CRTC-specific modifications need to be made to it. We're in a position 77 * to just pass that straight through, so this does nothing 78 */ 79 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc, 80 const struct drm_display_mode *mode, 81 struct drm_display_mode *adjusted_mode) 82 { 83 return true; 84 } 85 86 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) 87 { 88 unsigned int vcomax, vcomin, pllreffreq; 89 unsigned int delta, tmpdelta, permitteddelta; 90 unsigned int testp, testm, testn; 91 unsigned int p, m, n; 92 unsigned int computed; 93 94 m = n = p = 0; 95 vcomax = 320000; 96 vcomin = 160000; 97 pllreffreq = 25000; 98 99 delta = 0xffffffff; 100 permitteddelta = clock * 5 / 1000; 101 102 for (testp = 8; testp > 0; testp /= 2) { 103 if (clock * testp > vcomax) 104 continue; 105 if (clock * testp < vcomin) 106 continue; 107 108 for (testn = 17; testn < 256; testn++) { 109 for (testm = 1; testm < 32; testm++) { 110 computed = (pllreffreq * testn) / 111 (testm * testp); 112 if (computed > clock) 113 tmpdelta = computed - clock; 114 else 115 tmpdelta = clock - computed; 116 if (tmpdelta < delta) { 117 delta = tmpdelta; 118 m = testm - 1; 119 n = testn - 1; 120 p = testp - 1; 121 } 122 } 123 } 124 } 125 126 if (delta > permitteddelta) { 127 printk(KERN_WARNING "PLL delta too large\n"); 128 return 1; 129 } 130 131 WREG_DAC(MGA1064_PIX_PLLC_M, m); 132 WREG_DAC(MGA1064_PIX_PLLC_N, n); 133 WREG_DAC(MGA1064_PIX_PLLC_P, p); 134 return 0; 135 } 136 137 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) 138 { 139 unsigned int vcomax, vcomin, pllreffreq; 140 unsigned int delta, tmpdelta, permitteddelta; 141 unsigned int testp, testm, testn; 142 unsigned int p, m, n; 143 unsigned int computed; 144 int i, j, tmpcount, vcount; 145 bool pll_locked = false; 146 u8 tmp; 147 148 m = n = p = 0; 149 vcomax = 550000; 150 vcomin = 150000; 151 pllreffreq = 48000; 152 153 delta = 0xffffffff; 154 permitteddelta = clock * 5 / 1000; 155 156 for (testp = 1; testp < 9; testp++) { 157 if (clock * testp > vcomax) 158 continue; 159 if (clock * testp < vcomin) 160 continue; 161 162 for (testm = 1; testm < 17; testm++) { 163 for (testn = 1; testn < 151; testn++) { 164 computed = (pllreffreq * testn) / 165 (testm * testp); 166 if (computed > clock) 167 tmpdelta = computed - clock; 168 else 169 tmpdelta = clock - computed; 170 if (tmpdelta < delta) { 171 delta = tmpdelta; 172 n = testn - 1; 173 m = (testm - 1) | ((n >> 1) & 0x80); 174 p = testp - 1; 175 } 176 } 177 } 178 } 179 180 for (i = 0; i <= 32 && pll_locked == false; i++) { 181 if (i > 0) { 182 WREG8(MGAREG_CRTC_INDEX, 0x1e); 183 tmp = RREG8(MGAREG_CRTC_DATA); 184 if (tmp < 0xff) 185 WREG8(MGAREG_CRTC_DATA, tmp+1); 186 } 187 188 /* set pixclkdis to 1 */ 189 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 190 tmp = RREG8(DAC_DATA); 191 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 192 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); 193 194 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 195 tmp = RREG8(DAC_DATA); 196 tmp |= MGA1064_REMHEADCTL_CLKDIS; 197 WREG_DAC(MGA1064_REMHEADCTL, tmp); 198 199 /* select PLL Set C */ 200 tmp = RREG8(MGAREG_MEM_MISC_READ); 201 tmp |= 0x3 << 2; 202 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 203 204 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 205 tmp = RREG8(DAC_DATA); 206 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; 207 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 208 209 udelay(500); 210 211 /* reset the PLL */ 212 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 213 tmp = RREG8(DAC_DATA); 214 tmp &= ~0x04; 215 WREG_DAC(MGA1064_VREF_CTL, tmp); 216 217 udelay(50); 218 219 /* program pixel pll register */ 220 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); 221 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); 222 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); 223 224 udelay(50); 225 226 /* turn pll on */ 227 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 228 tmp = RREG8(DAC_DATA); 229 tmp |= 0x04; 230 WREG_DAC(MGA1064_VREF_CTL, tmp); 231 232 udelay(500); 233 234 /* select the pixel pll */ 235 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 236 tmp = RREG8(DAC_DATA); 237 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 238 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 239 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 240 241 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 242 tmp = RREG8(DAC_DATA); 243 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; 244 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; 245 WREG_DAC(MGA1064_REMHEADCTL, tmp); 246 247 /* reset dotclock rate bit */ 248 WREG8(MGAREG_SEQ_INDEX, 1); 249 tmp = RREG8(MGAREG_SEQ_DATA); 250 tmp &= ~0x8; 251 WREG8(MGAREG_SEQ_DATA, tmp); 252 253 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 254 tmp = RREG8(DAC_DATA); 255 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 256 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 257 258 vcount = RREG8(MGAREG_VCOUNT); 259 260 for (j = 0; j < 30 && pll_locked == false; j++) { 261 tmpcount = RREG8(MGAREG_VCOUNT); 262 