1 /* 2 * Copyright 2010 Matt Turner. 3 * Copyright 2012 Red Hat 4 * 5 * This file is subject to the terms and conditions of the GNU General 6 * Public License version 2. See the file COPYING in the main 7 * directory of this archive for more details. 8 * 9 * Authors: Matthew Garrett 10 * Matt Turner 11 * Dave Airlie 12 */ 13 14 #include <linux/delay.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_crtc_helper.h> 18 #include <drm/drm_plane_helper.h> 19 20 #include "mgag200_drv.h" 21 22 #define MGAG200_LUT_SIZE 256 23 24 /* 25 * This file contains setup code for the CRTC. 26 */ 27 28 static void mga_crtc_load_lut(struct drm_crtc *crtc) 29 { 30 struct drm_device *dev = crtc->dev; 31 struct mga_device *mdev = dev->dev_private; 32 struct drm_framebuffer *fb = crtc->primary->fb; 33 u16 *r_ptr, *g_ptr, *b_ptr; 34 int i; 35 36 if (!crtc->enabled) 37 return; 38 39 r_ptr = crtc->gamma_store; 40 g_ptr = r_ptr + crtc->gamma_size; 41 b_ptr = g_ptr + crtc->gamma_size; 42 43 WREG8(DAC_INDEX + MGA1064_INDEX, 0); 44 45 if (fb && fb->format->cpp[0] * 8 == 16) { 46 int inc = (fb->format->depth == 15) ? 8 : 4; 47 u8 r, b; 48 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) { 49 if (fb->format->depth == 16) { 50 if (i > (MGAG200_LUT_SIZE >> 1)) { 51 r = b = 0; 52 } else { 53 r = *r_ptr++ >> 8; 54 b = *b_ptr++ >> 8; 55 r_ptr++; 56 b_ptr++; 57 } 58 } else { 59 r = *r_ptr++ >> 8; 60 b = *b_ptr++ >> 8; 61 } 62 /* VGA registers */ 63 WREG8(DAC_INDEX + MGA1064_COL_PAL, r); 64 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8); 65 WREG8(DAC_INDEX + MGA1064_COL_PAL, b); 66 } 67 return; 68 } 69 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 70 /* VGA registers */ 71 WREG8(DAC_INDEX + MGA1064_COL_PAL, *r_ptr++ >> 8); 72 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8); 73 WREG8(DAC_INDEX + MGA1064_COL_PAL, *b_ptr++ >> 8); 74 } 75 } 76 77 static inline void mga_wait_vsync(struct mga_device *mdev) 78 { 79 unsigned long timeout = jiffies + HZ/10; 80 unsigned int status = 0; 81 82 do { 83 status = RREG32(MGAREG_Status); 84 } while ((status & 0x08) && time_before(jiffies, timeout)); 85 timeout = jiffies + HZ/10; 86 status = 0; 87 do { 88 status = RREG32(MGAREG_Status); 89 } while (!(status & 0x08) && time_before(jiffies, timeout)); 90 } 91 92 static inline void mga_wait_busy(struct mga_device *mdev) 93 { 94 unsigned long timeout = jiffies + HZ; 95 unsigned int status = 0; 96 do { 97 status = RREG8(MGAREG_Status + 2); 98 } while ((status & 0x01) && time_before(jiffies, timeout)); 99 } 100 101 #define P_ARRAY_SIZE 9 102 103 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) 104 { 105 unsigned int vcomax, vcomin, pllreffreq; 106 unsigned int delta, tmpdelta, permitteddelta; 107 unsigned int testp, testm, testn; 108 unsigned int p, m, n; 109 unsigned int computed; 110 unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1}; 111 unsigned int fvv; 112 unsigned int i; 113 114 if (mdev->unique_rev_id <= 0x03) { 115 116 m = n = p = 0; 117 vcomax = 320000; 118 vcomin = 160000; 119 pllreffreq = 25000; 120 121 delta = 0xffffffff; 122 permitteddelta = clock * 5 / 1000; 123 124 for (testp = 8; testp > 0; testp /= 2) { 125 if (clock * testp > vcomax) 126 continue; 127 if (clock * testp < vcomin) 128 continue; 129 130 for (testn = 17; testn < 256; testn++) { 131 for (testm = 1; testm < 32; testm++) { 132 computed = (pllreffreq * testn) / 133 (testm * testp); 134 if (computed > clock) 135 tmpdelta = computed - clock; 136 else 137 tmpdelta = clock - computed; 138 if (tmpdelta < delta) { 139 delta = tmpdelta; 140 m = testm - 1; 141 n = testn - 1; 