1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
19 
20 #include "mgag200_drv.h"
21 
22 #define MGAG200_LUT_SIZE 256
23 
24 /*
25  * This file contains setup code for the CRTC.
26  */
27 
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 	struct drm_device *dev = crtc->dev;
32 	struct mga_device *mdev = dev->dev_private;
33 	struct drm_framebuffer *fb = crtc->primary->fb;
34 	int i;
35 
36 	if (!crtc->enabled)
37 		return;
38 
39 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 
41 	if (fb && fb->bits_per_pixel == 16) {
42 		int inc = (fb->depth == 15) ? 8 : 4;
43 		u8 r, b;
44 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 			if (fb->depth == 16) {
46 				if (i > (MGAG200_LUT_SIZE >> 1)) {
47 					r = b = 0;
48 				} else {
49 					r = mga_crtc->lut_r[i << 1];
50 					b = mga_crtc->lut_b[i << 1];
51 				}
52 			} else {
53 				r = mga_crtc->lut_r[i];
54 				b = mga_crtc->lut_b[i];
55 			}
56 			/* VGA registers */
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 		}
61 		return;
62 	}
63 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 		/* VGA registers */
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68 	}
69 }
70 
71 static inline void mga_wait_vsync(struct mga_device *mdev)
72 {
73 	unsigned long timeout = jiffies + HZ/10;
74 	unsigned int status = 0;
75 
76 	do {
77 		status = RREG32(MGAREG_Status);
78 	} while ((status & 0x08) && time_before(jiffies, timeout));
79 	timeout = jiffies + HZ/10;
80 	status = 0;
81 	do {
82 		status = RREG32(MGAREG_Status);
83 	} while (!(status & 0x08) && time_before(jiffies, timeout));
84 }
85 
86 static inline void mga_wait_busy(struct mga_device *mdev)
87 {
88 	unsigned long timeout = jiffies + HZ;
89 	unsigned int status = 0;
90 	do {
91 		status = RREG8(MGAREG_Status + 2);
92 	} while ((status & 0x01) && time_before(jiffies, timeout));
93 }
94 
95 #define P_ARRAY_SIZE 9
96 
97 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
98 {
99 	unsigned int vcomax, vcomin, pllreffreq;
100 	unsigned int delta, tmpdelta, permitteddelta;
101 	unsigned int testp, testm, testn;
102 	unsigned int p, m, n;
103 	unsigned int computed;
104 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
105 	unsigned int fvv;
106 	unsigned int i;
107 
108 	if (mdev->unique_rev_id <= 0x03) {
109 
110 		m = n = p = 0;
111 		vcomax = 320000;
112 		vcomin = 160000;
113 		pllreffreq = 25000;
114 
115 		delta = 0xffffffff;
116 		permitteddelta = clock * 5 / 1000;
117 
118 		for (testp = 8; testp > 0; testp /= 2) {
119 			if (clock * testp > vcomax)
120 				continue;
121 			if (clock * testp < vcomin)
122 				continue;
123 
124 			for (testn = 17; testn < 256; testn++) {
125 				for (testm = 1; testm < 32; testm++) {
126 					computed = (pllreffreq * testn) /
127 						(testm * testp);
128 					if (computed > clock)
129 						tmpdelta = computed - clock;
130 					else
131 						tmpdelta = clock - computed;
132 					if (tmpdelta < delta) {
133 						delta = tmpdelta;
134 						m = testm - 1;
135 						n = testn - 1;
136 						p = testp - 1;
137 					}
138 				}
139 			}
140 		}
141 	} else {
142 
143 
144 		m = n = p = 0;
145 		vcomax        = 1600000;
146 		vcomin        = 800000;
147 		pllreffreq    = 25000;
148 
149 		if (clock < 25000)
150 			clock = 25000;
151 
152 		clock = clock * 2;
153 
154 		delta = 0xFFFFFFFF;
155 		/* Permited delta is 0.5% as VESA Specification */
156 		permitteddelta = clock * 5 / 1000;
157 
158 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
159 			testp = pvalues_e4[i];
160 
161 			if ((clock * testp) > vcomax)
162 				continue;
163 			if ((clock * testp) < vcomin)
164 				continue;
165 
166 			for (testn = 50; testn <= 256; testn++) {
167 				for (testm = 1; testm <= 32; testm++) {
168 					computed = (pllreffreq * testn) /
169 						(testm * testp);
170 					if (computed > clock)
171 						tmpdelta = computed - clock;
172 					else
173 						tmpdelta = clock - computed;
174 
175 					if (tmpdelta < delta) {
176 						delta = tmpdelta;
177 						m = testm - 1;
178 						n = testn - 1;
179 						p = testp - 1;
180 					}
181 				}
182 			}
183 		}
184 
185 		fvv = pllreffreq * (n + 1) / (m + 1);
186 		fvv = (fvv - 800000) / 50000;
187 
188 		if (fvv > 15)
189 			fvv = 15;
190 
191 		p |= (fvv << 4);
192 		m |= 0x80;
193 
194 		clock = clock / 2;
195 	}
196 
197 	if (delta > permitteddelta) {
198 		printk(KERN_WARNING "PLL delta too large\n");
199 		return 1;
200 	}
201 
202 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
203 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
204 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
205 
206 	if (mdev->unique_rev_id >= 0x04) {
207 		WREG_DAC(0x1a, 0x09);
208 		msleep(20);
209 		WREG_DAC(0x1a, 0x01);
210 
211 	}
212 
213 	return 0;
214 }
215 
216 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
217 {
218 	unsigned int vcomax, vcomin, pllreffreq;
219 	unsigned int delta, tmpdelta;
220 	unsigned int testp, testm, testn, testp2;
221 	unsigned int p, m, n;
222 	unsigned int computed;
223 	int i, j, tmpcount, vcount;
224 	bool pll_locked = false;
225 	u8 tmp;
226 
227 	m = n = p = 0;
228 
229 	delta = 0xffffffff;
230 
231 	if (mdev->type == G200_EW3) {
232 
233 		vcomax = 800000;
234 		vcomin = 400000;
235 		pllreffreq = 25000;
236 
237 		for (testp = 1; testp < 8; testp++) {
238 			for (testp2 = 1; testp2 < 8; testp2++) {
239 				if (testp < testp2)
240 					continue;
241 				if ((clock * testp * testp2) > vcomax)
242 					continue;
243 				if ((clock * testp * testp2) < vcomin)
244 					continue;
245 				for (testm = 1; testm < 26; testm++) {
246 					for (testn = 32; testn < 2048 ; testn++) {
247 						computed = (pllreffreq * testn) /
248 							(testm * testp * testp2);
249 						if (computed > clock)
250 							tmpdelta = computed - clock;
251 						else
252 							tmpdelta = clock - computed;
253 						if (tmpdelta < delta) {
254 							delta = tmpdelta;
255 							m = ((testn & 0x100) >> 1) |
256 								(testm);
257 							n = (testn & 0xFF);
258 							p = ((testn & 0x600) >> 3) |
259 								(testp2 << 3) |
260 								(testp);