if (tmpcount < vcount) 263 vcount = 0; 264 if ((tmpcount - vcount) > 2) 265 pll_locked = true; 266 else 267 udelay(5); 268 } 269 } 270 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 271 tmp = RREG8(DAC_DATA); 272 tmp &= ~MGA1064_REMHEADCTL_CLKDIS; 273 WREG_DAC(MGA1064_REMHEADCTL, tmp); 274 return 0; 275 } 276 277 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) 278 { 279 unsigned int vcomax, vcomin, pllreffreq; 280 unsigned int delta, tmpdelta, permitteddelta; 281 unsigned int testp, testm, testn; 282 unsigned int p, m, n; 283 unsigned int computed; 284 u8 tmp; 285 286 m = n = p = 0; 287 vcomax = 550000; 288 vcomin = 150000; 289 pllreffreq = 50000; 290 291 delta = 0xffffffff; 292 permitteddelta = clock * 5 / 1000; 293 294 for (testp = 16; testp > 0; testp--) { 295 if (clock * testp > vcomax) 296 continue; 297 if (clock * testp < vcomin) 298 continue; 299 300 for (testn = 1; testn < 257; testn++) { 301 for (testm = 1; testm < 17; testm++) { 302 computed = (pllreffreq * testn) / 303 (testm * testp); 304 if (computed > clock) 305 tmpdelta = computed - clock; 306 else 307 tmpdelta = clock - computed; 308 if (tmpdelta < delta) { 309 delta = tmpdelta; 310 n = testn - 1; 311 m = testm - 1; 312 p = testp - 1; 313 } 314 } 315 } 316 } 317 318 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 319 tmp = RREG8(DAC_DATA); 320 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 321 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); 322 323 tmp = RREG8(MGAREG_MEM_MISC_READ); 324 tmp |= 0x3 << 2; 325 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 326 327 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 328 tmp = RREG8(DAC_DATA); 329 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40); 330 331 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 332 tmp = RREG8(DAC_DATA); 333 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 334 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 335 336 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); 337 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); 338 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); 339 340 udelay(50); 341 342 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 343 tmp = RREG8(DAC_DATA); 344 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 345 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 346 347 udelay(500); 348 349 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 350 tmp = RREG8(DAC_DATA); 351 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 352 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 353 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 354 355 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 356 tmp = RREG8(DAC_DATA); 357 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40); 358 359 tmp = RREG8(MGAREG_MEM_MISC_READ); 360 tmp |= (0x3 << 2); 361 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 362 363 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 364 tmp = RREG8(DAC_DATA); 365 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 366 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 367 368 return 0; 369 } 370 371 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) 372 { 373 unsigned int vcomax, vcomin, pllreffreq; 374 unsigned int delta, tmpdelta, permitteddelta; 375 unsigned int testp, testm, testn; 376 unsigned int p, m, n; 377 unsigned int computed; 378 int i, j, tmpcount, vcount; 379 u8 tmp; 380 bool pll_locked = false; 381 382 m = n = p = 0; 383 vcomax = 800000; 384 vcomin = 400000; 385 pllreffreq = 3333; 386 387 delta = 0xffffffff; 388 permitteddelta = clock * 5 / 1000; 389 390 for (testp = 16; testp > 0; testp--) { 391 if (clock * testp > vcomax) 392 continue; 393 if (clock * testp < vcomin) 394 continue; 395 396 for (testm = 1; testm < 33; testm++) { 397 for (testn = 1; testn < 257; testn++) { 398 computed = (pllreffreq * testn) / 399 (testm * testp); 400 if (computed > clock) 401 tmpdelta = computed - clock; 402 else 403 tmpdelta = clock - computed; 404 if (tmpdelta < delta) { 405 delta = tmpdelta; 406 n = testn - 1; 407 m = (testm - 1) | ((n >> 1) & 0x80); 408 p = testp - 1; 409 } 410 if ((clock * testp) >= 600000) 411 p |= 80; 412 } 413 } 414 } 415 for (i = 0; i <= 32 && pll_locked == false; i++) { 416 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 417 tmp = RREG8(DAC_DATA); 418 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 419 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); 420 421 tmp = RREG8(MGAREG_MEM_MISC_READ); 422 tmp |= 0x3 << 2; 423 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 424 425 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 426 tmp = RREG8(DAC_DATA); 427 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 428 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 429 430 udelay(500); 431 432 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); 433 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); 434 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); 435 436 udelay(500); 437 438 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 439 tmp = RREG8(DAC_DATA); 440 