142 p = testp - 1; 143 } 144 } 145 } 146 } 147 } else { 148 149 150 m = n = p = 0; 151 vcomax = 1600000; 152 vcomin = 800000; 153 pllreffreq = 25000; 154 155 if (clock < 25000) 156 clock = 25000; 157 158 clock = clock * 2; 159 160 delta = 0xFFFFFFFF; 161 /* Permited delta is 0.5% as VESA Specification */ 162 permitteddelta = clock * 5 / 1000; 163 164 for (i = 0 ; i < P_ARRAY_SIZE ; i++) { 165 testp = pvalues_e4[i]; 166 167 if ((clock * testp) > vcomax) 168 continue; 169 if ((clock * testp) < vcomin) 170 continue; 171 172 for (testn = 50; testn <= 256; testn++) { 173 for (testm = 1; testm <= 32; testm++) { 174 computed = (pllreffreq * testn) / 175 (testm * testp); 176 if (computed > clock) 177 tmpdelta = computed - clock; 178 else 179 tmpdelta = clock - computed; 180 181 if (tmpdelta < delta) { 182 delta = tmpdelta; 183 m = testm - 1; 184 n = testn - 1; 185 p = testp - 1; 186 } 187 } 188 } 189 } 190 191 fvv = pllreffreq * (n + 1) / (m + 1); 192 fvv = (fvv - 800000) / 50000; 193 194 if (fvv > 15) 195 fvv = 15; 196 197 p |= (fvv << 4); 198 m |= 0x80; 199 200 clock = clock / 2; 201 } 202 203 if (delta > permitteddelta) { 204 pr_warn("PLL delta too large\n"); 205 return 1; 206 } 207 208 WREG_DAC(MGA1064_PIX_PLLC_M, m); 209 WREG_DAC(MGA1064_PIX_PLLC_N, n); 210 WREG_DAC(MGA1064_PIX_PLLC_P, p); 211 212 if (mdev->unique_rev_id >= 0x04) { 213 WREG_DAC(0x1a, 0x09); 214 msleep(20); 215 WREG_DAC(0x1a, 0x01); 216 217 } 218 219 return 0; 220 } 221 222 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) 223 { 224 unsigned int vcomax, vcomin, pllreffreq; 225 unsigned int delta, tmpdelta; 226 unsigned int testp, testm, testn, testp2; 227 unsigned int p, m, n; 228 unsigned int computed; 229 int i, j, tmpcount, vcount; 230 bool pll_locked = false; 231 u8 tmp; 232 233 m = n = p = 0; 234 235 delta = 0xffffffff; 236 237 if (mdev->type == G200_EW3) { 238 239 vcomax = 800000; 240 vcomin = 400000; 241 pllreffreq = 25000; 242 243 for (testp = 1; testp < 8; testp++) { 244 for (testp2 = 1; testp2 < 8; testp2++) { 245 if (testp < testp2) 246 continue; 247 if ((clock * testp * testp2) > vcomax) 248 continue; 249 if ((clock * testp * testp2) < vcomin) 250 continue; 251 for (testm = 1; testm < 26; testm++) { 252 for (testn = 32; testn < 2048 ; testn++) { 253 computed = (pllreffreq * testn) / 254 (testm * testp * testp2); 255 if (computed > clock) 256 tmpdelta = computed - clock; 257 else 258 tmpdelta = clock - computed; 259 if (tmpdelta < delta) { 260 delta = tmpdelta; 261 m = ((testn & 0x100) >> 1) | 262 (testm); 263 n = (testn & 0xFF); 264 p = ((testn & 0x600) >> 3) | 265 (testp2 << 3) | 266 (testp); 267 } 268 } 269 } 270 } 271 } 272 } else { 273 274 vcomax = 550000; 275 vcomin = 150000; 276 pllreffreq = 48000; 277 278 for (testp = 1; testp < 9; testp++) { 279 if (clock * testp > vcomax) 280 continue; 281 if (clock * testp < vcomin) 282 continue; 283 284 for (testm = 1; testm < 17; testm++) { 285 for (testn = 1; testn < 151; testn++) { 286 computed = (pllreffreq * testn) / 287 (testm * testp); 288 if (computed > clock) 289 tmpdelta = computed - clock; 290 else 291 tmpdelta = clock - computed; 292 if (tmpdelta < delta) { 293 delta = tmpdelta; 294 n = testn - 1; 295 m = (testm - 1) | 296 ((n >> 1) & 0x80); 297 p = testp - 1; 298 } 299 } 300 } 301 } 302 } 303 304 for (i = 0; i <= 32 && pll_locked == false; i++) { 305 if (i > 0) { 306 WREG8(MGAREG_CRTC_INDEX, 0x1e); 307 tmp = RREG8(MGAREG_CRTC_DATA); 308 if (tmp < 0xff) 309 WREG8(MGAREG_CRTC_DATA, tmp+1); 310 } 311 312 /* set pixclkdis to 1 */ 313 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 314 tmp = RREG8(DAC_DATA); 315 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 316 WREG8(DAC_DATA, tmp); 317 318 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 319 tmp = RREG8(DAC_DATA); 320 tmp |= MGA1064_REMHEADCTL_CLKDIS; 321 WREG8(DAC_DATA, tmp); 322 323 /* select PLL Set C */ 324 tmp = RREG8(MGAREG_MEM_MISC_READ); 325 tmp |= 0x3 << 2; 326 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 327 328 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 329 tmp = RREG8(DAC_DATA); 330 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; 331 WREG8(DAC_DATA, tmp); 332 333 udelay(500); 334 335 /* reset the PLL */ 336 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 337 tmp = RREG8(DAC_DATA); 338 tmp &= ~0x04; 339 WREG8(DAC_DATA, tmp); 340 341 udelay(50); 342 343 /* program pixel pll register */ 344 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); 345 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); 346 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); 347 348 udelay(50); 349 350 /* turn pll on */ 351 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 352 tmp = RREG8(DAC_DATA); 353 tmp |= 0x04; 354 WREG_DAC(MGA1064_VREF_CTL, tmp); 355 356 udelay(500); 357 358 /* select the pixel pll */ 359 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 360 tmp = RREG8(DAC_DATA); 361 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 362 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 363 WREG8(DAC_DATA, tmp); 364 365 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 366 tmp = RREG8(DAC_DATA); 367 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; 368 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; 369 WREG8(DAC_DATA, tmp); 370 371 /* reset dotclock rate bit */ 372 WREG8(MGAREG_SEQ_INDEX, 1); 373 tmp = RREG8(MGAREG_SEQ_DATA); 374 tmp &= ~0x8; 375 WREG8(MGAREG_SEQ_DATA, tmp); 376 377 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 378 tmp = RREG8(DAC_DATA); 379 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 380 WREG8(DAC_DATA, tmp); 381 382 vcount = RREG8(MGAREG_VCOUNT); 383 384 for (j = 0; j < 30 && pll_locked == false; j++) { 385 tmpcount = RREG8(MGAREG_VCOUNT); 386 if (tmpcount < vcount) 387 vcount = 0; 388 if ((tmpcount - vcount) > 2) 389 pll_locked = true; 390 else 391 udelay(5); 392 } 393 } 394 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 395 tmp = RREG8(DAC_DATA); 396 tmp &= ~MGA1064_REMHEADCTL_CLKDIS; 397 WREG_DAC(MGA1064_REMHEADCTL, tmp); 398 return 0; 399 } 400 401 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) 402 { 403 unsigned int vcomax, vcomin, pllreffreq; 404 unsigned int delta, tmpdelta; 405 unsigned int testp, testm, testn; 406 unsigned int p, m, n; 407 unsigned int computed; 408 u8 tmp; 409 410 m = n = p = 0; 411 vcomax = 550000; 412 vcomin = 150000; 413 pllreffreq = 50000; 414 415 delta = 0xffffffff; 416 417 for (testp = 16; testp > 0; testp--) { 418 if (clock * testp > vcomax) 419 continue; 420 if (clock * testp < vcomin) 421 continue; 422 423 for (testn = 1; testn < 257; testn++) { 424 for (testm = 1; testm < 17; testm++) { 425 computed = (pllreffreq * testn) / 426 (testm * testp); 427 if (computed > clock) 428 tmpdelta = computed - clock; 429 else 430 tmpdelta = clock - computed; 431 if (tmpdelta < delta) { 432 delta = tmpdelta; 433 n = testn - 1; 434 m = testm - 1; 435 p = testp - 1; 436 } 437 } 438 } 439 } 440 441 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 442 tmp = RREG8(DAC_DATA); 443 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 444 WREG8(DAC_DATA, tmp); 445 446 tmp = RREG8(MGAREG_MEM_MISC_READ); 447 tmp |= 0x3 << 2; 448 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 449 450 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 451 tmp = RREG8(DAC_DATA); 452 WREG8(DAC_DATA, tmp & ~0x40); 453 454 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 455 tmp = RREG8(DAC_DATA); 456 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 457 WREG8(DAC_DATA, tmp); 458 459 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); 460 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); 461 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); 462 463 udelay(50); 464 465 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 466 tmp = RREG8(DAC_DATA); 467 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 468 WREG8(DAC_DATA, tmp); 469 470 udelay(500); 471 472 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 473 tmp = RREG8(DAC_DATA); 474 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 475 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 476 WREG8(DAC_DATA, tmp); 477 478 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 479 tmp = RREG8(DAC_DATA); 480 WREG8(DAC_DATA, tmp | 0x40); 481 482 tmp = RREG8(MGAREG_MEM_MISC_READ); 483 tmp |= (0x3 << 2); 484 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 485 486 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 487 tmp = RREG8(DAC_DATA); 488 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 489 WREG8(DAC_DATA, tmp); 490 491 return 0; 492 } 493 494 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) 495 { 496 unsigned int vcomax, vcomin, pllreffreq; 497 unsigned int delta, tmpdelta; 498 unsigned int testp, testm, testn; 499 unsigned int p, m, n; 500 unsigned int computed; 501 int i, j, tmpcount, vcount; 502 u8 tmp; 503 bool pll_locked = false; 504 505 m = n = p = 0; 506 507 if (mdev->type == G200_EH3) { 508 vcomax = 3000000; 509 vcomin = 1500000; 510 pllreffreq = 25000; 511 512 delta = 0xffffffff; 513 514 testp = 0; 515 516 for (testm = 150; testm >= 6; testm--) { 517 if (clock * testm > vcomax) 518 continue; 519 if (clock * testm < vcomin) 520 continue; 521 for (testn = 120; testn >= 60; testn--) { 522 computed = (pllreffreq * testn) / testm; 523 if (computed > clock) 524 tmpdelta = computed - clock; 525 else 526 tmpdelta = clock - computed; 527 if (tmpdelta < delta) { 528 delta = tmpdelta; 529 n = testn; 530 m = testm; 531 p = testp; 532 } 533 if (delta == 0) 534 break; 535 } 536 if (delta == 0) 537 break; 538 } 539 } else { 540 541 vcomax = 800000; 542 vcomin = 400000; 543 pllreffreq = 33333; 544 545 delta = 0xffffffff; 546 547 for (testp = 16; testp > 0; testp >>= 1) { 548 if (clock * testp > vcomax) 549 continue; 550 if (clock * testp < vcomin) 551 continue; 552 553 for (testm = 1; testm < 33; testm++) { 554 for (testn = 17; testn < 257; testn++) { 555 computed = (pllreffreq * testn) / 556 (testm * testp); 557 if (computed > clock) 558 tmpdelta = computed - clock; 559 else 560 tmpdelta = clock - computed; 561 if (tmpdelta < delta) { 562 delta = tmpdelta; 563 n = testn - 1; 564 m = (testm - 1); 565 p = testp - 1; 566 } 567 if ((clock * testp) >= 600000) 568 p |= 0x80; 569 } 570 } 571 } 572 } 573 for (i = 0; i <= 32 && pll_locked == false; i++) { 574 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 575 tmp = RREG8(DAC_DATA); 576 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 577 WREG8(DAC_DATA, tmp); 578 579 tmp = RREG8(MGAREG_MEM_MISC_READ); 580 tmp |= 0x3 << 2; 581 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 582 583 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 584 tmp = RREG8(DAC_DATA); 585 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 