261 						}
262 					}
263 				}
264 			}
265 		}
266 	} else {
267 
268 		vcomax = 550000;
269 		vcomin = 150000;
270 		pllreffreq = 48000;
271 
272 		for (testp = 1; testp < 9; testp++) {
273 			if (clock * testp > vcomax)
274 				continue;
275 			if (clock * testp < vcomin)
276 				continue;
277 
278 			for (testm = 1; testm < 17; testm++) {
279 				for (testn = 1; testn < 151; testn++) {
280 					computed = (pllreffreq * testn) /
281 						(testm * testp);
282 					if (computed > clock)
283 						tmpdelta = computed - clock;
284 					else
285 						tmpdelta = clock - computed;
286 					if (tmpdelta < delta) {
287 						delta = tmpdelta;
288 						n = testn - 1;
289 						m = (testm - 1) |
290 							((n >> 1) & 0x80);
291 						p = testp - 1;
292 					}
293 				}
294 			}
295 		}
296 	}
297 
298 	for (i = 0; i <= 32 && pll_locked == false; i++) {
299 		if (i > 0) {
300 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
301 			tmp = RREG8(MGAREG_CRTC_DATA);
302 			if (tmp < 0xff)
303 				WREG8(MGAREG_CRTC_DATA, tmp+1);
304 		}
305 
306 		/* set pixclkdis to 1 */
307 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
308 		tmp = RREG8(DAC_DATA);
309 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
310 		WREG8(DAC_DATA, tmp);
311 
312 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
313 		tmp = RREG8(DAC_DATA);
314 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
315 		WREG8(DAC_DATA, tmp);
316 
317 		/* select PLL Set C */
318 		tmp = RREG8(MGAREG_MEM_MISC_READ);
319 		tmp |= 0x3 << 2;
320 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
321 
322 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
323 		tmp = RREG8(DAC_DATA);
324 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
325 		WREG8(DAC_DATA, tmp);
326 
327 		udelay(500);
328 
329 		/* reset the PLL */
330 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
331 		tmp = RREG8(DAC_DATA);
332 		tmp &= ~0x04;
333 		WREG8(DAC_DATA, tmp);
334 
335 		udelay(50);
336 
337 		/* program pixel pll register */
338 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
339 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
340 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
341 
342 		udelay(50);
343 
344 		/* turn pll on */
345 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
346 		tmp = RREG8(DAC_DATA);
347 		tmp |= 0x04;
348 		WREG_DAC(MGA1064_VREF_CTL, tmp);
349 
350 		udelay(500);
351 
352 		/* select the pixel pll */
353 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
354 		tmp = RREG8(DAC_DATA);
355 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
356 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
357 		WREG8(DAC_DATA, tmp);
358 
359 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
360 		tmp = RREG8(DAC_DATA);
361 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
362 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
363 		WREG8(DAC_DATA, tmp);
364 
365 		/* reset dotclock rate bit */
366 		WREG8(MGAREG_SEQ_INDEX, 1);
367 		tmp = RREG8(MGAREG_SEQ_DATA);
368 		tmp &= ~0x8;
369 		WREG8(MGAREG_SEQ_DATA, tmp);
370 
371 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
372 		tmp = RREG8(DAC_DATA);
373 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
374 		WREG8(DAC_DATA, tmp);
375 
376 		vcount = RREG8(MGAREG_VCOUNT);
377 
378 		for (j = 0; j < 30 && pll_locked == false; j++) {
379 			tmpcount = RREG8(MGAREG_VCOUNT);
380 			if (tmpcount < vcount)
381 				vcount = 0;
382 			if ((tmpcount - vcount) > 2)
383 				pll_locked = true;
384 			else
385 				udelay(5);
386 		}
387 	}
388 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
389 	tmp = RREG8(DAC_DATA);
390 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
391 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
392 	return 0;
393 }
394 
395 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
396 {
397 	unsigned int vcomax, vcomin, pllreffreq;
398 	unsigned int delta, tmpdelta;
399 	unsigned int testp, testm, testn;
400 	unsigned int p, m, n;
401 	unsigned int computed;
402 	u8 tmp;
403 
404 	m = n = p = 0;
405 	vcomax = 550000;
406 	vcomin = 150000;
407 	pllreffreq = 50000;
408 
409 	delta = 0xffffffff;
410 
411 	for (testp = 16; testp > 0; testp--) {
412 		if (clock * testp > vcomax)
413 			continue;
414 		if (clock * testp < vcomin)
415 			continue;
416 
417 		for (testn = 1; testn < 257; testn++) {
418 			for (testm = 1; testm < 17; testm++) {
419 				computed = (pllreffreq * testn) /
420 					(testm * testp);
421 				if (computed > clock)
422 					tmpdelta = computed - clock;
423 				else
424 					tmpdelta = clock - computed;
425 				if (tmpdelta < delta) {
426 					delta = tmpdelta;
427 					n = testn - 1;
428 					m = testm - 1;
429 					p = testp - 1;
430 				}
431 			}
432 		}
433 	}
434 
435 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
436 	tmp = RREG8(DAC_DATA);
437 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
438 	WREG8(DAC_DATA, tmp);
439 
440 	tmp = RREG8(MGAREG_MEM_MISC_READ);
441 	tmp |= 0x3 << 2;
442 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
443 
444 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
445 	tmp = RREG8(DAC_DATA);
446 	WREG8(DAC_DATA, tmp & ~0x40);
447 
448 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
449 	tmp = RREG8(DAC_DATA);
450 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
451 	WREG8(DAC_DATA, tmp);
452 
453 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
454 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
455 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
456 
457 	udelay(50);
458 
459 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
460 	tmp = RREG8(DAC_DATA);
461 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
462 	WREG8(DAC_DATA, tmp);
463 
464 	udelay(500);
465 
466 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
467 	tmp = RREG8(DAC_DATA);
468 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
469 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
470 	WREG8(DAC_DATA, tmp);
471 
472 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
473 	tmp = RREG8(DAC_DATA);