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 441 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 442 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 443 444 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 445 tmp = RREG8(DAC_DATA); 446 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 447 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 448 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 449 450 vcount = RREG8(MGAREG_VCOUNT); 451 452 for (j = 0; j < 30 && pll_locked == false; j++) { 453 tmpcount = RREG8(MGAREG_VCOUNT); 454 if (tmpcount < vcount) 455 vcount = 0; 456 if ((tmpcount - vcount) > 2) 457 pll_locked = true; 458 else 459 udelay(5); 460 } 461 } 462 463 return 0; 464 } 465 466 static int mga_g200er_set_plls(struct mga_device *mdev, long clock) 467 { 468 unsigned int vcomax, vcomin, pllreffreq; 469 unsigned int delta, tmpdelta; 470 int testr, testn, testm, testo; 471 unsigned int p, m, n; 472 unsigned int computed, vco; 473 int tmp; 474 const unsigned int m_div_val[] = { 1, 2, 4, 8 }; 475 476 m = n = p = 0; 477 vcomax = 1488000; 478 vcomin = 1056000; 479 pllreffreq = 48000; 480 481 delta = 0xffffffff; 482 483 for (testr = 0; testr < 4; testr++) { 484 if (delta == 0) 485 break; 486 for (testn = 5; testn < 129; testn++) { 487 if (delta == 0) 488 break; 489 for (testm = 3; testm >= 0; testm--) { 490 if (delta == 0) 491 break; 492 for (testo = 5; testo < 33; testo++) { 493 vco = pllreffreq * (testn + 1) / 494 (testr + 1); 495 if (vco < vcomin) 496 continue; 497 if (vco > vcomax) 498 continue; 499 computed = vco / (m_div_val[testm] * (testo + 1)); 500 if (computed > clock) 501 tmpdelta = computed - clock; 502 else 503 tmpdelta = clock - computed; 504 if (tmpdelta < delta) { 505 delta = tmpdelta; 506 m = testm | (testo << 3); 507 n = testn; 508 p = testr | (testr << 3); 509 } 510 } 511 } 512 } 513 } 514 515 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 516 tmp = RREG8(DAC_DATA); 517 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 518 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); 519 520 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 521 tmp = RREG8(DAC_DATA); 522 tmp |= MGA1064_REMHEADCTL_CLKDIS; 523 WREG_DAC(MGA1064_REMHEADCTL, tmp); 524 525 tmp = RREG8(MGAREG_MEM_MISC_READ); 526 tmp |= (0x3<<2) | 0xc0; 527 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 528 529 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 530 tmp = RREG8(DAC_DATA); 531 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 532 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 533 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); 534 535 udelay(500); 536 537 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); 538 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); 539 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); 540 541 udelay(50); 542 543 return 0; 544 } 545 546 static int mga_crtc_set_plls(struct mga_device *mdev, long clock) 547 { 548 switch(mdev->type) { 549 case G200_SE_A: 550 case G200_SE_B: 551 return mga_g200se_set_plls(mdev, clock); 552 break; 553 case G200_WB: 554 return mga_g200wb_set_plls(mdev, clock); 555 break; 556 case G200_EV: 557 return mga_g200ev_set_plls(mdev, clock); 558 break; 559 case G200_EH: 560 return mga_g200eh_set_plls(mdev, clock); 561 break; 562 case G200_ER: 563 return mga_g200er_set_plls(mdev, clock); 564 break; 565 } 566 return 0; 567 } 568 569 static void mga_g200wb_prepare(struct drm_crtc *crtc) 570 { 571 struct mga_device *mdev = crtc->dev->dev_private; 572 u8 tmp; 573 int iter_max; 574 575 /* 1- The first step is to warn the BMC of an upcoming mode change. 576 * We are putting the misc<0> to output.*/ 577 578 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); 579 tmp = RREG8(DAC_DATA); 580 tmp |= 0x10; 581 WREG_DAC(MGA1064_GEN_IO_CTL, tmp); 582 583 /* we are putting a 1 on the misc<0> line */ 584 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 585 tmp = RREG8(DAC_DATA); 586 tmp |= 0x10; 587 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 588 589 /* 2- Second step to mask and further scan request 590 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) 591 */ 592 WREG8(DAC_INDEX, MGA1064_SPAREREG); 593 tmp = RREG8(DAC_DATA); 594 tmp |= 0x80; 595 WREG_DAC(MGA1064_SPAREREG, tmp); 596 597 /* 3a- the third step is to verifu if there is an active scan 598 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>) 599 */ 600 iter_max = 300; 601 while (!