1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
19 
20 #include "mgag200_drv.h"
21 
22 #define MGAG200_LUT_SIZE 256
23 
24 /*
25  * This file contains setup code for the CRTC.
26  */
27 
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 	struct drm_device *dev = crtc->dev;
32 	struct mga_device *mdev = dev->dev_private;
33 	struct drm_framebuffer *fb = crtc->primary->fb;
34 	int i;
35 
36 	if (!crtc->enabled)
37 		return;
38 
39 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 
41 	if (fb && fb->format->cpp[0] * 8 == 16) {
42 		int inc = (fb->format->depth == 15) ? 8 : 4;
43 		u8 r, b;
44 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 			if (fb->format->depth == 16) {
46 				if (i > (MGAG200_LUT_SIZE >> 1)) {
47 					r = b = 0;
48 				} else {
49 					r = mga_crtc->lut_r[i << 1];
50 					b = mga_crtc->lut_b[i << 1];
51 				}
52 			} else {
53 				r = mga_crtc->lut_r[i];
54 				b = mga_crtc->lut_b[i];
55 			}
56 			/* VGA registers */
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 		}
61 		return;
62 	}
63 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 		/* VGA registers */
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68 	}
69 }
70 
71 static inline void mga_wait_vsync(struct mga_device *mdev)
72 {
73 	unsigned long timeout = jiffies + HZ/10;
74 	unsigned int status = 0;
75 
76 	do {
77 		status = RREG32(MGAREG_Status);
78 	} while ((status & 0x08) && time_before(jiffies, timeout));
79 	timeout = jiffies + HZ/10;
80 	status = 0;
81 	do {
82 		status = RREG32(MGAREG_Status);
83 	} while (!(status & 0x08) && time_before(jiffies, timeout));
84 }
85 
86 static inline void mga_wait_busy(struct mga_device *mdev)
87 {
88 	unsigned long timeout = jiffies + HZ;
89 	unsigned int status = 0;
90 	do {
91 		status = RREG8(MGAREG_Status + 2);
92 	} while ((status & 0x01) && time_before(jiffies, timeout));
93 }
94 
95 #define P_ARRAY_SIZE 9
96 
97 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
98 {
99 	unsigned int vcomax, vcomin, pllreffreq;
100 	unsigned int delta, tmpdelta, permitteddelta;
101 	unsigned int testp, testm, testn;
102 	unsigned int p, m, n;
103 	unsigned int computed;
104 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
105 	unsigned int fvv;
106 	unsigned int i;
107 
108 	if (mdev->unique_rev_id <= 0x03) {
109 
110 		m = n = p = 0;
111 		vcomax = 320000;
112 		vcomin = 160000;
113 		pllreffreq = 25000;
114 
115 		delta = 0xffffffff;
116 		permitteddelta = clock * 5 / 1000;
117 
118 		for (testp = 8; testp > 0; testp /= 2) {
119 			if (clock * testp > vcomax)
120 				continue;
121 			if (clock * testp < vcomin)
122 				continue;
123 
124 			for (testn = 17; testn < 256; testn++) {
125 				for (testm = 1; testm < 32; testm++) {
126 					computed = (pllreffreq * testn) /
127 						(testm * testp);
128 					if (computed > clock)
129 						tmpdelta = computed - clock;
130 					else
131 						tmpdelta = clock - computed;
132 					if (tmpdelta < delta) {
133 						delta = tmpdelta;
134 						m = testm - 1;
135 						n = testn - 1;
136 						p = testp - 1;
137 					}
138 				}
139 			}
140 		}
141 	} else {
142 
143 
144 		m = n = p = 0;
145 		vcomax        = 1600000;
146 		vcomin        = 800000;
147 		pllreffreq    = 25000;
148 
149 		if (clock < 25000)
150 			clock = 25000;
151 
152 		clock = clock * 2;
153 
154 		delta = 0xFFFFFFFF;
155 		/* Permited delta is 0.5% as VESA Specification */
156 		permitteddelta = clock * 5 / 1000;
157 
158 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
159 			testp = pvalues_e4[i];
160 
161 			if ((clock * testp) > vcomax)
162 				continue;
163 			if ((clock * testp) < vcomin)
164 				continue;
165 
166 			for (testn = 50; testn <= 256; testn++) {
167 				for (testm = 1; testm <= 32; testm++) {
168 					computed = (pllreffreq * testn) /
169 						(testm * testp);
170 					if (computed > clock)
171 						tmpdelta = computed - clock;
172 					else
173 						tmpdelta = clock - computed;
174 
175 					if (tmpdelta < delta) {
176 						delta = tmpdelta;
177 						m = testm - 1;
178 						n = testn - 1;
179 						p = testp - 1;
180 					}
181 				}
182 			}
183 		}
184 
185 		fvv = pllreffreq * (n + 1) / (m + 1);
186 		fvv = (fvv - 800000) / 50000;
187 
188 		if (fvv > 15)
189 			fvv = 15;
190 
191 		p |= (fvv << 4);
192 		m |= 0x80;
193 
194 		clock = clock / 2;
195 	}
196 
197 	if (delta > permitteddelta) {
198 		printk(KERN_WARNING "PLL delta too large\n");
199 		return 1;
200 	}
201 
202 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
203 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
204 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
205 
206 	if (mdev->unique_rev_id >= 0x04) {
207 		WREG_DAC(0x1a, 0x09);
208 		msleep(20);
209 		WREG_DAC(0x1a, 0x01);
210 
211 	}
212 
213 	return 0;
214 }
215 
216 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
217 {
218 	unsigned int vcomax, vcomin, pllreffreq;
219 	unsigned int delta, tmpdelta;
220 	unsigned int testp, testm, testn, testp2;
221 	unsigned int p, m, n;
222 	unsigned int computed;
223 	int i, j, tmpcount, vcount;
224 	bool pll_locked = false;
225 	u8 tmp;
226 
227 	m = n = p = 0;
228 
229 	delta = 0xffffffff;
230 
231 	if (mdev->type == G200_EW3) {
232 
233 		vcomax = 800000;
234 		vcomin = 400000;
235 		pllreffreq = 25000;
236 
237 		for (testp = 1; testp < 8; testp++) {
238 			for (testp2 = 1; testp2 < 8; testp2++) {
239 				if (testp < testp2)
240 					continue;
241 				if ((clock * testp * testp2) > vcomax)
242 					continue;
243 				if ((clock * testp * testp2) < vcomin)
244 					continue;
245 				for (testm = 1; testm < 26; testm++) {
246 					for (testn = 32; testn < 2048 ; testn++) {
247 						computed = (pllreffreq * testn) /
248 							(testm * testp * testp2);
249 						if (computed > clock)
250 							tmpdelta = computed - clock;
251 						else
252 							tmpdelta = clock - computed;
253 						if (tmpdelta < delta) {
254 							delta = tmpdelta;
255 							m = ((testn & 0x100) >> 1) |
256 								(testm);
257 							n = (testn & 0xFF);
258 							p = ((testn & 0x600) >> 3) |
259 								(testp2 << 3) |
260 								(testp);
261 						}
262 					}
263 				}
264 			}
265 		}
266 	} else {
267 
268 		vcomax = 550000;
269 		vcomin = 150000;
270 		pllreffreq = 48000;
271 
272 		for (testp = 1; testp < 9; testp++) {
273 			if (clock * testp > vcomax)
274 				continue;