474 	WREG8(DAC_DATA, tmp | 0x40);
475 
476 	tmp = RREG8(MGAREG_MEM_MISC_READ);
477 	tmp |= (0x3 << 2);
478 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
479 
480 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
481 	tmp = RREG8(DAC_DATA);
482 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
483 	WREG8(DAC_DATA, tmp);
484 
485 	return 0;
486 }
487 
488 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
489 {
490 	unsigned int vcomax, vcomin, pllreffreq;
491 	unsigned int delta, tmpdelta;
492 	unsigned int testp, testm, testn;
493 	unsigned int p, m, n;
494 	unsigned int computed;
495 	int i, j, tmpcount, vcount;
496 	u8 tmp;
497 	bool pll_locked = false;
498 
499 	m = n = p = 0;
500 	vcomax = 800000;
501 	vcomin = 400000;
502 	pllreffreq = 33333;
503 
504 	delta = 0xffffffff;
505 
506 	for (testp = 16; testp > 0; testp >>= 1) {
507 		if (clock * testp > vcomax)
508 			continue;
509 		if (clock * testp < vcomin)
510 			continue;
511 
512 		for (testm = 1; testm < 33; testm++) {
513 			for (testn = 17; testn < 257; testn++) {
514 				computed = (pllreffreq * testn) /
515 					(testm * testp);
516 				if (computed > clock)
517 					tmpdelta = computed - clock;
518 				else
519 					tmpdelta = clock - computed;
520 				if (tmpdelta < delta) {
521 					delta = tmpdelta;
522 					n = testn - 1;
523 					m = (testm - 1);
524 					p = testp - 1;
525 				}
526 				if ((clock * testp) >= 600000)
527 					p |= 0x80;
528 			}
529 		}
530 	}
531 	for (i = 0; i <= 32 && pll_locked == false; i++) {
532 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
533 		tmp = RREG8(DAC_DATA);
534 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
535 		WREG8(DAC_DATA, tmp);
536 
537 		tmp = RREG8(MGAREG_MEM_MISC_READ);
538 		tmp |= 0x3 << 2;
539 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
540 
541 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
542 		tmp = RREG8(DAC_DATA);
543 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
544 		WREG8(DAC_DATA, tmp);
545 
546 		udelay(500);
547 
548 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
549 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
550 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
551 
552 		udelay(500);
553 
554 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
555 		tmp = RREG8(DAC_DATA);
556 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
557 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
558 		WREG8(DAC_DATA, tmp);
559 
560 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
561 		tmp = RREG8(DAC_DATA);
562 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
563 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
564 		WREG8(DAC_DATA, tmp);
565 
566 		vcount = RREG8(MGAREG_VCOUNT);
567 
568 		for (j = 0; j < 30 && pll_locked == false; j++) {
569 			tmpcount = RREG8(MGAREG_VCOUNT);
570 			if (tmpcount < vcount)
571 				vcount = 0;
572 			if ((tmpcount - vcount) > 2)
573 				pll_locked = true;
574 			else
575 				udelay(5);
576 		}
577 	}
578 
579 	return 0;
580 }
581 
582 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
583 {
584 	unsigned int vcomax, vcomin, pllreffreq;
585 	unsigned int delta, tmpdelta;
586 	int testr, testn, testm, testo;
587 	unsigned int p, m, n;
588 	unsigned int computed, vco;
589 	int tmp;
590 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
591 
592 	m = n = p = 0;
593 	vcomax = 1488000;
594 	vcomin = 1056000;
595 	pllreffreq = 48000;
596 
597 	delta = 0xffffffff;
598 
599 	for (testr = 0; testr < 4; testr++) {
600 		if (delta == 0)
601 			break;
602 		for (testn = 5; testn < 129; testn++) {
603 			if (delta == 0)
604 				break;
605 			for (testm = 3; testm >= 0; testm--) {
606 				if (delta == 0)
607 					break;
608 				for (testo = 5; testo < 33; testo++) {
609 					vco = pllreffreq * (testn + 1) /
610 						(testr + 1);
611 					if (vco < vcomin)
612 						continue;
613 					if (vco > vcomax)
614 						continue;
615 					computed = vco / (m_div_val[testm] * (testo + 1));
616 					if (computed > clock)
617 						tmpdelta = computed - clock;
618 					else
619 						tmpdelta = clock - computed;
620 					if (tmpdelta < delta) {
621 						delta = tmpdelta;
622 						m = testm | (testo << 3);
623 						n = testn;
624 						p = testr | (testr << 3);
625 					}
626 				}
627 			}
628 		}
629 	}
630 
631 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
632 	tmp = RREG8(DAC_DATA);
633 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
634 	WREG8(DAC_DATA, tmp);
635 
636 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
637 	tmp = RREG8(DAC_DATA);
638 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
639 	WREG8(DAC_DATA, tmp);
640 
641 	tmp = RREG8(MGAREG_MEM_MISC_READ);
642 	tmp |= (0x3<<2) | 0xc0;
643 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
644 
645 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
646 	tmp = RREG8(DAC_DATA);
647 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
648 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
649 	WREG8(DAC_DATA, tmp);
650 
651 	udelay(500);
652 
653 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
654 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
655 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
656 
657 	udelay(50);
658 
659 	return 0;
660 }
661 
662 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
663 {
664 	switch(mdev->type) {
665 	case G200_SE_A:
666 	case G200_SE_B:
667 		return mga_g200se_set_plls(mdev, clock);
668 		break;
669 	case G200_WB:
670 	case G200_EW3:
671 		return mga_g200wb_set_plls(mdev, clock);
672 		break;
673 	case G200_EV:
674 		return mga_g200ev_set_plls(mdev, clock);
675 		break;
676 	case G200_EH:
677 		return mga_g200eh_set_plls(mdev, clock);
678 		break;
679 	case G200_ER:
680 		return mga_g200er_set_plls(mdev, clock);
681 		break;
682 	}
683 	return 0;
684 }
685 
686 static void mga_g200wb_prepare(struct drm_crtc *crtc)
687 {
688 	struct mga_device *mdev = crtc->dev->dev_private;
689 	u8 tmp;
690 	int iter_max;
691 
692 	/* 1- The first step is to warn the BMC of an upcoming mode change.