586 WREG8(DAC_DATA, tmp); 587 588 udelay(500); 589 590 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); 591 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); 592 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); 593 594 udelay(500); 595 596 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 597 tmp = RREG8(DAC_DATA); 598 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 599 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 600 WREG8(DAC_DATA, tmp); 601 602 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 603 tmp = RREG8(DAC_DATA); 604 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 605 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 606 WREG8(DAC_DATA, tmp); 607 608 vcount = RREG8(MGAREG_VCOUNT); 609 610 for (j = 0; j < 30 && pll_locked == false; j++) { 611 tmpcount = RREG8(MGAREG_VCOUNT); 612 if (tmpcount < vcount) 613 vcount = 0; 614 if ((tmpcount - vcount) > 2) 615 pll_locked = true; 616 else 617 udelay(5); 618 } 619 } 620 621 return 0; 622 } 623 624 static int mga_g200er_set_plls(struct mga_device *mdev, long clock) 625 { 626 unsigned int vcomax, vcomin, pllreffreq; 627 unsigned int delta, tmpdelta; 628 int testr, testn, testm, testo; 629 unsigned int p, m, n; 630 unsigned int computed, vco; 631 int tmp; 632 const unsigned int m_div_val[] = { 1, 2, 4, 8 }; 633 634 m = n = p = 0; 635 vcomax = 1488000; 636 vcomin = 1056000; 637 pllreffreq = 48000; 638 639 delta = 0xffffffff; 640 641 for (testr = 0; testr < 4; testr++) { 642 if (delta == 0) 643 break; 644 for (testn = 5; testn < 129; testn++) { 645 if (delta == 0) 646 break; 647 for (testm = 3; testm >= 0; testm--) { 648 if (delta == 0) 649 break; 650 for (testo = 5; testo < 33; testo++) { 651 vco = pllreffreq * (testn + 1) / 652 (testr + 1); 653 if (vco < vcomin) 654 continue; 655 if (vco > vcomax) 656 continue; 657 computed = vco / (m_div_val[testm] * (testo + 1)); 658 if (computed > clock) 659 tmpdelta = computed - clock; 660 else 661 tmpdelta = clock - computed; 662 if (tmpdelta < delta) { 663 delta = tmpdelta; 664 m = testm | (testo << 3); 665 n = testn; 666 p = testr | (testr << 3); 667 } 668 } 669 } 670 } 671 } 672 673 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 674 tmp = RREG8(DAC_DATA); 675 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 676 WREG8(DAC_DATA, tmp); 677 678 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 679 tmp = RREG8(DAC_DATA); 680 tmp |= MGA1064_REMHEADCTL_CLKDIS; 681 WREG8(DAC_DATA, tmp); 682 683 tmp = RREG8(MGAREG_MEM_MISC_READ); 684 tmp |= (0x3<<2) | 0xc0; 685 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 686 687 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 688 tmp = RREG8(DAC_DATA); 689 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 690 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 691 WREG8(DAC_DATA, tmp); 692 693 udelay(500); 694 695 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); 696 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); 697 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); 698 699 udelay(50); 700 701 return 0; 702 } 703 704 static int mga_crtc_set_plls(struct mga_device *mdev, long clock) 705 { 706 switch(mdev->type) { 707 case G200_SE_A: 708 case G200_SE_B: 709 return mga_g200se_set_plls(mdev, clock); 710 break; 711 case G200_WB: 712 case G200_EW3: 713 return mga_g200wb_set_plls(mdev, clock); 714 break; 715 case G200_EV: 716 return mga_g200ev_set_plls(mdev, clock); 717 break; 718 case G200_EH: 719 case G200_EH3: 720 return mga_g200eh_set_plls(mdev, clock); 721 break; 722 case G200_ER: 723 return mga_g200er_set_plls(mdev, clock); 724 break; 725 } 726 return 0; 727 } 728 729 static void mga_g200wb_prepare(struct drm_crtc *crtc) 730 { 731 struct mga_device *mdev = crtc->dev->dev_private; 732 u8 tmp; 733 int iter_max; 734 735 /* 1- The first step is to warn the BMC of an upcoming mode change. 