275 			if (clock * testp < vcomin)
276 				continue;
277 
278 			for (testm = 1; testm < 17; testm++) {
279 				for (testn = 1; testn < 151; testn++) {
280 					computed = (pllreffreq * testn) /
281 						(testm * testp);
282 					if (computed > clock)
283 						tmpdelta = computed - clock;
284 					else
285 						tmpdelta = clock - computed;
286 					if (tmpdelta < delta) {
287 						delta = tmpdelta;
288 						n = testn - 1;
289 						m = (testm - 1) |
290 							((n >> 1) & 0x80);
291 						p = testp - 1;
292 					}
293 				}
294 			}
295 		}
296 	}
297 
298 	for (i = 0; i <= 32 && pll_locked == false; i++) {
299 		if (i > 0) {
300 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
301 			tmp = RREG8(MGAREG_CRTC_DATA);
302 			if (tmp < 0xff)
303 				WREG8(MGAREG_CRTC_DATA, tmp+1);
304 		}
305 
306 		/* set pixclkdis to 1 */
307 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
308 		tmp = RREG8(DAC_DATA);
309 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
310 		WREG8(DAC_DATA, tmp);
311 
312 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
313 		tmp = RREG8(DAC_DATA);
314 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
315 		WREG8(DAC_DATA, tmp);
316 
317 		/* select PLL Set C */
318 		tmp = RREG8(MGAREG_MEM_MISC_READ);
319 		tmp |= 0x3 << 2;
320 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
321 
322 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
323 		tmp = RREG8(DAC_DATA);
324 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
325 		WREG8(DAC_DATA, tmp);
326 
327 		udelay(500);
328 
329 		/* reset the PLL */
330 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
331 		tmp = RREG8(DAC_DATA);
332 		tmp &= ~0x04;
333 		WREG8(DAC_DATA, tmp);
334 
335 		udelay(50);
336 
337 		/* program pixel pll register */
338 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
339 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
340 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
341 
342 		udelay(50);
343 
344 		/* turn pll on */
345 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
346 		tmp = RREG8(DAC_DATA);
347 		tmp |= 0x04;
348 		WREG_DAC(MGA1064_VREF_CTL, tmp);
349 
350 		udelay(500);
351 
352 		/* select the pixel pll */
353 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
354 		tmp = RREG8(DAC_DATA);
355 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
356 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
357 		WREG8(DAC_DATA, tmp);
358 
359 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
360 		tmp = RREG8(DAC_DATA);
361 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
362 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
363 		WREG8(DAC_DATA, tmp);
364 
365 		/* reset dotclock rate bit */
366 		WREG8(MGAREG_SEQ_INDEX, 1);
367 		tmp = RREG8(MGAREG_SEQ_DATA);
368 		tmp &= ~0x8;
369 		WREG8(MGAREG_SEQ_DATA, tmp);
370 
371 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
372 		tmp = RREG8(DAC_DATA);
373 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
374 		WREG8(DAC_DATA, tmp);
375 
376 		vcount = RREG8(MGAREG_VCOUNT);
377 
378 		for (j = 0; j < 30 && pll_locked == false; j++) {
379 			tmpcount = RREG8(MGAREG_VCOUNT);
380 			if (tmpcount < vcount)
381 				vcount = 0;
382 			if ((tmpcount - vcount) > 2)
383 				pll_locked = true;
384 			else
385 				udelay(5);
386 		}
387 	}
388 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
389 	tmp = RREG8(DAC_DATA);
390 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
391 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
392 	return 0;
393 }
394 
395 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
396 {
397 	unsigned int vcomax, vcomin, pllreffreq;
398 	unsigned int delta, tmpdelta;
399 	unsigned int testp, testm, testn;
400 	unsigned int p, m, n;
401 	unsigned int computed;
402 	u8 tmp;
403 
404 	m = n = p = 0;
405 	vcomax = 550000;
406 	vcomin = 150000;
407 	pllreffreq = 50000;
408 
409 	delta = 0xffffffff;
410 
411 	for (testp = 16; testp > 0; testp--) {
412 		if (clock * testp > vcomax)
413 			continue;
414 		if (clock * testp < vcomin)
415 			continue;
416 
417 		for (testn = 1; testn < 257; testn++) {
418 			for (testm = 1; testm < 17; testm++) {
419 				computed = (pllreffreq * testn) /
420 					(testm * testp);
421 				if (computed > clock)
422 					tmpdelta = computed - clock;
423 				else
424 					tmpdelta = clock - computed;
425 				if (tmpdelta < delta) {
426 					delta = tmpdelta;
427 					n = testn - 1;
428 					m = testm - 1;
429 					p = testp - 1;
430 				}
431 			}
432 		}
433 	}
434 
435 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
436 	tmp = RREG8(DAC_DATA);
437 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
438 	WREG8(DAC_DATA, tmp);
439 
440 	tmp = RREG8(MGAREG_MEM_MISC_READ);
441 	tmp |= 0x3 << 2;
442 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
443 
444 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
445 	tmp = RREG8(DAC_DATA);
446 	WREG8(DAC_DATA, tmp & ~0x40);
447 
448 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
449 	tmp = RREG8(DAC_DATA);
450 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
451 	WREG8(DAC_DATA, tmp);
452 
453 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
454 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
455 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
456 
457 	udelay(50);
458 
459 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
460 	tmp = RREG8(DAC_DATA);
461 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
462 	WREG8(DAC_DATA, tmp);
463 
464 	udelay(500);
465 
466 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
467 	tmp = RREG8(DAC_DATA);
468 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
469 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
470 	WREG8(DAC_DATA, tmp);
471 
472 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
473 	tmp = RREG8(DAC_DATA);
474 	WREG8(DAC_DATA, tmp | 0x40);
475 
476 	tmp = RREG8(MGAREG_MEM_MISC_READ);
477 	tmp |= (0x3 << 2);
478 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
479 
480 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
481 	tmp = RREG8(DAC_DATA);
482 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
483 	WREG8(DAC_DATA, tmp);
484 
485 	return 0;
486 }
487 
488 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
489 {
490 	unsigned int vcomax, vcomin, pllreffreq;
491 	unsigned int delta, tmpdelta;