693 	 * We are putting the misc<0> to output.*/
694 
695 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
696 	tmp = RREG8(DAC_DATA);
697 	tmp |= 0x10;
698 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
699 
700 	/* we are putting a 1 on the misc<0> line */
701 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
702 	tmp = RREG8(DAC_DATA);
703 	tmp |= 0x10;
704 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
705 
706 	/* 2- Second step to mask and further scan request
707 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
708 	 */
709 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
710 	tmp = RREG8(DAC_DATA);
711 	tmp |= 0x80;
712 	WREG_DAC(MGA1064_SPAREREG, tmp);
713 
714 	/* 3a- the third step is to verifu if there is an active scan
715 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
716 	 */
717 	iter_max = 300;
718 	while (!(tmp & 0x1) && iter_max) {
719 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
720 		tmp = RREG8(DAC_DATA);
721 		udelay(1000);
722 		iter_max--;
723 	}
724 
725 	/* 3b- this step occurs only if the remove is actually scanning
726 	 * we are waiting for the end of the frame which is a 1 on
727 	 * remvsyncsts (XSPAREREG<1>)
728 	 */
729 	if (iter_max) {
730 		iter_max = 300;
731 		while ((tmp & 0x2) && iter_max) {
732 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
733 			tmp = RREG8(DAC_DATA);
734 			udelay(1000);
735 			iter_max--;
736 		}
737 	}
738 }
739 
740 static void mga_g200wb_commit(struct drm_crtc *crtc)
741 {
742 	u8 tmp;
743 	struct mga_device *mdev = crtc->dev->dev_private;
744 
745 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
746 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
747 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
748 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
749 
750 	/* 2- second step is to assert the rstlvl2 */
751 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
752 	tmp = RREG8(DAC_DATA);
753 	tmp |= 0x8;
754 	WREG8(DAC_DATA, tmp);
755 
756 	/* wait 10 us */
757 	udelay(10);
758 
759 	/* 3- deassert rstlvl2 */
760 	tmp &= ~0x08;
761 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
762 	WREG8(DAC_DATA, tmp);
763 
764 	/* 4- remove mask of scan request */
765 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
766 	tmp = RREG8(DAC_DATA);
767 	tmp &= ~0x80;
768 	WREG8(DAC_DATA, tmp);
769 
770 	/* 5- put back a 0 on the misc<0> line */
771 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
772 	tmp = RREG8(DAC_DATA);
773 	tmp &= ~0x10;
774 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
775 }
776 
777 /*
778    This is how the framebuffer base address is stored in g200 cards:
779    * Assume @offset is the gpu_addr variable of the framebuffer object
780    * Then addr is the number of _pixels_ (not bytes) from the start of
781      VRAM to the first pixel we want to display. (divided by 2 for 32bit
782      framebuffers)
783    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
784    addr<20> -> CRTCEXT0<6>
785    addr<19-16> -> CRTCEXT0<3-0>
786    addr<15-8> -> CRTCC<7-0>
787    addr<7-0> -> CRTCD<7-0>
788    CRTCEXT0 has to be programmed last to trigger an update and make the
789    new addr variable take effect.
790  */
791 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
792 {
793 	struct mga_device *mdev = crtc->dev->dev_private;
794 	u32 addr;
795 	int count;
796 	u8 crtcext0;
797 
798 	while (RREG8(0x1fda) & 0x08);
799 	while (!(RREG8(0x1fda) & 0x08));
800 
801 	count = RREG8(MGAREG_VCOUNT) + 2;
802 	while (RREG8(MGAREG_VCOUNT) < count);
803 
804 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
805 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
806 	crtcext0 &= 0xB0;
807 	addr = offset / 8;
808 	/* Can't store addresses any higher than that...
809 	   but we also don't have more than 16MB of memory, so it should be fine. */
810 	WARN_ON(addr > 0x1fffff);
811 	crtcext0 |= (!!(addr & (1<<20)))<<6;
812 	WREG_CRT(0x0d, (u8)(addr & 0xff));
813 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
814 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
815 }
816 
817 
818 /* ast is different - we will force move buffers out of VRAM */
819 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
820 				struct drm_framebuffer *fb,
821 				int x, int y, int atomic)
822 {
823 	struct mga_device *mdev = crtc->dev->dev_private;
824 	struct drm_gem_object *obj;
825 	struct mga_framebuffer *mga_fb;
826 	struct mgag200_bo *bo;
827 	int ret;
828 	u64 gpu_addr;
829 
830 	/* push the previous fb to system ram */
831 	if (!atomic && fb) {
832 		mga_fb = to_mga_framebuffer(fb);
833 		obj = mga_fb->obj;
834 		bo = gem_to_mga_bo(obj);
835 		ret = mgag200_bo_reserve(bo, false);
836 		if (ret)
837 			return ret;
838 		mgag200_bo_push_sysram(bo);
839 		mgag200_bo_unreserve(bo);
840 	}
841 
842 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
843 	obj = mga_fb->obj;
844 	bo = gem_to_mga_bo(obj);
845 
846 	ret = mgag200_bo_reserve(bo, false);
847 	if (ret)
848 		return ret;
849 
850 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
851 	if (ret) {
852 		mgag200_bo_unreserve(bo);
853 		return ret;
854 	}
855 
856 	if (&mdev->mfbdev->mfb == mga_fb) {
857 		/* if pushing console in kmap it */
858 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
859 		if (ret)
860 			DRM_ERROR("failed to kmap fbcon\n");
861 
862 	}
863 	mgag200_bo_unreserve(bo);
864 
865 	mga_set_start_address(crtc, (u32)gpu_addr);
866 
867 	return 0;
868 }
869 
870 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
871 				  struct drm_framebuffer *old_fb)
872 {
873 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
874 }
875 
876 static int mga_crtc_mode_set(struct drm_crtc *crtc,
877 				struct drm_display_mode *mode,
878 				struct drm_display_mode *adjusted_mode,
879 				int x, int y, struct drm_framebuffer *old_fb)
880 {
881 	struct drm_device *dev = crtc->dev;
882 	struct mga_device *mdev = dev->dev_private;
883 	int hdisplay, hsyncstart, hsyncend, htotal;
884 	int vdisplay, vsyncstart, vsyncend, vtotal;
885 	int pitch;
886 	int option = 0, option2 = 0;
887 	int i;
888 	unsigned char misc = 0;
889 	unsigned char ext_vga[6];
890 	u8 bppshift;
891 
892 	static unsigned char dacvalue[] = {
893 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