(tmp & 0x1) && iter_max) { 602 WREG8(DAC_INDEX, MGA1064_SPAREREG); 603 tmp = RREG8(DAC_DATA); 604 udelay(1000); 605 iter_max--; 606 } 607 608 /* 3b- this step occurs only if the remove is actually scanning 609 * we are waiting for the end of the frame which is a 1 on 610 * remvsyncsts (XSPAREREG<1>) 611 */ 612 if (iter_max) { 613 iter_max = 300; 614 while ((tmp & 0x2) && iter_max) { 615 WREG8(DAC_INDEX, MGA1064_SPAREREG); 616 tmp = RREG8(DAC_DATA); 617 udelay(1000); 618 iter_max--; 619 } 620 } 621 } 622 623 static void mga_g200wb_commit(struct drm_crtc *crtc) 624 { 625 u8 tmp; 626 struct mga_device *mdev = crtc->dev->dev_private; 627 628 /* 1- The first step is to ensure that the vrsten and hrsten are set */ 629 WREG8(MGAREG_CRTCEXT_INDEX, 1); 630 tmp = RREG8(MGAREG_CRTCEXT_DATA); 631 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); 632 633 /* 2- second step is to assert the rstlvl2 */ 634 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 635 tmp = RREG8(DAC_DATA); 636 tmp |= 0x8; 637 WREG8(DAC_DATA, tmp); 638 639 /* wait 10 us */ 640 udelay(10); 641 642 /* 3- deassert rstlvl2 */ 643 tmp &= ~0x08; 644 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 645 WREG8(DAC_DATA, tmp); 646 647 /* 4- remove mask of scan request */ 648 WREG8(DAC_INDEX, MGA1064_SPAREREG); 649 tmp = RREG8(DAC_DATA); 650 tmp &= ~0x80; 651 WREG8(DAC_DATA, tmp); 652 653 /* 5- put back a 0 on the misc<0> line */ 654 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 655 tmp = RREG8(DAC_DATA); 656 tmp &= ~0x10; 657 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 658 } 659 660 661 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) 662 { 663 struct mga_device *mdev = crtc->dev->dev_private; 664 u32 addr; 665 int count; 666 667 while (RREG8(0x1fda) & 0x08); 668 while (!(RREG8(0x1fda) & 0x08)); 669 670 count = RREG8(MGAREG_VCOUNT) + 2; 671 while (RREG8(MGAREG_VCOUNT) < count); 672 673 addr = offset >> 2; 674 WREG_CRT(0x0d, (u8)(addr & 0xff)); 675 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); 676 WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf); 677 } 678 679 680 /* ast is different - we will force move buffers out of VRAM */ 681 static int mga_crtc_do_set_base(struct drm_crtc *crtc, 682 struct drm_framebuffer *fb, 683 int x, int y, int atomic) 684 { 685 struct mga_device *mdev = crtc->dev->dev_private; 686 struct drm_gem_object *obj; 687 struct mga_framebuffer *mga_fb; 688 struct mgag200_bo *bo; 689 int ret; 690 u64 gpu_addr; 691 692 /* push the previous fb to system ram */ 693 if (!atomic && fb) { 694 mga_fb = to_mga_framebuffer(fb); 695 obj = mga_fb->obj; 696 bo = gem_to_mga_bo(obj); 697 ret = mgag200_bo_reserve(bo, false); 698 if (ret) 699 return ret; 700 mgag200_bo_push_sysram(bo); 701 mgag200_bo_unreserve(bo); 702 } 703 704 mga_fb = to_mga_framebuffer(crtc->fb); 705 obj = mga_fb->obj; 706 bo = gem_to_mga_bo(obj); 707 708 ret = mgag200_bo_reserve(bo, false); 709 if (ret) 710 return ret; 711 712 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); 713 if (ret) { 714 mgag200_bo_unreserve(bo); 715 return ret; 716 } 717 718 if (&mdev->mfbdev->mfb == mga_fb) { 719 /* if pushing console in kmap it */ 720 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); 721 if (ret) 722 DRM_ERROR("failed to kmap fbcon\n"); 723 724 } 725 mgag200_bo_unreserve(bo); 726 727 DRM_INFO("mga base %llx\n", gpu_addr); 728 729 mga_set_start_address(crtc, (u32)gpu_addr); 730 731 return 0; 732 } 733 734 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, 735 struct drm_framebuffer *old_fb) 736 { 737 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 738 } 739 740 static int mga_crtc_mode_set(struct drm_crtc *crtc, 741 struct drm_display_mode *mode, 742 struct drm_display_mode *adjusted_mode, 743 int x, int y, struct drm_framebuffer *old_fb) 744 { 745 struct drm_device *dev = crtc->dev; 746 struct mga_device *mdev = dev->dev_private; 747 int hdisplay, hsyncstart, hsyncend, htotal; 748 int vdisplay, vsyncstart, vsyncend, vtotal; 749 int pitch; 750 int option = 0, option2 = 0; 751 int i; 752 unsigned char misc = 0; 753 unsigned char ext_vga[6]; 754 unsigned char ext_vga_index24; 755 unsigned char dac_index90 = 0; 756 u8 bppshift; 757 758 static unsigned char dacvalue[] = { 759 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, 760 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, 761 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, 762 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, 763 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 764 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, 765 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, 766 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, 767 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, 768 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 769 }; 770 771 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1]; 772 773 switch (mdev->type) { 774 case G200_SE_A: 775 case G200_SE_B: 776 dacvalue[MGA1064_VREF_CTL] = 0x03; 777 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 778 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | 779 MGA1064_MISC_CTL_VGA8 | 780 MGA1064_MISC_CTL_DAC_RAM_CS; 781 if (mdev->has_sdram) 782 option = 0x40049120; 783 else 784 option = 0x4004d120; 785 option2 = 0x00008000; 786 break; 787 case G200_WB: 788 dacvalue[MGA1064_VREF_CTL] = 0x07; 789 option = 0x41049120; 790 option2 = 0x0000b000; 791 break; 792 case G200_EV: 793 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 794 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 795 MGA1064_MISC_CTL_DAC_RAM_CS; 796 option = 0x00000120; 797 option2 = 0x0000b000; 798 break; 799 case G200_EH: 800 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 801 MGA1064_MISC_CTL_DAC_RAM_CS; 802 option = 0x00000120; 803 option2 = 0x0000b000; 804 break; 805 case