492 	unsigned int testp, testm, testn;
493 	unsigned int p, m, n;
494 	unsigned int computed;
495 	int i, j, tmpcount, vcount;
496 	u8 tmp;
497 	bool pll_locked = false;
498 
499 	m = n = p = 0;
500 
501 	if (mdev->type == G200_EH3) {
502 		vcomax = 3000000;
503 		vcomin = 1500000;
504 		pllreffreq = 25000;
505 
506 		delta = 0xffffffff;
507 
508 		testp = 0;
509 
510 		for (testm = 150; testm >= 6; testm--) {
511 			if (clock * testm > vcomax)
512 				continue;
513 			if (clock * testm < vcomin)
514 				continue;
515 			for (testn = 120; testn >= 60; testn--) {
516 				computed = (pllreffreq * testn) / testm;
517 				if (computed > clock)
518 					tmpdelta = computed - clock;
519 				else
520 					tmpdelta = clock - computed;
521 				if (tmpdelta < delta) {
522 					delta = tmpdelta;
523 					n = testn;
524 					m = testm;
525 					p = testp;
526 				}
527 				if (delta == 0)
528 					break;
529 			}
530 			if (delta == 0)
531 				break;
532 		}
533 	} else {
534 
535 		vcomax = 800000;
536 		vcomin = 400000;
537 		pllreffreq = 33333;
538 
539 		delta = 0xffffffff;
540 
541 		for (testp = 16; testp > 0; testp >>= 1) {
542 			if (clock * testp > vcomax)
543 				continue;
544 			if (clock * testp < vcomin)
545 				continue;
546 
547 			for (testm = 1; testm < 33; testm++) {
548 				for (testn = 17; testn < 257; testn++) {
549 					computed = (pllreffreq * testn) /
550 						(testm * testp);
551 					if (computed > clock)
552 						tmpdelta = computed - clock;
553 					else
554 						tmpdelta = clock - computed;
555 					if (tmpdelta < delta) {
556 						delta = tmpdelta;
557 						n = testn - 1;
558 						m = (testm - 1);
559 						p = testp - 1;
560 					}
561 					if ((clock * testp) >= 600000)
562 						p |= 0x80;
563 				}
564 			}
565 		}
566 	}
567 	for (i = 0; i <= 32 && pll_locked == false; i++) {
568 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
569 		tmp = RREG8(DAC_DATA);
570 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
571 		WREG8(DAC_DATA, tmp);
572 
573 		tmp = RREG8(MGAREG_MEM_MISC_READ);
574 		tmp |= 0x3 << 2;
575 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
576 
577 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
578 		tmp = RREG8(DAC_DATA);
579 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
580 		WREG8(DAC_DATA, tmp);
581 
582 		udelay(500);
583 
584 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
585 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
586 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
587 
588 		udelay(500);
589 
590 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
591 		tmp = RREG8(DAC_DATA);
592 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
593 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
594 		WREG8(DAC_DATA, tmp);
595 
596 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
597 		tmp = RREG8(DAC_DATA);
598 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
599 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
600 		WREG8(DAC_DATA, tmp);
601 
602 		vcount = RREG8(MGAREG_VCOUNT);
603 
604 		for (j = 0; j < 30 && pll_locked == false; j++) {
605 			tmpcount = RREG8(MGAREG_VCOUNT);
606 			if (tmpcount < vcount)
607 				vcount = 0;
608 			if ((tmpcount - vcount) > 2)
609 				pll_locked = true;
610 			else
611 				udelay(5);
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
619 {
620 	unsigned int vcomax, vcomin, pllreffreq;
621 	unsigned int delta, tmpdelta;
622 	int testr, testn, testm, testo;
623 	unsigned int p, m, n;
624 	unsigned int computed, vco;
625 	int tmp;
626 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
627 
628 	m = n = p = 0;
629 	vcomax = 1488000;
630 	vcomin = 1056000;
631 	pllreffreq = 48000;
632 
633 	delta = 0xffffffff;
634 
635 	for (testr = 0; testr < 4; testr++) {
636 		if (delta == 0)
637 			break;
638 		for (testn = 5; testn < 129; testn++) {
639 			if (delta == 0)
640 				break;
641 			for (testm = 3; testm >= 0; testm--) {
642 				if (delta == 0)
643 					break;
644 				for (testo = 5; testo < 33; testo++) {
645 					vco = pllreffreq * (testn + 1) /
646 						(testr + 1);
647 					if (vco < vcomin)
648 						continue;
649 					if (vco > vcomax)
650 						continue;
651 					computed = vco / (m_div_val[testm] * (testo + 1));
652 					if (computed > clock)
653 						tmpdelta = computed - clock;
654 					else
655 						tmpdelta = clock - computed;
656 					if (tmpdelta < delta) {
657 						delta = tmpdelta;
658 						m = testm | (testo << 3);
659 						n = testn;
660 						p = testr | (testr << 3);
661 					}
662 				}
663 			}
664 		}
665 	}
666 
667 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
668 	tmp = RREG8(DAC_DATA);
669 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
670 	WREG8(DAC_DATA, tmp);
671 
672 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
673 	tmp = RREG8(DAC_DATA);
674 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
675 	WREG8(DAC_DATA, tmp);
676 
677 	tmp = RREG8(MGAREG_MEM_MISC_READ);
678 	tmp |= (0x3<<2) | 0xc0;
679 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
680 
681 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
682 	tmp = RREG8(DAC_DATA);
683 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
684 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
685 	WREG8(DAC_DATA, tmp);
686 
687 	udelay(500);
688 
689 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
690 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
691 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
692 
693 	udelay(50);
694 
695 	return 0;
696 }
697 
698 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
699 {
700 	switch(mdev->type) {
701 	case G200_SE_A:
702 	case G200_SE_B:
703 		return mga_g200se_set_plls(mdev, clock);
704 		break;
705 	case G200_WB:
706 	case G200_EW3:
707 		return mga_g200wb_set_plls(mdev, clock);
708 		break;
709 	case G200_EV:
710 		return mga_g200ev_set_plls(mdev, clock);
711 		break;
712 	case G200_EH:
713 	case G200_EH3:
714 		return mga_g200eh_set_plls(mdev, clock);
715 		break;
716 	case G200_ER:
717 		return mga_g200er_set_plls(mdev, clock);
718 		break;
719 	}
720 	return 0;
721 }
722 
723 static void mga_g200wb_prepare(struct drm_crtc *crtc)
724 {
725 	struct mga_device *mdev = crtc->dev->dev_private;
726 	u8 tmp;
727 	int iter_max;
728 
729 	/* 1- The first step is to warn the BMC of an upcoming mode change.