894 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
895 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
896 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
897 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
898 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
899 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
900 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
901 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
902 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
903 	};
904 
905 	bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1];
906 
907 	switch (mdev->type) {
908 	case G200_SE_A:
909 	case G200_SE_B:
910 		dacvalue[MGA1064_VREF_CTL] = 0x03;
911 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
912 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
913 					     MGA1064_MISC_CTL_VGA8 |
914 					     MGA1064_MISC_CTL_DAC_RAM_CS;
915 		if (mdev->has_sdram)
916 			option = 0x40049120;
917 		else
918 			option = 0x4004d120;
919 		option2 = 0x00008000;
920 		break;
921 	case G200_WB:
922 	case G200_EW3:
923 		dacvalue[MGA1064_VREF_CTL] = 0x07;
924 		option = 0x41049120;
925 		option2 = 0x0000b000;
926 		break;
927 	case G200_EV:
928 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
929 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
930 					     MGA1064_MISC_CTL_DAC_RAM_CS;
931 		option = 0x00000120;
932 		option2 = 0x0000b000;
933 		break;
934 	case G200_EH:
935 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
936 					     MGA1064_MISC_CTL_DAC_RAM_CS;
937 		option = 0x00000120;
938 		option2 = 0x0000b000;
939 		break;
940 	case G200_ER:
941 		break;
942 	}
943 
944 	switch (crtc->primary->fb->bits_per_pixel) {
945 	case 8:
946 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
947 		break;
948 	case 16:
949 		if (crtc->primary->fb->depth == 15)
950 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
951 		else
952 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
953 		break;
954 	case 24:
955 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
956 		break;
957 	case 32:
958 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
959 		break;
960 	}
961 
962 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
963 		misc |= 0x40;
964 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
965 		misc |= 0x80;
966 
967 
968 	for (i = 0; i < sizeof(dacvalue); i++) {
969 		if ((i <= 0x17) ||
970 		    (i == 0x1b) ||
971 		    (i == 0x1c) ||
972 		    ((i >= 0x1f) && (i <= 0x29)) ||
973 		    ((i >= 0x30) && (i <= 0x37)))
974 			continue;
975 		if (IS_G200_SE(mdev) &&
976 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
977 			continue;
978 		if ((mdev->type == G200_EV ||
979 		    mdev->type == G200_WB ||
980 		    mdev->type == G200_EH ||
981 		    mdev->type == G200_EW3) &&
982 		    (i >= 0x44) && (i <= 0x4e))
983 			continue;
984 
985 		WREG_DAC(i, dacvalue[i]);
986 	}
987 
988 	if (mdev->type == G200_ER)
989 		WREG_DAC(0x90, 0);
990 
991 	if (option)
992 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
993 	if (option2)
994 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
995 
996 	WREG_SEQ(2, 0xf);
997 	WREG_SEQ(3, 0);
998 	WREG_SEQ(4, 0xe);
999 
1000 	pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8);
1001 	if (crtc->primary->fb->bits_per_pixel == 24)
1002 		pitch = (pitch * 3) >> (4 - bppshift);
1003 	else
1004 		pitch = pitch >> (4 - bppshift);
1005 
1006 	hdisplay = mode->hdisplay / 8 - 1;
1007 	hsyncstart = mode->hsync_start / 8 - 1;
1008 	hsyncend = mode->hsync_end / 8 - 1;
1009 	htotal = mode->htotal / 8 - 1;
1010 
1011 	/* Work around hardware quirk */
1012 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1013 		htotal++;
1014 
1015 	vdisplay = mode->vdisplay - 1;
1016 	vsyncstart = mode->vsync_start - 1;
1017 	vsyncend = mode->vsync_end - 1;
1018 	vtotal = mode->vtotal - 2;
1019 
1020 	WREG_GFX(0, 0);
1021 	WREG_GFX(1, 0);
1022 	WREG_GFX(2, 0);
1023 	WREG_GFX(3, 0);
1024 	WREG_GFX(4, 0);
1025 	WREG_GFX(5, 0x40);
1026 	WREG_GFX(6, 0x5);
1027 	WREG_GFX(7, 0xf);
1028 	WREG_GFX(8, 0xf);
1029 
1030 	WREG_CRT(0, htotal - 4);
1031 	WREG_CRT(1, hdisplay);
1032 	WREG_CRT(2, hdisplay);
1033 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1034 	WREG_CRT(4, hsyncstart);
1035 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1036 	WREG_CRT(6, vtotal & 0xFF);
1037 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1038 		 ((vdisplay & 0x100) >> 7) |
1039 		 ((vsyncstart & 0x100) >> 6) |
1040 		 ((vdisplay & 0x100) >> 5) |
1041 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1042 		 ((vtotal & 0x200) >> 4)|
1043 		 ((vdisplay & 0x200) >> 3) |
1044 		 ((vsyncstart & 0x200) >> 2));
1045 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1046 		 ((vdisplay & 0x200) >> 3));
1047 	WREG_CRT(10, 0);
1048 	WREG_CRT(11, 0);
1049 	WREG_CRT(12, 0);
1050 	WREG_CRT(13, 0);
1051 	WREG_CRT(14, 0);
1052 	WREG_CRT(15, 0);
1053 	WREG_CRT(16, vsyncstart & 0xFF);
1054 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1055 	WREG_CRT(18, vdisplay & 0xFF);
1056 	WREG_CRT(19, pitch & 0xFF);
1057 	WREG_CRT(20, 0);
1058 	WREG_CRT(21, vdisplay & 0xFF);
1059 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1060 	WREG_CRT(23, 0xc3);
1061 	WREG_CRT(24, vdisplay & 0xFF);
1062 
1063 	ext_vga[0] = 0;
1064 	ext_vga[5] = 0;
1065 
1066 	/* TODO interlace */
1067 
1068 	ext_vga[0] |= (pitch & 0x300) >> 4;
1069 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1070 		((hdisplay & 0x100) >> 7) |
1071 		((hsyncstart & 0x100) >> 6) |
1072 		(htotal & 0x40);
1073 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1074 		((vdisplay & 0x400) >> 8) |
1075 		((vdisplay & 0xc00) >> 7) |
1076 		((vsyncstart & 0xc00) >> 5) |
1077 		((vdisplay & 0x400) >> 3);
1078 	if (crtc->primary->fb->bits_per_pixel == 24)
1079 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1080 	else
1081 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1082 	ext_vga[4] = 0;
1083 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1084 		ext_vga[1] |= 0x88;
1085 
1086 	/* Set pixel clocks */
1087 	misc = 0x2d;
1088 	WREG8(MGA_MISC_OUT, misc);
1089 
1090 	mga_crtc_set_plls(mdev, mode->clock);
1091 
1092 	for (i = 0; i < 6; i++) {
1093 		WREG_ECRT(i, ext_vga[i]);
1094 	}
1095 
1096 	if (mdev->type == G200_ER)
1097 		WREG_ECRT(0x24, 0x5);