G200_ER: 806 dac_index90 = 0; 807 break; 808 } 809 810 switch (crtc->fb->bits_per_pixel) { 811 case 8: 812 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; 813 break; 814 case 16: 815 if (crtc->fb->depth == 15) 816 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; 817 else 818 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; 819 break; 820 case 24: 821 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; 822 break; 823 case 32: 824 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; 825 break; 826 } 827 828 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 829 misc |= 0x40; 830 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 831 misc |= 0x80; 832 833 834 for (i = 0; i < sizeof(dacvalue); i++) { 835 if ((i <= 0x03) || 836 (i == 0x07) || 837 (i == 0x0b) || 838 (i == 0x0f) || 839 ((i >= 0x13) && (i <= 0x17)) || 840 (i == 0x1b) || 841 (i == 0x1c) || 842 ((i >= 0x1f) && (i <= 0x29)) || 843 ((i >= 0x30) && (i <= 0x37))) 844 continue; 845 if (IS_G200_SE(mdev) && 846 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) 847 continue; 848 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) && 849 (i >= 0x44) && (i <= 0x4e)) 850 continue; 851 852 WREG_DAC(i, dacvalue[i]); 853 } 854 855 if (mdev->type == G200_ER) { 856 WREG_DAC(0x90, dac_index90); 857 } 858 859 860 if (option) 861 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); 862 if (option2) 863 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); 864 865 WREG_SEQ(2, 0xf); 866 WREG_SEQ(3, 0); 867 WREG_SEQ(4, 0xe); 868 869 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8); 870 if (crtc->fb->bits_per_pixel == 24) 871 pitch = pitch >> (4 - bppshift); 872 else 873 pitch = pitch >> (4 - bppshift); 874 875 hdisplay = mode->hdisplay / 8 - 1; 876 hsyncstart = mode->hsync_start / 8 - 1; 877 hsyncend = mode->hsync_end / 8 - 1; 878 htotal = mode->htotal / 8 - 1; 879 880 /* Work around hardware quirk */ 881 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) 882 htotal++; 883 884 vdisplay = mode->vdisplay - 1; 885 vsyncstart = mode->vsync_start - 1; 886 vsyncend = mode->vsync_end - 1; 887 vtotal = mode->vtotal - 2; 888 889 WREG_GFX(0, 0); 890 WREG_GFX(1, 0); 891 WREG_GFX(2, 0); 892 WREG_GFX(3, 0); 893 WREG_GFX(4, 0); 894 WREG_GFX(5, 0x40); 895 WREG_GFX(6, 0x5); 896 WREG_GFX(7, 0xf); 897 WREG_GFX(8, 0xf); 898 899 WREG_CRT(0, htotal - 4); 900 WREG_CRT(1, hdisplay); 901 WREG_CRT(2, hdisplay); 902 WREG_CRT(3, (htotal & 0x1F) | 0x80); 903 WREG_CRT(4, hsyncstart); 904 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); 905 WREG_CRT(6, vtotal & 0xFF); 906 WREG_CRT(7, ((vtotal & 0x100) >> 8) | 907 ((vdisplay & 0x100) >> 7) | 908 ((vsyncstart & 0x100) >> 6) | 909 ((vdisplay & 0x100) >> 5) | 910 ((vdisplay & 0x100) >> 4) | /* linecomp */ 911 ((vtotal & 0x200) >> 4)| 912 ((vdisplay & 0x200) >> 3) | 913 ((vsyncstart & 0x200) >> 2)); 914 WREG_CRT(9, ((vdisplay & 0x200) >> 4) | 915 ((vdisplay & 0x200) >> 3)); 916 WREG_CRT(10, 0); 917 WREG_CRT(11, 0); 918 WREG_CRT(12, 0); 919 WREG_CRT(13, 0); 920 WREG_CRT(14, 0); 921 WREG_CRT(15, 0); 922 WREG_CRT(16, vsyncstart & 0xFF); 923 WREG_CRT(17, (vsyncend & 0x0F) | 0x20); 924 WREG_CRT(18, vdisplay & 0xFF); 925 WREG_CRT(19, pitch & 0xFF); 926 WREG_CRT(20, 0); 927 WREG_CRT(21, vdisplay & 0xFF); 928 WREG_CRT(22, (vtotal + 1) & 0xFF); 929 WREG_CRT(23, 0xc3); 930 WREG_CRT(24, vdisplay & 0xFF); 931 932 ext_vga[0] = 0; 933 ext_vga[5] = 0; 934 935 /* TODO interlace */ 936 937 ext_vga[0] |= (pitch & 0x300) >> 4; 938 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | 939 ((hdisplay & 0x100) >> 7) | 940 ((hsyncstart & 0x100) >> 6) | 941 (htotal & 0x40); 942 ext_vga[2] = ((vtotal & 0xc00) >> 10) | 943 ((vdisplay & 0x400) >> 8) | 944 ((vdisplay & 0xc00) >> 7) | 945 ((vsyncstart & 0xc00) >> 5) | 946 ((vdisplay & 0x400) >> 3); 947 if (crtc->fb->bits_per_pixel == 24) 948 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; 949 else 950 ext_vga[3] = ((1 << bppshift) - 1) | 0x80; 951 ext_vga[4] = 0; 952 if (mdev->type == G200_WB) 953 ext_vga[1] |= 0x88; 954 955 ext_vga_index24 = 0x05; 956 957 /* Set pixel clocks */ 958 misc = 0x2d; 959 WREG8(MGA_MISC_OUT, misc); 960 961 mga_crtc_set_plls(mdev, mode->clock); 962 963 for (i = 0; i < 6; i++) { 964 WREG_ECRT(i, ext_vga[i]); 965 } 966 967 if (mdev->type == G200_ER) 968 WREG_ECRT(24, ext_vga_index24); 969 970 if (mdev->type == G200_EV) { 971 WREG_ECRT(6, 0); 972 } 973 974 WREG_ECRT(0, ext_vga[0]); 975 /* Enable mga pixel clock */ 976 misc = 0x2d; 977 978 WREG8(MGA_MISC_OUT, misc); 979 980 if (adjusted_mode) 981 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); 982 983 mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 984 985 /* reset tagfifo */ 986 if (mdev->type == G200_ER) { 987 u32 mem_ctl = RREG32(MGAREG_MEMCTL); 988 u8 seq1; 989 990 /* screen off */ 991 WREG8(MGAREG_SEQ_INDEX, 0x01); 992 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; 993 WREG8(MGAREG_SEQ_DATA, seq1); 994 995 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); 996 udelay(1000); 997 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); 998 999 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); 