730 	 * We are putting the misc<0> to output.*/
731 
732 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
733 	tmp = RREG8(DAC_DATA);
734 	tmp |= 0x10;
735 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
736 
737 	/* we are putting a 1 on the misc<0> line */
738 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
739 	tmp = RREG8(DAC_DATA);
740 	tmp |= 0x10;
741 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
742 
743 	/* 2- Second step to mask and further scan request
744 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
745 	 */
746 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
747 	tmp = RREG8(DAC_DATA);
748 	tmp |= 0x80;
749 	WREG_DAC(MGA1064_SPAREREG, tmp);
750 
751 	/* 3a- the third step is to verifu if there is an active scan
752 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
753 	 */
754 	iter_max = 300;
755 	while (!(tmp & 0x1) && iter_max) {
756 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
757 		tmp = RREG8(DAC_DATA);
758 		udelay(1000);
759 		iter_max--;
760 	}
761 
762 	/* 3b- this step occurs only if the remove is actually scanning
763 	 * we are waiting for the end of the frame which is a 1 on
764 	 * remvsyncsts (XSPAREREG<1>)
765 	 */
766 	if (iter_max) {
767 		iter_max = 300;
768 		while ((tmp & 0x2) && iter_max) {
769 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
770 			tmp = RREG8(DAC_DATA);
771 			udelay(1000);
772 			iter_max--;
773 		}
774 	}
775 }
776 
777 static void mga_g200wb_commit(struct drm_crtc *crtc)
778 {
779 	u8 tmp;
780 	struct mga_device *mdev = crtc->dev->dev_private;
781 
782 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
783 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
784 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
785 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
786 
787 	/* 2- second step is to assert the rstlvl2 */
788 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
789 	tmp = RREG8(DAC_DATA);
790 	tmp |= 0x8;
791 	WREG8(DAC_DATA, tmp);
792 
793 	/* wait 10 us */
794 	udelay(10);
795 
796 	/* 3- deassert rstlvl2 */
797 	tmp &= ~0x08;
798 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
799 	WREG8(DAC_DATA, tmp);
800 
801 	/* 4- remove mask of scan request */
802 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
803 	tmp = RREG8(DAC_DATA);
804 	tmp &= ~0x80;
805 	WREG8(DAC_DATA, tmp);
806 
807 	/* 5- put back a 0 on the misc<0> line */
808 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
809 	tmp = RREG8(DAC_DATA);
810 	tmp &= ~0x10;
811 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
812 }
813 
814 /*
815    This is how the framebuffer base address is stored in g200 cards:
816    * Assume @offset is the gpu_addr variable of the framebuffer object
817    * Then addr is the number of _pixels_ (not bytes) from the start of
818      VRAM to the first pixel we want to display. (divided by 2 for 32bit
819      framebuffers)
820    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
821    addr<20> -> CRTCEXT0<6>
822    addr<19-16> -> CRTCEXT0<3-0>
823    addr<15-8> -> CRTCC<7-0>
824    addr<7-0> -> CRTCD<7-0>
825    CRTCEXT0 has to be programmed last to trigger an update and make the
826    new addr variable take effect.
827  */
828 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
829 {
830 	struct mga_device *mdev = crtc->dev->dev_private;
831 	u32 addr;
832 	int count;
833 	u8 crtcext0;
834 
835 	while (RREG8(0x1fda) & 0x08);
836 	while (!(RREG8(0x1fda) & 0x08));
837 
838 	count = RREG8(MGAREG_VCOUNT) + 2;
839 	while (RREG8(MGAREG_VCOUNT) < count);
840 
841 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
842 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
843 	crtcext0 &= 0xB0;
844 	addr = offset / 8;
845 	/* Can't store addresses any higher than that...
846 	   but we also don't have more than 16MB of memory, so it should be fine. */
847 	WARN_ON(addr > 0x1fffff);
848 	crtcext0 |= (!!(addr & (1<<20)))<<6;
849 	WREG_CRT(0x0d, (u8)(addr & 0xff));
850 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
851 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
852 }
853 
854 
855 /* ast is different - we will force move buffers out of VRAM */
856 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
857 				struct drm_framebuffer *fb,
858 				int x, int y, int atomic)
859 {
860 	struct mga_device *mdev = crtc->dev->dev_private;
861 	struct drm_gem_object *obj;
862 	struct mga_framebuffer *mga_fb;
863 	struct mgag200_bo *bo;
864 	int ret;
865 	u64 gpu_addr;
866 
867 	/* push the previous fb to system ram */
868 	if (!atomic && fb) {
869 		mga_fb = to_mga_framebuffer(fb);
870 		obj = mga_fb->obj;
871 		bo = gem_to_mga_bo(obj);
872 		ret = mgag200_bo_reserve(bo, false);
873 		if (ret)
874 			return ret;
875 		mgag200_bo_push_sysram(bo);
876 		mgag200_bo_unreserve(bo);
877 	}
878 
879 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
880 	obj = mga_fb->obj;
881 	bo = gem_to_mga_bo(obj);
882 
883 	ret = mgag200_bo_reserve(bo, false);
884 	if (ret)
885 		return ret;
886 
887 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
888 	if (ret) {
889 		mgag200_bo_unreserve(bo);
890 		return ret;
891 	}
892 
893 	if (&mdev->mfbdev->mfb == mga_fb) {
894 		/* if pushing console in kmap it */
895 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
896 		if (ret)
897 			DRM_ERROR("failed to kmap fbcon\n");
898 
899 	}
900 	mgag200_bo_unreserve(bo);
901 
902 	mga_set_start_address(crtc, (u32)gpu_addr);
903 
904 	return 0;
905 }
906 
907 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
908 				  struct drm_framebuffer *old_fb)
909 {
910 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
911 }
912 
913 static int mga_crtc_mode_set(struct drm_crtc *crtc,
914 				struct drm_display_mode *mode,
915 				struct drm_display_mode *adjusted_mode,
916 				int x, int y, struct drm_framebuffer *old_fb)
917 {
918 	struct drm_device *dev = crtc->dev;
919 	struct mga_device *mdev = dev->dev_private;
920 	const struct drm_framebuffer *fb = crtc->primary->fb;
921 	int hdisplay, hsyncstart, hsyncend, htotal;
922 	int vdisplay, vsyncstart, vsyncend, vtotal;
923 	int pitch;
924 	int option = 0, option2 = 0;
925 	int i;
926 	unsigned char misc = 0;
927 	unsigned char ext_vga[6];
928 	u8 bppshift;
929 
930 	static unsigned char dacvalue[] = {