1098 
1099 	if (mdev->type == G200_EW3)
1100 		WREG_ECRT(0x34, 0x5);
1101 
1102 	if (mdev->type == G200_EV) {
1103 		WREG_ECRT(6, 0);
1104 	}
1105 
1106 	WREG_ECRT(0, ext_vga[0]);
1107 	/* Enable mga pixel clock */
1108 	misc = 0x2d;
1109 
1110 	WREG8(MGA_MISC_OUT, misc);
1111 
1112 	if (adjusted_mode)
1113 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1114 
1115 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1116 
1117 	/* reset tagfifo */
1118 	if (mdev->type == G200_ER) {
1119 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1120 		u8 seq1;
1121 
1122 		/* screen off */
1123 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1124 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1125 		WREG8(MGAREG_SEQ_DATA, seq1);
1126 
1127 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1128 		udelay(1000);
1129 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1130 
1131 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1132 	}
1133 
1134 
1135 	if (IS_G200_SE(mdev)) {
1136 		if (mdev->unique_rev_id >= 0x02) {
1137 			u8 hi_pri_lvl;
1138 			u32 bpp;
1139 			u32 mb;
1140 
1141 			if (crtc->primary->fb->bits_per_pixel > 16)
1142 				bpp = 32;
1143 			else if (crtc->primary->fb->bits_per_pixel > 8)
1144 				bpp = 16;
1145 			else
1146 				bpp = 8;
1147 
1148 			mb = (mode->clock * bpp) / 1000;
1149 			if (mb > 3100)
1150 				hi_pri_lvl = 0;
1151 			else if (mb > 2600)
1152 				hi_pri_lvl = 1;
1153 			else if (mb > 1900)
1154 				hi_pri_lvl = 2;
1155 			else if (mb > 1160)
1156 				hi_pri_lvl = 3;
1157 			else if (mb > 440)
1158 				hi_pri_lvl = 4;
1159 			else
1160 				hi_pri_lvl = 5;
1161 
1162 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1163 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1164 		} else {
1165 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1166 			if (mdev->unique_rev_id >= 0x01)
1167 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1168 			else
1169 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1170 		}
1171 	}
1172 	return 0;
1173 }
1174 
1175 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1176 static int mga_suspend(struct drm_crtc *crtc)
1177 {
1178 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1179 	struct drm_device *dev = crtc->dev;
1180 	struct mga_device *mdev = dev->dev_private;
1181 	struct pci_dev *pdev = dev->pdev;
1182 	int option;
1183 
1184 	if (mdev->suspended)
1185 		return 0;
1186 
1187 	WREG_SEQ(1, 0x20);
1188 	WREG_ECRT(1, 0x30);
1189 	/* Disable the pixel clock */
1190 	WREG_DAC(0x1a, 0x05);
1191 	/* Power down the DAC */
1192 	WREG_DAC(0x1e, 0x18);
1193 	/* Power down the pixel PLL */
1194 	WREG_DAC(0x1a, 0x0d);
1195 
1196 	/* Disable PLLs and clocks */
1197 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1198 	option &= ~(0x1F8024);
1199 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1200 	pci_set_power_state(pdev, PCI_D3hot);
1201 	pci_disable_device(pdev);
1202 
1203 	mdev->suspended = true;
1204 
1205 	return 0;
1206 }
1207 
1208 static int mga_resume(struct drm_crtc *crtc)
1209 {
1210 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1211 	struct drm_device *dev = crtc->dev;
1212 	struct mga_device *mdev = dev->dev_private;
1213 	struct pci_dev *pdev = dev->pdev;
1214 	int option;
1215 
1216 	if (!mdev->suspended)
1217 		return 0;
1218 
1219 	pci_set_power_state(pdev, PCI_D0);
1220 	pci_enable_device(pdev);
1221 
1222 	/* Disable sysclk */
1223 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1224 	option &= ~(0x4);
1225 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1226 
1227 	mdev->suspended = false;
1228 
1229 	return 0;
1230 }
1231 
1232 #endif
1233 
1234 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1235 {
1236 	struct drm_device *dev = crtc->dev;
1237 	struct mga_device *mdev = dev->dev_private;
1238 	u8 seq1 = 0, crtcext1 = 0;
1239 
1240 	switch (mode) {
1241 	case DRM_MODE_DPMS_ON:
1242 		seq1 = 0;
1243 		crtcext1 = 0;
1244 		mga_crtc_load_lut(crtc);
1245 		break;
1246 	case DRM_MODE_DPMS_STANDBY:
1247 		seq1 = 0x20;
1248 		crtcext1 = 0x10;
1249 		break;
1250 	case DRM_MODE_DPMS_SUSPEND:
1251 		seq1 = 0x20;
1252 		crtcext1 = 0x20;
1253 		break;
1254 	case DRM_MODE_DPMS_OFF:
1255 		seq1 = 0x20;
1256 		crtcext1 = 0x30;
1257 		break;
1258 	}
1259 
1260 #if 0
1261 	if (mode == DRM_MODE_DPMS_OFF) {
1262 		mga_suspend(crtc);
1263 	}
1264 #endif
1265 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1266 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1267 	mga_wait_vsync(mdev);
1268 	mga_wait_busy(mdev);
1269 	WREG8(MGAREG_SEQ_DATA, seq1);
1270 	msleep(20);
1271 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1272 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1273 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1274 
1275 #if 0
1276 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1277 		mga_resume(crtc);
1278 		drm_helper_resume_force_mode(dev);
1279 	}
1280 #endif
1281 }
1282 
1283 /*
1284  * This is called before a mode is programmed. A typical use might be to
1285  * enable DPMS during the programming to avoid seeing intermediate stages,
1286  * but that's not relevant to us
1287  */
1288 static void mga_crtc_prepare(struct drm_crtc *crtc)
1289 {
1290 	struct drm_device *dev = crtc->dev;
1291 	struct mga_device *mdev = dev->dev_private;
1292 	u8 tmp;
1293 
1294 	/*	mga_resume(crtc);*/
1295 
1296 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1297 	tmp = RREG8(MGAREG_CRTC_DATA);
1298 	WREG_CRT(0x11, tmp | 0x80);
1299 
1300 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1301 		WREG_SEQ(0, 1);
1302 		msleep(50);
1303 		WREG_SEQ(1, 0x20);
1304 		msleep(20);
1305 	} else {
1306 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1307 		tmp = RREG8(MGAREG_SEQ_DATA);
1308 
1309 		/* start sync reset */
1310 		WREG_SEQ(0, 1);
1311 		WREG_SEQ(1, tmp | 0x20);
1312 	}
1313 
1314 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1315 		mga_g200wb_prepare(crtc);
1316 
1317 	WREG_CRT(17, 0);
1318 }
1319 
1320 /*
1321  * This is called after a mode is programmed. It should reverse anything done
1322  * by the prepare function
1323  */
1324 static void mga_crtc_commit(struct drm_crtc *crtc)
1325 {
1326 	struct drm_device *dev = crtc->dev;
1327 	struct mga_device *mdev = dev->dev_private;