1000 } 1001 1002 1003 if (IS_G200_SE(mdev)) { 1004 if (mdev->reg_1e24 >= 0x02) { 1005 u8 hi_pri_lvl; 1006 u32 bpp; 1007 u32 mb; 1008 1009 if (crtc->fb->bits_per_pixel > 16) 1010 bpp = 32; 1011 else if (crtc->fb->bits_per_pixel > 8) 1012 bpp = 16; 1013 else 1014 bpp = 8; 1015 1016 mb = (mode->clock * bpp) / 1000; 1017 if (mb > 3100) 1018 hi_pri_lvl = 0; 1019 else if (mb > 2600) 1020 hi_pri_lvl = 1; 1021 else if (mb > 1900) 1022 hi_pri_lvl = 2; 1023 else if (mb > 1160) 1024 hi_pri_lvl = 3; 1025 else if (mb > 440) 1026 hi_pri_lvl = 4; 1027 else 1028 hi_pri_lvl = 5; 1029 1030 WREG8(0x1fde, 0x06); 1031 WREG8(0x1fdf, hi_pri_lvl); 1032 } else { 1033 if (mdev->reg_1e24 >= 0x01) 1034 WREG8(0x1fdf, 0x03); 1035 else 1036 WREG8(0x1fdf, 0x04); 1037 } 1038 } 1039 return 0; 1040 } 1041 1042 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ 1043 static int mga_suspend(struct drm_crtc *crtc) 1044 { 1045 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1046 struct drm_device *dev = crtc->dev; 1047 struct mga_device *mdev = dev->dev_private; 1048 struct pci_dev *pdev = dev->pdev; 1049 int option; 1050 1051 if (mdev->suspended) 1052 return 0; 1053 1054 WREG_SEQ(1, 0x20); 1055 WREG_ECRT(1, 0x30); 1056 /* Disable the pixel clock */ 1057 WREG_DAC(0x1a, 0x05); 1058 /* Power down the DAC */ 1059 WREG_DAC(0x1e, 0x18); 1060 /* Power down the pixel PLL */ 1061 WREG_DAC(0x1a, 0x0d); 1062 1063 /* Disable PLLs and clocks */ 1064 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1065 option &= ~(0x1F8024); 1066 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1067 pci_set_power_state(pdev, PCI_D3hot); 1068 pci_disable_device(pdev); 1069 1070 mdev->suspended = true; 1071 1072 return 0; 1073 } 1074 1075 static int mga_resume(struct drm_crtc *crtc) 1076 { 1077 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1078 struct drm_device *dev = crtc->dev; 1079 struct mga_device *mdev = dev->dev_private; 1080 struct pci_dev *pdev = dev->pdev; 1081 int option; 1082 1083 if (!mdev->suspended) 1084 return 0; 1085 1086 pci_set_power_state(pdev, PCI_D0); 1087 pci_enable_device(pdev); 1088 1089 /* Disable sysclk */ 1090 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1091 option &= ~(0x4); 1092 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1093 1094 mdev->suspended = false; 1095 1096 return 0; 1097 } 1098 1099 #endif 1100 1101 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) 1102 { 1103 struct drm_device *dev = crtc->dev; 1104 struct mga_device *mdev = dev->dev_private; 1105 u8 seq1 = 0, crtcext1 = 0; 1106 1107 switch (mode) { 1108 case DRM_MODE_DPMS_ON: 1109 seq1 = 0; 1110 crtcext1 = 0; 1111 mga_crtc_load_lut(crtc); 1112 break; 1113 case DRM_MODE_DPMS_STANDBY: 1114 seq1 = 0x20; 1115 crtcext1 = 0x10; 1116 break; 1117 case DRM_MODE_DPMS_SUSPEND: 1118 seq1 = 0x20; 1119 crtcext1 = 0x20; 1120 break; 1121 case DRM_MODE_DPMS_OFF: 1122 seq1 = 0x20; 1123 crtcext1 = 0x30; 1124 break; 1125 } 1126 1127 #if 0 1128 if (mode == DRM_MODE_DPMS_OFF) { 1129 mga_suspend(crtc); 1130 } 1131 #endif 1132 WREG8(MGAREG_SEQ_INDEX, 0x01); 1133 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; 1134 mga_wait_vsync(mdev); 1135 mga_wait_busy(mdev); 1136 WREG8(MGAREG_SEQ_DATA, seq1); 1137 msleep(20); 1138 WREG8(MGAREG_CRTCEXT_INDEX, 0x01); 1139 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; 1140 WREG8(MGAREG_CRTCEXT_DATA, crtcext1); 1141 1142 #if 0 1143 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { 1144 mga_resume(crtc); 1145 drm_helper_resume_force_mode(dev); 1146 } 1147 #endif 1148 } 1149 1150 /* 1151 * This is called before a mode is programmed. A typical use might be to 1152 * enable DPMS during the programming to avoid seeing intermediate stages, 1153 * but that's not relevant to us 1154 */ 1155 static void mga_crtc_prepare(struct drm_crtc *crtc) 1156 { 1157 struct drm_device *dev = crtc->dev; 1158 struct mga_device *mdev = dev->dev_private; 1159 u8 tmp; 1160 1161 /* mga_resume(crtc);*/ 1162 1163 WREG8(MGAREG_CRTC_INDEX, 0x11); 1164 tmp = RREG8(MGAREG_CRTC_DATA); 1165 WREG_CRT(0x11, tmp | 0x80); 1166 1167 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1168 WREG_SEQ(0, 1); 1169 msleep(50); 1170 WREG_SEQ(1, 0x20); 1171 msleep(20); 1172 } else { 1173 WREG8(MGAREG_SEQ_INDEX, 0x1); 1174 tmp = RREG8(MGAREG_SEQ_DATA); 1175 1176 /* start sync reset */ 1177 WREG_SEQ(0, 1); 1178 WREG_SEQ(1, tmp | 0x20); 1179 } 1180 1181 if (mdev->type == G200_WB) 1182 mga_g200wb_prepare(crtc); 1183 1184 WREG_CRT(17, 0); 1185 } 1186 1187 /* 1188 * This is called after a mode is programmed. It should reverse anything done 1189 * by the prepare function 1190 */ 1191 static void mga_crtc_commit(struct drm_crtc *crtc) 1192 { 1193 struct drm_device *dev = crtc->dev; 1194 struct mga_device *mdev = dev->dev_private; 1195 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1196 u8 tmp; 1197 1198 if (mdev->type == G200_WB) 1199 mga_g200wb_commit(crtc); 1200 1201 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1202 msleep(50); 1203 WREG_SEQ(1, 0x0); 1204 msleep(20); 1205 WREG_SEQ(0, 0x3); 1206 } else { 1207 WREG8(MGAREG_SEQ_INDEX, 0x1); 1208 tmp = RREG8(MGAREG_SEQ_DATA); 1209 1210 