931 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
932 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
933 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
934 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
935 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
936 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
937 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
938 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
939 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
940 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
941 	};
942 
943 	bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1];
944 
945 	switch (mdev->type) {
946 	case G200_SE_A:
947 	case G200_SE_B:
948 		dacvalue[MGA1064_VREF_CTL] = 0x03;
949 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
950 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
951 					     MGA1064_MISC_CTL_VGA8 |
952 					     MGA1064_MISC_CTL_DAC_RAM_CS;
953 		if (mdev->has_sdram)
954 			option = 0x40049120;
955 		else
956 			option = 0x4004d120;
957 		option2 = 0x00008000;
958 		break;
959 	case G200_WB:
960 	case G200_EW3:
961 		dacvalue[MGA1064_VREF_CTL] = 0x07;
962 		option = 0x41049120;
963 		option2 = 0x0000b000;
964 		break;
965 	case G200_EV:
966 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
967 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
968 					     MGA1064_MISC_CTL_DAC_RAM_CS;
969 		option = 0x00000120;
970 		option2 = 0x0000b000;
971 		break;
972 	case G200_EH:
973 	case G200_EH3:
974 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
975 					     MGA1064_MISC_CTL_DAC_RAM_CS;
976 		option = 0x00000120;
977 		option2 = 0x0000b000;
978 		break;
979 	case G200_ER:
980 		break;
981 	}
982 
983 	switch (fb->format->cpp[0] * 8) {
984 	case 8:
985 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
986 		break;
987 	case 16:
988 		if (fb->format->depth == 15)
989 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
990 		else
991 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
992 		break;
993 	case 24:
994 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
995 		break;
996 	case 32:
997 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
998 		break;
999 	}
1000 
1001 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1002 		misc |= 0x40;
1003 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1004 		misc |= 0x80;
1005 
1006 
1007 	for (i = 0; i < sizeof(dacvalue); i++) {
1008 		if ((i <= 0x17) ||
1009 		    (i == 0x1b) ||
1010 		    (i == 0x1c) ||
1011 		    ((i >= 0x1f) && (i <= 0x29)) ||
1012 		    ((i >= 0x30) && (i <= 0x37)))
1013 			continue;
1014 		if (IS_G200_SE(mdev) &&
1015 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
1016 			continue;
1017 		if ((mdev->type == G200_EV ||
1018 		    mdev->type == G200_WB ||
1019 		    mdev->type == G200_EH ||
1020 		    mdev->type == G200_EW3 ||
1021 		    mdev->type == G200_EH3) &&
1022 		    (i >= 0x44) && (i <= 0x4e))
1023 			continue;
1024 
1025 		WREG_DAC(i, dacvalue[i]);
1026 	}
1027 
1028 	if (mdev->type == G200_ER)
1029 		WREG_DAC(0x90, 0);
1030 
1031 	if (option)
1032 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
1033 	if (option2)
1034 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
1035 
1036 	WREG_SEQ(2, 0xf);
1037 	WREG_SEQ(3, 0);
1038 	WREG_SEQ(4, 0xe);
1039 
1040 	pitch = fb->pitches[0] / fb->format->cpp[0];
1041 	if (fb->format->cpp[0] * 8 == 24)
1042 		pitch = (pitch * 3) >> (4 - bppshift);
1043 	else
1044 		pitch = pitch >> (4 - bppshift);
1045 
1046 	hdisplay = mode->hdisplay / 8 - 1;
1047 	hsyncstart = mode->hsync_start / 8 - 1;
1048 	hsyncend = mode->hsync_end / 8 - 1;
1049 	htotal = mode->htotal / 8 - 1;
1050 
1051 	/* Work around hardware quirk */
1052 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1053 		htotal++;
1054 
1055 	vdisplay = mode->vdisplay - 1;
1056 	vsyncstart = mode->vsync_start - 1;
1057 	vsyncend = mode->vsync_end - 1;
1058 	vtotal = mode->vtotal - 2;
1059 
1060 	WREG_GFX(0, 0);
1061 	WREG_GFX(1, 0);
1062 	WREG_GFX(2, 0);
1063 	WREG_GFX(3, 0);
1064 	WREG_GFX(4, 0);
1065 	WREG_GFX(5, 0x40);
1066 	WREG_GFX(6, 0x5);
1067 	WREG_GFX(7, 0xf);
1068 	WREG_GFX(8, 0xf);
1069 
1070 	WREG_CRT(0, htotal - 4);
1071 	WREG_CRT(1, hdisplay);
1072 	WREG_CRT(2, hdisplay);
1073 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1074 	WREG_CRT(4, hsyncstart);
1075 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1076 	WREG_CRT(6, vtotal & 0xFF);
1077 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1078 		 ((vdisplay & 0x100) >> 7) |
1079 		 ((vsyncstart & 0x100) >> 6) |
1080 		 ((vdisplay & 0x100) >> 5) |
1081 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1082 		 ((vtotal & 0x200) >> 4)|
1083 		 ((vdisplay & 0x200) >> 3) |
1084 		 ((vsyncstart & 0x200) >> 2));
1085 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1086 		 ((vdisplay & 0x200) >> 3));
1087 	WREG_CRT(10, 0);
1088 	WREG_CRT(11, 0);
1089 	WREG_CRT(12, 0);
1090 	WREG_CRT(13, 0);
1091 	WREG_CRT(14, 0);
1092 	WREG_CRT(15, 0);
1093 	WREG_CRT(16, vsyncstart & 0xFF);
1094 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1095 	WREG_CRT(18, vdisplay & 0xFF);
1096 	WREG_CRT(19, pitch & 0xFF);
1097 	WREG_CRT(20, 0);
1098 	WREG_CRT(21, vdisplay & 0xFF);
1099 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1100 	WREG_CRT(23, 0xc3);
1101 	WREG_CRT(24, vdisplay & 0xFF);
1102 
1103 	ext_vga[0] = 0;
1104 	ext_vga[5] = 0;
1105 
1106 	/* TODO interlace */
1107 
1108 	ext_vga[0] |= (pitch & 0x300) >> 4;
1109 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1110 		((hdisplay & 0x100) >> 7) |
1111 		((hsyncstart & 0x100) >> 6) |
1112 		(htotal & 0x40);
1113 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1114 		((vdisplay & 0x400) >> 8) |
1115 		((vdisplay & 0xc00) >> 7) |
1116 		((vsyncstart & 0xc00) >> 5) |
1117 		((vdisplay & 0x400) >> 3);
1118 	if (fb->format->cpp[0] * 8 == 24)
1119 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1120 	else
1121 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1122 	ext_vga[4] = 0;
1123 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1124 		ext_vga[1] |= 0x88;
1125 
1126 	/* Set pixel clocks */
1127 	misc = 0x2d;
1128 	WREG8(MGA_MISC_OUT, misc);
1129 
1130 	mga_crtc_set_plls(mdev, mode->clock);
1131 
1132 	for (i = 0; i < 6; i++) {
1133 		WREG_ECRT(i, ext_vga[i]);