1328 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1329 	u8 tmp;
1330 
1331 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1332 		mga_g200wb_commit(crtc);
1333 
1334 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1335 		msleep(50);
1336 		WREG_SEQ(1, 0x0);
1337 		msleep(20);
1338 		WREG_SEQ(0, 0x3);
1339 	} else {
1340 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1341 		tmp = RREG8(MGAREG_SEQ_DATA);
1342 
1343 		tmp &= ~0x20;
1344 		WREG_SEQ(0x1, tmp);
1345 		WREG_SEQ(0, 3);
1346 	}
1347 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1348 }
1349 
1350 /*
1351  * The core can pass us a set of gamma values to program. We actually only
1352  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1353  * but it's a requirement that we provide the function
1354  */
1355 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1356 			      u16 *blue, uint32_t size)
1357 {
1358 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1359 	int i;
1360 
1361 	for (i = 0; i < size; i++) {
1362 		mga_crtc->lut_r[i] = red[i] >> 8;
1363 		mga_crtc->lut_g[i] = green[i] >> 8;
1364 		mga_crtc->lut_b[i] = blue[i] >> 8;
1365 	}
1366 	mga_crtc_load_lut(crtc);
1367 
1368 	return 0;
1369 }
1370 
1371 /* Simple cleanup function */
1372 static void mga_crtc_destroy(struct drm_crtc *crtc)
1373 {
1374 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1375 
1376 	drm_crtc_cleanup(crtc);
1377 	kfree(mga_crtc);
1378 }
1379 
1380 static void mga_crtc_disable(struct drm_crtc *crtc)
1381 {
1382 	int ret;
1383 	DRM_DEBUG_KMS("\n");
1384 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1385 	if (crtc->primary->fb) {
1386 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1387 		struct drm_gem_object *obj = mga_fb->obj;
1388 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1389 		ret = mgag200_bo_reserve(bo, false);
1390 		if (ret)
1391 			return;
1392 		mgag200_bo_push_sysram(bo);
1393 		mgag200_bo_unreserve(bo);
1394 	}
1395 	crtc->primary->fb = NULL;
1396 }
1397 
1398 /* These provide the minimum set of functions required to handle a CRTC */
1399 static const struct drm_crtc_funcs mga_crtc_funcs = {
1400 	.cursor_set = mga_crtc_cursor_set,
1401 	.cursor_move = mga_crtc_cursor_move,
1402 	.gamma_set = mga_crtc_gamma_set,
1403 	.set_config = drm_crtc_helper_set_config,
1404 	.destroy = mga_crtc_destroy,
1405 };
1406 
1407 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1408 	.disable = mga_crtc_disable,
1409 	.dpms = mga_crtc_dpms,
1410 	.mode_set = mga_crtc_mode_set,
1411 	.mode_set_base = mga_crtc_mode_set_base,
1412 	.prepare = mga_crtc_prepare,
1413 	.commit = mga_crtc_commit,
1414 	.load_lut = mga_crtc_load_lut,
1415 };
1416 
1417 /* CRTC setup */
1418 static void mga_crtc_init(struct mga_device *mdev)
1419 {
1420 	struct mga_crtc *mga_crtc;
1421 	int i;
1422 
1423 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1424 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1425 			      GFP_KERNEL);
1426 
1427 	if (mga_crtc == NULL)
1428 		return;
1429 
1430 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1431 
1432 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1433 	mdev->mode_info.crtc = mga_crtc;
1434 
1435 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1436 		mga_crtc->lut_r[i] = i;
1437 		mga_crtc->lut_g[i] = i;
1438 		mga_crtc->lut_b[i] = i;
1439 	}
1440 
1441 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1442 }
1443 
1444 /** Sets the color ramps on behalf of fbcon */
1445 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1446 			      u16 blue, int regno)
1447 {
1448 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1449 
1450 	mga_crtc->lut_r[regno] = red >> 8;
1451 	mga_crtc->lut_g[regno] = green >> 8;
1452 	mga_crtc->lut_b[regno] = blue >> 8;
1453 }
1454 
1455 /** Gets the color ramps on behalf of fbcon */
1456 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1457 			      u16 *blue, int regno)
1458 {
1459 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1460 
1461 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1462 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1463 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1464 }
1465 
1466 /*
1467  * The encoder comes after the CRTC in the output pipeline, but before
1468  * the connector. It's responsible for ensuring that the digital
1469  * stream is appropriately converted into the output format. Setup is
1470  * very simple in this case - all we have to do is inform qemu of the
1471  * colour depth in order to ensure that it displays appropriately
1472  */
1473 
1474 /*
1475  * These functions are analagous to those in the CRTC code, but are intended
1476  * to handle any encoder-specific limitations
1477  */
1478 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1479 				struct drm_display_mode *mode,
1480 				struct drm_display_mode *adjusted_mode)
1481 {
1482 
1483 }
1484 
1485 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1486 {
1487 	return;
1488 }
1489 
1490 static void mga_encoder_prepare(struct drm_encoder *encoder)
1491 {
1492 }
1493 
1494 static void mga_encoder_commit(struct drm_encoder *encoder)
1495 {
1496 }
1497 
1498 static void mga_encoder_destroy(struct drm_encoder *encoder)
1499 {
1500 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1501 	drm_encoder_cleanup(encoder);
1502 	kfree(mga_encoder);
1503 }
1504 
1505 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1506 	.dpms = mga_encoder_dpms,
1507 	.mode_set = mga_encoder_mode_set,
1508 	.prepare = mga_encoder_prepare,
1509 	.commit = mga_encoder_commit,
1510 };
1511 
1512 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1513 	.destroy = mga_encoder_destroy,
1514 };
1515 
1516 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1517 {
1518 	struct drm_encoder *encoder;
1519 	struct mga_encoder *mga_encoder;
1520 
1521 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1522 	if (!mga_encoder)
1523 		return NULL;
1524 
1525 	encoder = &mga_encoder->base;
1526 	encoder->possible_crtcs = 0x1;
1527 
1528 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1529 			 DRM_MODE_ENCODER_DAC, NULL);
1530 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1531 
1532 	return encoder;
1533 }
1534 
1535 
1536 static int mga_vga_get_modes(struct drm_connector *connector)
1537 {
1538 	struct mga_connector *mga_connector = to_mga_connector(connector);