736 * We are putting the misc<0> to output.*/ 737 738 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); 739 tmp = RREG8(DAC_DATA); 740 tmp |= 0x10; 741 WREG_DAC(MGA1064_GEN_IO_CTL, tmp); 742 743 /* we are putting a 1 on the misc<0> line */ 744 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 745 tmp = RREG8(DAC_DATA); 746 tmp |= 0x10; 747 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 748 749 /* 2- Second step to mask and further scan request 750 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) 751 */ 752 WREG8(DAC_INDEX, MGA1064_SPAREREG); 753 tmp = RREG8(DAC_DATA); 754 tmp |= 0x80; 755 WREG_DAC(MGA1064_SPAREREG, tmp); 756 757 /* 3a- the third step is to verifu if there is an active scan 758 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>) 759 */ 760 iter_max = 300; 761 while (!(tmp & 0x1) && iter_max) { 762 WREG8(DAC_INDEX, MGA1064_SPAREREG); 763 tmp = RREG8(DAC_DATA); 764 udelay(1000); 765 iter_max--; 766 } 767 768 /* 3b- this step occurs only if the remove is actually scanning 769 * we are waiting for the end of the frame which is a 1 on 770 * remvsyncsts (XSPAREREG<1>) 771 */ 772 if (iter_max) { 773 iter_max = 300; 774 while ((tmp & 0x2) && iter_max) { 775 WREG8(DAC_INDEX, MGA1064_SPAREREG); 776 tmp = RREG8(DAC_DATA); 777 udelay(1000); 778 iter_max--; 779 } 780 } 781 } 782 783 static void mga_g200wb_commit(struct drm_crtc *crtc) 784 { 785 u8 tmp; 786 struct mga_device *mdev = crtc->dev->dev_private; 787 788 /* 1- The first step is to ensure that the vrsten and hrsten are set */ 789 WREG8(MGAREG_CRTCEXT_INDEX, 1); 790 tmp = RREG8(MGAREG_CRTCEXT_DATA); 791 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); 792 793 /* 2- second step is to assert the rstlvl2 */ 794 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 795 tmp = RREG8(DAC_DATA); 796 tmp |= 0x8; 797 WREG8(DAC_DATA, tmp); 798 799 /* wait 10 us */ 800 udelay(10); 801 802 /* 3- deassert rstlvl2 */ 803 tmp &= ~0x08; 804 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 805 WREG8(DAC_DATA, tmp); 806 807 /* 4- remove mask of scan request */ 808 WREG8(DAC_INDEX, MGA1064_SPAREREG); 809 tmp = RREG8(DAC_DATA); 810 tmp &= ~0x80; 811 WREG8(DAC_DATA, tmp); 812 813 /* 5- put back a 0 on the misc<0> line */ 814 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 815 tmp = RREG8(DAC_DATA); 816 tmp &= ~0x10; 817 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 818 } 819 820 /* 821 This is how the framebuffer base address is stored in g200 cards: 822 * Assume @offset is the gpu_addr variable of the framebuffer object 823 * Then addr is the number of _pixels_ (not bytes) from the start of 824 VRAM to the first pixel we want to display. (divided by 2 for 32bit 825 framebuffers) 826 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers 827 addr<20> -> CRTCEXT0<6> 828 addr<19-16> -> CRTCEXT0<3-0> 829 addr<15-8> -> CRTCC<7-0> 830 addr<7-0> -> CRTCD<7-0> 831 CRTCEXT0 has to be programmed last to trigger an update and make the 832 new addr variable take effect. 833 */ 834 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) 835 { 836 struct mga_device *mdev = crtc->dev->dev_private; 837 u32 addr; 838 int count; 839 u8 crtcext0; 840 841 while (RREG8(0x1fda) & 0x08); 842 while (!