1134 	}
1135 
1136 	if (mdev->type == G200_ER)
1137 		WREG_ECRT(0x24, 0x5);
1138 
1139 	if (mdev->type == G200_EW3)
1140 		WREG_ECRT(0x34, 0x5);
1141 
1142 	if (mdev->type == G200_EV) {
1143 		WREG_ECRT(6, 0);
1144 	}
1145 
1146 	WREG_ECRT(0, ext_vga[0]);
1147 	/* Enable mga pixel clock */
1148 	misc = 0x2d;
1149 
1150 	WREG8(MGA_MISC_OUT, misc);
1151 
1152 	if (adjusted_mode)
1153 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1154 
1155 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1156 
1157 	/* reset tagfifo */
1158 	if (mdev->type == G200_ER) {
1159 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1160 		u8 seq1;
1161 
1162 		/* screen off */
1163 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1164 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1165 		WREG8(MGAREG_SEQ_DATA, seq1);
1166 
1167 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1168 		udelay(1000);
1169 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1170 
1171 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1172 	}
1173 
1174 
1175 	if (IS_G200_SE(mdev)) {
1176 		if (mdev->unique_rev_id >= 0x02) {
1177 			u8 hi_pri_lvl;
1178 			u32 bpp;
1179 			u32 mb;
1180 
1181 			if (fb->format->cpp[0] * 8 > 16)
1182 				bpp = 32;
1183 			else if (fb->format->cpp[0] * 8 > 8)
1184 				bpp = 16;
1185 			else
1186 				bpp = 8;
1187 
1188 			mb = (mode->clock * bpp) / 1000;
1189 			if (mb > 3100)
1190 				hi_pri_lvl = 0;
1191 			else if (mb > 2600)
1192 				hi_pri_lvl = 1;
1193 			else if (mb > 1900)
1194 				hi_pri_lvl = 2;
1195 			else if (mb > 1160)
1196 				hi_pri_lvl = 3;
1197 			else if (mb > 440)
1198 				hi_pri_lvl = 4;
1199 			else
1200 				hi_pri_lvl = 5;
1201 
1202 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1203 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1204 		} else {
1205 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1206 			if (mdev->unique_rev_id >= 0x01)
1207 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1208 			else
1209 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1210 		}
1211 	}
1212 	return 0;
1213 }
1214 
1215 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1216 static int mga_suspend(struct drm_crtc *crtc)
1217 {
1218 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1219 	struct drm_device *dev = crtc->dev;
1220 	struct mga_device *mdev = dev->dev_private;
1221 	struct pci_dev *pdev = dev->pdev;
1222 	int option;
1223 
1224 	if (mdev->suspended)
1225 		return 0;
1226 
1227 	WREG_SEQ(1, 0x20);
1228 	WREG_ECRT(1, 0x30);
1229 	/* Disable the pixel clock */
1230 	WREG_DAC(0x1a, 0x05);
1231 	/* Power down the DAC */
1232 	WREG_DAC(0x1e, 0x18);
1233 	/* Power down the pixel PLL */
1234 	WREG_DAC(0x1a, 0x0d);
1235 
1236 	/* Disable PLLs and clocks */
1237 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1238 	option &= ~(0x1F8024);
1239 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1240 	pci_set_power_state(pdev, PCI_D3hot);
1241 	pci_disable_device(pdev);
1242 
1243 	mdev->suspended = true;
1244 
1245 	return 0;
1246 }
1247 
1248 static int mga_resume(struct drm_crtc *crtc)
1249 {
1250 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1251 	struct drm_device *dev = crtc->dev;
1252 	struct mga_device *mdev = dev->dev_private;
1253 	struct pci_dev *pdev = dev->pdev;
1254 	int option;
1255 
1256 	if (!mdev->suspended)
1257 		return 0;
1258 
1259 	pci_set_power_state(pdev, PCI_D0);
1260 	pci_enable_device(pdev);
1261 
1262 	/* Disable sysclk */
1263 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1264 	option &= ~(0x4);
1265 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1266 
1267 	mdev->suspended = false;
1268 
1269 	return 0;
1270 }
1271 
1272 #endif
1273 
1274 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1275 {
1276 	struct drm_device *dev = crtc->dev;
1277 	struct mga_device *mdev = dev->dev_private;
1278 	u8 seq1 = 0, crtcext1 = 0;
1279 
1280 	switch (mode) {
1281 	case DRM_MODE_DPMS_ON:
1282 		seq1 = 0;
1283 		crtcext1 = 0;
1284 		mga_crtc_load_lut(crtc);
1285 		break;
1286 	case DRM_MODE_DPMS_STANDBY:
1287 		seq1 = 0x20;
1288 		crtcext1 = 0x10;
1289 		break;
1290 	case DRM_MODE_DPMS_SUSPEND:
1291 		seq1 = 0x20;
1292 		crtcext1 = 0x20;
1293 		break;
1294 	case DRM_MODE_DPMS_OFF:
1295 		seq1 = 0x20;
1296 		crtcext1 = 0x30;
1297 		break;
1298 	}
1299 
1300 #if 0
1301 	if (mode == DRM_MODE_DPMS_OFF) {
1302 		mga_suspend(crtc);
1303 	}
1304 #endif
1305 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1306 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1307 	mga_wait_vsync(mdev);
1308 	mga_wait_busy(mdev);
1309 	WREG8(MGAREG_SEQ_DATA, seq1);
1310 	msleep(20);
1311 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1312 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1313 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1314 
1315 #if 0
1316 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1317 		mga_resume(crtc);
1318 		drm_helper_resume_force_mode(dev);
1319 	}
1320 #endif
1321 }
1322 
1323 /*
1324  * This is called before a mode is programmed. A typical use might be to
1325  * enable DPMS during the programming to avoid seeing intermediate stages,
1326  * but that's not relevant to us
1327  */
1328 static void mga_crtc_prepare(struct drm_crtc *crtc)
1329 {
1330 	struct drm_device *dev = crtc->dev;
1331 	struct mga_device *mdev = dev->dev_private;
1332 	u8 tmp;
1333 
1334 	/*	mga_resume(crtc);*/
1335 
1336 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1337 	tmp = RREG8(MGAREG_CRTC_DATA);
1338 	WREG_CRT(0x11, tmp | 0x80);
1339 
1340 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1341 		WREG_SEQ(0, 1);
1342 		msleep(50);
1343 		WREG_SEQ(1, 0x20);
1344 		msleep(20);
1345 	} else {
1346 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1347 		tmp = RREG8(MGAREG_SEQ_DATA);
1348 
1349 		/* start sync reset */
1350 		WREG_SEQ(0, 1);
1351 		WREG_SEQ(1, tmp | 0x20);
1352 	}
1353 
1354 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1355 		mga_g200wb_prepare(crtc);
1356 
1357 	WREG_CRT(17, 0);
1358 }
1359 
1360 /*
1361  * This is called after a mode is programmed. It should reverse anything done
1362  * by the prepare function
1363  */
1364 static void mga_crtc_commit(struct drm_crtc *crtc)
1365 {
1366 	struct drm_device *dev = crtc->dev;
1367 	struct mga_device *mdev = dev->dev_private;