tmp &= ~0x20; 1211 WREG_SEQ(0x1, tmp); 1212 WREG_SEQ(0, 3); 1213 } 1214 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 1215 } 1216 1217 /* 1218 * The core can pass us a set of gamma values to program. We actually only 1219 * use this for 8-bit mode so can't perform smooth fades on deeper modes, 1220 * but it's a requirement that we provide the function 1221 */ 1222 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 1223 u16 *blue, uint32_t start, uint32_t size) 1224 { 1225 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1226 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size; 1227 int i; 1228 1229 for (i = start; i < end; i++) { 1230 mga_crtc->lut_r[i] = red[i] >> 8; 1231 mga_crtc->lut_g[i] = green[i] >> 8; 1232 mga_crtc->lut_b[i] = blue[i] >> 8; 1233 } 1234 mga_crtc_load_lut(crtc); 1235 } 1236 1237 /* Simple cleanup function */ 1238 static void mga_crtc_destroy(struct drm_crtc *crtc) 1239 { 1240 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1241 1242 drm_crtc_cleanup(crtc); 1243 kfree(mga_crtc); 1244 } 1245 1246 /* These provide the minimum set of functions required to handle a CRTC */ 1247 static const struct drm_crtc_funcs mga_crtc_funcs = { 1248 .gamma_set = mga_crtc_gamma_set, 1249 .set_config = drm_crtc_helper_set_config, 1250 .destroy = mga_crtc_destroy, 1251 }; 1252 1253 static const struct drm_crtc_helper_funcs mga_helper_funcs = { 1254 .dpms = mga_crtc_dpms, 1255 .mode_fixup = mga_crtc_mode_fixup, 1256 .mode_set = mga_crtc_mode_set, 1257 .mode_set_base = mga_crtc_mode_set_base, 1258 .prepare = mga_crtc_prepare, 1259 .commit = mga_crtc_commit, 1260 .load_lut = mga_crtc_load_lut, 1261 }; 1262 1263 /* CRTC setup */ 1264 static void mga_crtc_init(struct drm_device *dev) 1265 { 1266 struct mga_device *mdev = dev->dev_private; 1267 struct mga_crtc *mga_crtc; 1268 int i; 1269 1270 mga_crtc = kzalloc(sizeof(struct mga_crtc) + 1271 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), 1272 GFP_KERNEL); 1273 1274 if (mga_crtc == NULL) 1275 return; 1276 1277 drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs); 1278 1279 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); 1280 mdev->mode_info.crtc = mga_crtc; 1281 1282 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 1283 mga_crtc->lut_r[i] = i; 1284 mga_crtc->lut_g[i] = i; 1285 mga_crtc->lut_b[i] = i; 1286 } 1287 1288 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); 1289 } 1290 1291 /** Sets the color ramps on behalf of fbcon */ 1292 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, 1293 u16 blue, int regno) 1294 { 1295 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1296 1297 mga_crtc->lut_r[regno] = red >> 8; 1298 mga_crtc->lut_g[regno] = green >> 8; 1299 mga_crtc->lut_b[regno] = blue >> 8; 1300 } 1301 1302 /** Gets the color ramps on behalf of fbcon */ 1303 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, 1304 u16 *blue, int regno) 1305 { 1306 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1307 1308 *red = (u16)mga_crtc->lut_r[regno] << 8; 1309 *green = (u16)mga_crtc->lut_g[regno] << 8; 1310 *blue = (u16)mga_crtc->lut_b[regno] << 8; 1311 } 1312 1313 /* 1314 * The encoder comes after the CRTC in the output pipeline, but before 1315 * the connector. It's responsible for ensuring that the digital 1316 * stream is appropriately converted into the output format. Setup is 1317 * very simple in this case - all we have to do is inform qemu of the 1318 * colour depth in order to ensure that it displays appropriately 1319 */ 1320 1321 /* 1322 * These functions are analagous to those in the CRTC code, but are intended 1323 * to handle any encoder-specific limitations 1324 */ 1325 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder, 1326 const struct drm_display_mode *mode, 1327 struct drm_display_mode *adjusted_mode) 1328 { 1329 return true; 1330 } 1331 1332 static void mga_encoder_mode_set(struct drm_encoder *encoder, 1333 struct drm_display_mode *mode, 1334 struct drm_display_mode *adjusted_mode) 1335 { 1336 1337 } 1338 1339 static void mga_encoder_dpms(struct drm_encoder *encoder, int state) 1340 { 1341 return; 1342 } 1343 1344 static void mga_encoder_prepare(struct drm_encoder *encoder) 1345 { 1346 } 1347 1348 static void mga_encoder_commit(struct drm_encoder *encoder) 1349 { 1350 } 1351 1352 void mga_encoder_destroy(struct drm_encoder *encoder) 1353 { 1354 struct mga_encoder *mga_encoder = to_mga_encoder(encoder); 1355 drm_encoder_cleanup(encoder); 1356 kfree(mga_encoder); 1357 } 1358 1359 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { 1360 .dpms = mga_encoder_dpms, 1361 .mode_fixup = mga_encoder_mode_fixup, 1362 .mode_set = mga_encoder_mode_set, 1363 .prepare = mga_encoder_prepare, 1364 .commit = mga_encoder_commit, 1365 }; 1366 1367 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { 1368 .destroy = mga_encoder_destroy, 1369 }; 1370 1371 static struct drm_encoder *mga_encoder_init(struct drm_device *dev) 1372 { 1373 struct drm_encoder *encoder; 1374 struct mga_encoder *mga_encoder; 1375 1376 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); 1377 if (!mga_encoder) 1378 return NULL; 1379 1380 encoder = &mga_encoder->base; 1381 encoder->possible_crtcs = 0x1; 1382 1383 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, 1384 DRM_MODE_ENCODER_DAC); 1385 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); 1386 1387 return encoder; 1388 } 1389 1390 1391 static int mga_vga_get_modes(struct drm_connector *connector) 1392 { 1393 struct mga_connector *mga_connector = to_mga_connector(connector); 1394 struct edid *edid; 1395 int ret = 0; 1396 1397 edid = drm_get_edid(connector, &mga_connector->i2c->adapter); 1398 if (edid) { 1399 drm_mode_connector_update_edid_property(connector, edid); 1400 ret = drm_add_edid_modes(connector, edid); 1401 kfree(edid); 1402 } 1403 return ret; 1404 } 1405 1406 static int mga_vga_mode_valid(struct drm_connector *connector, 1407 struct drm_display_mode *mode) 1408 { 1409 struct drm_device *dev = connector->dev; 1410 struct mga_device *mdev = (struct mga_device*)dev->dev_private; 1411 struct mga_fbdev *mfbdev = mdev->mfbdev; 1412 struct drm_fb_helper *fb_helper = &mfbdev->helper; 1413 struct drm_fb_helper_connector *fb_helper_conn = NULL; 1414 int bpp = 32; 1415 int i = 0; 1416 1417 /* FIXME: Add bandwidth and g200se limitations */ 1418 1419 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || 1420 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || 1421 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || 1422 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { 1423 return MODE_BAD; 1424 } 1425 1426 /* Validate the mode input by the user */ 1427 for (i = 0; i < fb_helper->connector_count; i++) { 1428 if (fb_helper->connector_info[i]->connector == connector) { 1429 /* Found the helper for this connector */ 1430 fb_helper_conn = fb_helper->connector_info[i]; 1431 if (fb_helper_conn->cmdline_mode.specified) { 1432 if (fb_helper_conn->cmdline_mode.bpp_specified) { 1433 bpp = fb_helper_conn->cmdline_mode.bpp; 1434 } 1435 } 1436 } 1437 } 1438 1439 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { 1440 if (fb_helper_conn) 1441 fb_helper_conn->cmdline_mode.specified = false; 1442 return MODE_BAD; 1443 } 1444 1445 return MODE_OK; 1446 } 1447 1448 struct drm_encoder *mga_connector_best_encoder(struct drm_connector 1449 *connector) 1450 { 1451 int enc_id = connector->encoder_ids[0]; 1452 struct drm_mode_object *obj; 1453 struct drm_encoder *encoder; 1454 1455 /* pick the encoder ids */ 1456 if (enc_id) { 1457 obj = 1458 drm_mode_object_find(connector->dev, enc_id, 1459 DRM_MODE_OBJECT_ENCODER); 1460 if (!obj) 1461 return NULL; 1462 encoder = obj_to_encoder(obj); 1463 return encoder; 1464 } 1465 return NULL; 1466 } 1467 1468 static enum drm_connector_status mga_vga_detect(struct drm_connector 1469 *connector, bool force) 1470 { 1471 return connector_status_connected; 1472 } 1473 1474 static void mga_connector_destroy(struct drm_connector *connector) 1475 { 1476 struct mga_connector *mga_connector = to_mga_connector(connector); 1477 mgag200_i2c_destroy(mga_connector->i2c); 1478 drm_connector_cleanup(connector); 1479 kfree(connector); 1480 } 1481 1482 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { 1483 .get_modes = mga_vga_get_modes, 1484 .mode_valid = mga_vga_mode_valid, 1485 .best_encoder = mga_connector_best_encoder, 1486 }; 1487 1488 struct drm_connector_funcs mga_vga_connector_funcs = { 1489 .dpms = drm_helper_connector_dpms, 1490 .detect = mga_vga_detect, 1491 .fill_modes = drm_helper_probe_single_connector_modes, 1492 .destroy = mga_connector_destroy, 1493 }; 1494 1495 static struct drm_connector *mga_vga_init(struct drm_device *dev) 1496 { 1497 struct drm_connector *connector; 1498 struct mga_connector *mga_connector; 1499 1500 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); 1501 if (!mga_connector) 1502 return NULL; 1503 1504 connector = &mga_connector->base; 1505 1506 drm_connector_init(dev, connector, 1507 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1508 1509 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); 1510 1511 mga_connector->i2c = mgag200_i2c_create(dev); 1512 if (!mga_connector->i2c) 1513 DRM_ERROR("failed to add ddc bus\n"); 1514 1515 return connector; 1516 } 1517 1518 1519 int mgag200_modeset_init(struct mga_device *mdev) 1520 { 1521 struct drm_encoder *encoder; 1522 struct drm_connector *connector; 1523 int ret; 1524 1525 mdev->mode_info.mode_config_initialized = true; 1526 1527 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; 1528 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; 1529 1530 mdev->dev->mode_config.fb_base = mdev->mc.vram_base; 1531 1532 mga_crtc_init(mdev->dev); 1533 1534 encoder = mga_encoder_init(mdev->dev); 1535 if (!encoder) { 1536 DRM_ERROR("mga_encoder_init failed\n"); 1537 return -1; 1538 } 1539 1540 connector = mga_vga_init(mdev->dev); 1541 if (!connector) { 1542 DRM_ERROR("mga_vga_init failed\n"); 1543 return -1; 1544 } 1545 1546 drm_mode_connector_attach_encoder(connector, encoder); 1547 1548 ret = mgag200_fbdev_init(mdev); 1549 if (ret) { 1550 DRM_ERROR("mga_fbdev_init failed\n"); 1551 return ret; 1552 } 1553 1554 return 0; 1555 } 1556 1557 void mgag200_modeset_fini(struct mga_device *mdev) 1558 { 1559 1560 } 1561