1539 	struct edid *edid;
1540 	int ret = 0;
1541 
1542 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1543 	if (edid) {
1544 		drm_mode_connector_update_edid_property(connector, edid);
1545 		ret = drm_add_edid_modes(connector, edid);
1546 		kfree(edid);
1547 	}
1548 	return ret;
1549 }
1550 
1551 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1552 							int bits_per_pixel)
1553 {
1554 	uint32_t total_area, divisor;
1555 	uint64_t active_area, pixels_per_second, bandwidth;
1556 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1557 
1558 	divisor = 1024;
1559 
1560 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1561 		return 0;
1562 
1563 	active_area = mode->hdisplay * mode->vdisplay;
1564 	total_area = mode->htotal * mode->vtotal;
1565 
1566 	pixels_per_second = active_area * mode->clock * 1000;
1567 	do_div(pixels_per_second, total_area);
1568 
1569 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1570 	do_div(bandwidth, divisor);
1571 
1572 	return (uint32_t)(bandwidth);
1573 }
1574 
1575 #define MODE_BANDWIDTH	MODE_BAD
1576 
1577 static int mga_vga_mode_valid(struct drm_connector *connector,
1578 				 struct drm_display_mode *mode)
1579 {
1580 	struct drm_device *dev = connector->dev;
1581 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1582 	int bpp = 32;
1583 
1584 	if (IS_G200_SE(mdev)) {
1585 		if (mdev->unique_rev_id == 0x01) {
1586 			if (mode->hdisplay > 1600)
1587 				return MODE_VIRTUAL_X;
1588 			if (mode->vdisplay > 1200)
1589 				return MODE_VIRTUAL_Y;
1590 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1591 				> (24400 * 1024))
1592 				return MODE_BANDWIDTH;
1593 		} else if (mdev->unique_rev_id == 0x02) {
1594 			if (mode->hdisplay > 1920)
1595 				return MODE_VIRTUAL_X;
1596 			if (mode->vdisplay > 1200)
1597 				return MODE_VIRTUAL_Y;
1598 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1599 				> (30100 * 1024))
1600 				return MODE_BANDWIDTH;
1601 		}
1602 	} else if (mdev->type == G200_WB) {
1603 		if (mode->hdisplay > 1280)
1604 			return MODE_VIRTUAL_X;
1605 		if (mode->vdisplay > 1024)
1606 			return MODE_VIRTUAL_Y;
1607 		if (mga_vga_calculate_mode_bandwidth(mode,
1608 			bpp > (31877 * 1024)))
1609 			return MODE_BANDWIDTH;
1610 	} else if (mdev->type == G200_EV &&
1611 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1612 			> (32700 * 1024))) {
1613 		return MODE_BANDWIDTH;
1614 	} else if (mdev->type == G200_EH &&
1615 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1616 			> (37500 * 1024))) {
1617 		return MODE_BANDWIDTH;
1618 	} else if (mdev->type == G200_ER &&
1619 		(mga_vga_calculate_mode_bandwidth(mode,
1620 			bpp) > (55000 * 1024))) {
1621 		return MODE_BANDWIDTH;
1622 	}
1623 
1624 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1625 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1626 		return MODE_H_ILLEGAL;
1627 	}
1628 
1629 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1630 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1631 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1632 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1633 		return MODE_BAD;
1634 	}
1635 
1636 	/* Validate the mode input by the user */
1637 	if (connector->cmdline_mode.specified) {
1638 		if (connector->cmdline_mode.bpp_specified)
1639 			bpp = connector->cmdline_mode.bpp;
1640 	}
1641 
1642 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1643 		if (connector->cmdline_mode.specified)
1644 			connector->cmdline_mode.specified = false;
1645 		return MODE_BAD;
1646 	}
1647 
1648 	return MODE_OK;
1649 }
1650 
1651 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1652 						  *connector)
1653 {
1654 	int enc_id = connector->encoder_ids[0];
1655 	/* pick the encoder ids */
1656 	if (enc_id)
1657 		return drm_encoder_find(connector->dev, enc_id);
1658 	return NULL;
1659 }
1660 
1661 static void mga_connector_destroy(struct drm_connector *connector)
1662 {
1663 	struct mga_connector *mga_connector = to_mga_connector(connector);
1664 	mgag200_i2c_destroy(mga_connector->i2c);
1665 	drm_connector_cleanup(connector);
1666 	kfree(connector);
1667 }
1668 
1669 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1670 	.get_modes = mga_vga_get_modes,
1671 	.mode_valid = mga_vga_mode_valid,
1672 	.best_encoder = mga_connector_best_encoder,
1673 };
1674 
1675 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1676 	.dpms = drm_helper_connector_dpms,
1677 	.fill_modes = drm_helper_probe_single_connector_modes,
1678 	.destroy = mga_connector_destroy,
1679 };
1680 
1681 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1682 {
1683 	struct drm_connector *connector;
1684 	struct mga_connector *mga_connector;
1685 
1686 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1687 	if (!mga_connector)
1688 		return NULL;
1689 
1690 	connector = &mga_connector->base;
1691 
1692 	drm_connector_init(dev, connector,
1693 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1694 
1695 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1696 
1697 	drm_connector_register(connector);
1698 
1699 	mga_connector->i2c = mgag200_i2c_create(dev);
1700 	if (!mga_connector->i2c)
1701 		DRM_ERROR("failed to add ddc bus\n");
1702 
1703 	return connector;
1704 }
1705 
1706 
1707 int mgag200_modeset_init(struct mga_device *mdev)
1708 {
1709 	struct drm_encoder *encoder;
1710 	struct drm_connector *connector;
1711 	int ret;
1712 
1713 	mdev->mode_info.mode_config_initialized = true;
1714 
1715 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1716 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1717 
1718 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1719 
1720 	mga_crtc_init(mdev);
1721 
1722 	encoder = mga_encoder_init(mdev->dev);
1723 	if (!encoder) {
1724 		DRM_ERROR("mga_encoder_init failed\n");
1725 		return -1;
1726 	}
1727 
1728 	connector = mga_vga_init(mdev->dev);
1729 	if (!connector) {
1730 		DRM_ERROR("mga_vga_init failed\n");
1731 		return -1;
1732 	}
1733 
1734 	drm_mode_connector_attach_encoder(connector, encoder);
1735 
1736 	ret = mgag200_fbdev_init(mdev);
1737 	if (ret) {
1738 		DRM_ERROR("mga_fbdev_init failed\n");
1739 		return ret;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 void mgag200_modeset_fini(struct mga_device *mdev)
1746 {
1747 
1748 }
1749