1368 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1369 	u8 tmp;
1370 
1371 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1372 		mga_g200wb_commit(crtc);
1373 
1374 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1375 		msleep(50);
1376 		WREG_SEQ(1, 0x0);
1377 		msleep(20);
1378 		WREG_SEQ(0, 0x3);
1379 	} else {
1380 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1381 		tmp = RREG8(MGAREG_SEQ_DATA);
1382 
1383 		tmp &= ~0x20;
1384 		WREG_SEQ(0x1, tmp);
1385 		WREG_SEQ(0, 3);
1386 	}
1387 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1388 }
1389 
1390 /*
1391  * The core can pass us a set of gamma values to program. We actually only
1392  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1393  * but it's a requirement that we provide the function
1394  */
1395 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1396 			      u16 *blue, uint32_t size)
1397 {
1398 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1399 	int i;
1400 
1401 	for (i = 0; i < size; i++) {
1402 		mga_crtc->lut_r[i] = red[i] >> 8;
1403 		mga_crtc->lut_g[i] = green[i] >> 8;
1404 		mga_crtc->lut_b[i] = blue[i] >> 8;
1405 	}
1406 	mga_crtc_load_lut(crtc);
1407 
1408 	return 0;
1409 }
1410 
1411 /* Simple cleanup function */
1412 static void mga_crtc_destroy(struct drm_crtc *crtc)
1413 {
1414 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1415 
1416 	drm_crtc_cleanup(crtc);
1417 	kfree(mga_crtc);
1418 }
1419 
1420 static void mga_crtc_disable(struct drm_crtc *crtc)
1421 {
1422 	int ret;
1423 	DRM_DEBUG_KMS("\n");
1424 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1425 	if (crtc->primary->fb) {
1426 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1427 		struct drm_gem_object *obj = mga_fb->obj;
1428 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1429 		ret = mgag200_bo_reserve(bo, false);
1430 		if (ret)
1431 			return;
1432 		mgag200_bo_push_sysram(bo);
1433 		mgag200_bo_unreserve(bo);
1434 	}
1435 	crtc->primary->fb = NULL;
1436 }
1437 
1438 /* These provide the minimum set of functions required to handle a CRTC */
1439 static const struct drm_crtc_funcs mga_crtc_funcs = {
1440 	.cursor_set = mga_crtc_cursor_set,
1441 	.cursor_move = mga_crtc_cursor_move,
1442 	.gamma_set = mga_crtc_gamma_set,
1443 	.set_config = drm_crtc_helper_set_config,
1444 	.destroy = mga_crtc_destroy,
1445 };
1446 
1447 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1448 	.disable = mga_crtc_disable,
1449 	.dpms = mga_crtc_dpms,
1450 	.mode_set = mga_crtc_mode_set,
1451 	.mode_set_base = mga_crtc_mode_set_base,
1452 	.prepare = mga_crtc_prepare,
1453 	.commit = mga_crtc_commit,
1454 	.load_lut = mga_crtc_load_lut,
1455 };
1456 
1457 /* CRTC setup */
1458 static void mga_crtc_init(struct mga_device *mdev)
1459 {
1460 	struct mga_crtc *mga_crtc;
1461 	int i;
1462 
1463 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1464 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1465 			      GFP_KERNEL);
1466 
1467 	if (mga_crtc == NULL)
1468 		return;
1469 
1470 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1471 
1472 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1473 	mdev->mode_info.crtc = mga_crtc;
1474 
1475 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1476 		mga_crtc->lut_r[i] = i;
1477 		mga_crtc->lut_g[i] = i;
1478 		mga_crtc->lut_b[i] = i;
1479 	}
1480 
1481 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1482 }
1483 
1484 /** Sets the color ramps on behalf of fbcon */
1485 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1486 			      u16 blue, int regno)
1487 {
1488 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1489 
1490 	mga_crtc->lut_r[regno] = red >> 8;
1491 	mga_crtc->lut_g[regno] = green >> 8;
1492 	mga_crtc->lut_b[regno] = blue >> 8;
1493 }
1494 
1495 /** Gets the color ramps on behalf of fbcon */
1496 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1497 			      u16 *blue, int regno)
1498 {
1499 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1500 
1501 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1502 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1503 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1504 }
1505 
1506 /*
1507  * The encoder comes after the CRTC in the output pipeline, but before
1508  * the connector. It's responsible for ensuring that the digital
1509  * stream is appropriately converted into the output format. Setup is
1510  * very simple in this case - all we have to do is inform qemu of the
1511  * colour depth in order to ensure that it displays appropriately
1512  */
1513 
1514 /*
1515  * These functions are analagous to those in the CRTC code, but are intended
1516  * to handle any encoder-specific limitations
1517  */
1518 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1519 				struct drm_display_mode *mode,
1520 				struct drm_display_mode *adjusted_mode)
1521 {
1522 
1523 }
1524 
1525 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1526 {
1527 	return;
1528 }
1529 
1530 static void mga_encoder_prepare(struct drm_encoder *encoder)
1531 {
1532 }
1533 
1534 static void mga_encoder_commit(struct drm_encoder *encoder)
1535 {
1536 }
1537 
1538 static void mga_encoder_destroy(struct drm_encoder *encoder)
1539 {
1540 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1541 	drm_encoder_cleanup(encoder);
1542 	kfree(mga_encoder);
1543 }
1544 
1545 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1546 	.dpms = mga_encoder_dpms,
1547 	.mode_set = mga_encoder_mode_set,
1548 	.prepare = mga_encoder_prepare,
1549 	.commit = mga_encoder_commit,
1550 };
1551 
1552 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1553 	.destroy = mga_encoder_destroy,
1554 };
1555 
1556 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1557 {
1558 	struct drm_encoder *encoder;
1559 	struct mga_encoder *mga_encoder;
1560 
1561 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1562 	if (!mga_encoder)
1563 		return NULL;
1564 
1565 	encoder = &mga_encoder->base;
1566 	encoder->possible_crtcs = 0x1;
1567 
1568 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1569 			 DRM_MODE_ENCODER_DAC, NULL);
1570 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1571 
1572 	return encoder;
1573 }
1574 
1575 
1576 static int mga_vga_get_modes(struct drm_connector *connector)
1577 {
1578 	struct mga_connector *mga_connector = to_mga_connector(connector);
1579 	struct edid *edid;
1580 	int ret = 0;
1581 
1582 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1583 	if (edid) {
1584 		drm_mode_connector_update_edid_property(connector, edid);
1585 		ret = drm_add_edid_modes(connector, edid);
1586 		kfree(edid);
1587 	}
1588 	return ret;
1589 }
1590 
1591 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1592 							int bits_per_pixel)
1593 {
1594 	uint32_t total_area, divisor;
1595 	uint64_t active_area, pixels_per_second, bandwidth;
1596 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1597 
1598 	divisor = 1024;
1599 
1600 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1601 		return 0;
1602 
1603 	active_area = mode->hdisplay * mode->vdisplay;
1604 	total_area = mode->htotal * mode->vtotal;
1605 
1606 	pixels_per_second = active_area * mode->clock * 1000;
1607 	do_div(pixels_per_second, total_area);
1608 
1609 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1610 	do_div(bandwidth, divisor);
1611 
1612 	return (uint32_t)(bandwidth);
1613 }
1614 
1615 #define MODE_BANDWIDTH	MODE_BAD
1616 
1617 static int mga_vga_mode_valid(struct drm_connector *connector,
1618 				 struct drm_display_mode *mode)
1619 {
1620 	struct drm_device *dev = connector->dev;
1621 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1622 	int bpp = 32;
1623 
1624 	if (IS_G200_SE(mdev)) {
1625 		if (mdev->unique_rev_id == 0x01) {
1626 			if (mode->hdisplay > 1600)
1627 				return MODE_VIRTUAL_X;
1628 			if (mode->vdisplay > 1200)
1629 				return MODE_VIRTUAL_Y;
1630 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1631 				> (24400 * 1024))
1632 				return MODE_BANDWIDTH;
1633 		} else if (mdev->unique_rev_id == 0x02) {
1634 			if (mode->hdisplay > 1920)
1635 				return MODE_VIRTUAL_X;
1636 			if (mode->vdisplay > 1200)
1637 				return MODE_VIRTUAL_Y;
1638 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1639 				> (30100 * 1024))
1640 				return MODE_BANDWIDTH;
1641 		}
1642 	} else if (mdev->type == G200_WB) {
1643 		if (mode->hdisplay > 1280)
1644 			return MODE_VIRTUAL_X;
1645 		if (mode->vdisplay > 1024)
1646 			return MODE_VIRTUAL_Y;
1647 		if (mga_vga_calculate_mode_bandwidth(mode,
1648 			bpp > (31877 * 1024)))
1649 			return MODE_BANDWIDTH;
1650 	} else if (mdev->type == G200_EV &&
1651 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1652 			> (32700 * 1024))) {
1653 		return MODE_BANDWIDTH;
1654 	} else if (mdev->type == G200_EH &&
1655 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1656 			> (37500 * 1024))) {
1657 		return MODE_BANDWIDTH;
1658 	} else if (mdev->type == G200_ER &&
1659 		(mga_vga_calculate_mode_bandwidth(mode,
1660 			bpp) > (55000 * 1024))) {
1661 		return MODE_BANDWIDTH;
1662 	}
1663 
1664 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1665 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1666 		return MODE_H_ILLEGAL;
1667 	}
1668 
1669 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1670 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1671 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1672 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1673 		return MODE_BAD;
1674 	}
1675 
1676 	/* Validate the mode input by the user */
1677 	if (connector->cmdline_mode.specified) {
1678 		if (connector->cmdline_mode.bpp_specified)
1679 			bpp = connector->cmdline_mode.bpp;
1680 	}
1681 
1682 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1683 		if (connector->cmdline_mode.specified)
1684 			connector->cmdline_mode.specified = false;
1685 		return MODE_BAD;
1686 	}
1687 
1688 	return MODE_OK;
1689 }
1690 
1691 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1692 						  *connector)
1693 {
1694 	int enc_id = connector->encoder_ids[0];
1695 	/* pick the encoder ids */
1696 	if (enc_id)
1697 		return drm_encoder_find(connector->dev, enc_id);
1698 	return NULL;
1699 }
1700 
1701 static void mga_connector_destroy(struct drm_connector *connector)
1702 {
1703 	struct mga_connector *mga_connector = to_mga_connector(connector);
1704 	mgag200_i2c_destroy(mga_connector->i2c);
1705 	drm_connector_cleanup(connector);
1706 	kfree(connector);
1707 }
1708 
1709 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1710 	.get_modes = mga_vga_get_modes,
1711 	.mode_valid = mga_vga_mode_valid,
1712 	.best_encoder = mga_connector_best_encoder,
1713 };
1714 
1715 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1716 	.dpms = drm_helper_connector_dpms,
1717 	.fill_modes = drm_helper_probe_single_connector_modes,
1718 	.destroy = mga_connector_destroy,
1719 };
1720 
1721 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1722 {
1723 	struct drm_connector *connector;
1724 	struct mga_connector *mga_connector;
1725 
1726 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1727 	if (!mga_connector)
1728 		return NULL;
1729 
1730 	connector = &mga_connector->base;
1731 
1732 	drm_connector_init(dev, connector,
1733 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1734 
1735 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1736 
1737 	drm_connector_register(connector);
1738 
1739 	mga_connector->i2c = mgag200_i2c_create(dev);
1740 	if (!mga_connector->i2c)
1741 		DRM_ERROR("failed to add ddc bus\n");
1742 
1743 	return connector;
1744 }
1745 
1746 
1747 int mgag200_modeset_init(struct mga_device *mdev)
1748 {
1749 	struct drm_encoder *encoder;
1750 	struct drm_connector *connector;
1751 	int ret;
1752 
1753 	mdev->mode_info.mode_config_initialized = true;
1754 
1755 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1756 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1757 
1758 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1759 
1760 	mga_crtc_init(mdev);
1761 
1762 	encoder = mga_encoder_init(mdev->dev);
1763 	if (!encoder) {
1764 		DRM_ERROR("mga_encoder_init failed\n");
1765 		return -1;
1766 	}
1767 
1768 	connector = mga_vga_init(mdev->dev);
1769 	if (!connector) {
1770 		DRM_ERROR("mga_vga_init failed\n");
1771 		return -1;
1772 	}
1773 
1774 	drm_mode_connector_attach_encoder(connector, encoder);
1775 
1776 	ret = mgag200_fbdev_init(mdev);
1777 	if (ret) {
1778 		DRM_ERROR("mga_fbdev_init failed\n");
1779 		return ret;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 void mgag200_modeset_fini(struct mga_device *mdev)
1786 {
1787 
1788 }
1789