(RREG8(0x1fda) & 0x08)); 843 844 count = RREG8(MGAREG_VCOUNT) + 2; 845 while (RREG8(MGAREG_VCOUNT) < count); 846 847 WREG8(MGAREG_CRTCEXT_INDEX, 0); 848 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA); 849 crtcext0 &= 0xB0; 850 addr = offset / 8; 851 /* Can't store addresses any higher than that... 852 but we also don't have more than 16MB of memory, so it should be fine. */ 853 WARN_ON(addr > 0x1fffff); 854 crtcext0 |= (!!(addr & (1<<20)))<<6; 855 WREG_CRT(0x0d, (u8)(addr & 0xff)); 856 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); 857 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0); 858 } 859 860 861 /* ast is different - we will force move buffers out of VRAM */ 862 static int mga_crtc_do_set_base(struct drm_crtc *crtc, 863 struct drm_framebuffer *fb, 864 int x, int y, int atomic) 865 { 866 struct mga_device *mdev = crtc->dev->dev_private; 867 struct drm_gem_object *obj; 868 struct mga_framebuffer *mga_fb; 869 struct mgag200_bo *bo; 870 int ret; 871 u64 gpu_addr; 872 873 /* push the previous fb to system ram */ 874 if (!atomic && fb) { 875 mga_fb = to_mga_framebuffer(fb); 876 obj = mga_fb->obj; 877 bo = gem_to_mga_bo(obj); 878 ret = mgag200_bo_reserve(bo, false); 879 if (ret) 880 return ret; 881 mgag200_bo_push_sysram(bo); 882 mgag200_bo_unreserve(bo); 883 } 884 885 mga_fb = to_mga_framebuffer(crtc->primary->fb); 886 obj = mga_fb->obj; 887 bo = gem_to_mga_bo(obj); 888 889 ret = mgag200_bo_reserve(bo, false); 890 if (ret) 891 return ret; 892 893 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); 894 if (ret) { 895 mgag200_bo_unreserve(bo); 896 return ret; 897 } 898 899 if (&mdev->mfbdev->mfb == mga_fb) { 900 /* if pushing console in kmap it */ 901 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); 902 if (ret) 903 DRM_ERROR("failed to kmap fbcon\n"); 904 905 } 906 mgag200_bo_unreserve(bo); 907 908 mga_set_start_address(crtc, (u32)gpu_addr); 909 910 return 0; 911 } 912 913 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, 914 struct drm_framebuffer *old_fb) 915 { 916 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 917 } 918 919 static int mga_crtc_mode_set(struct drm_crtc *crtc, 920 struct drm_display_mode *mode, 921 struct drm_display_mode *adjusted_mode, 922 int x, int y, struct drm_framebuffer *old_fb) 923 { 924 struct drm_device *dev = crtc->dev; 925 struct mga_device *mdev = dev->dev_private; 926 const struct drm_framebuffer *fb = crtc->primary->fb; 927 int hdisplay, hsyncstart, hsyncend, htotal; 928 int vdisplay, vsyncstart, vsyncend, vtotal; 929 int pitch; 930 int option = 0, option2 = 0; 931 int i; 932 unsigned char misc = 0; 933 unsigned char ext_vga[6]; 934 u8 bppshift; 935 936 static unsigned char dacvalue[] = { 937 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, 938 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, 939 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, 940 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, 941 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 942 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, 943 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, 944 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, 945 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, 946 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 947 }; 948 949 bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1]; 950 951 switch (mdev->type) { 952 case G200_SE_A: 953 case G200_SE_B: 954 dacvalue[MGA1064_VREF_CTL] = 0x03; 955 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 956 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | 957 MGA1064_MISC_CTL_VGA8 | 958 MGA1064_MISC_CTL_DAC_RAM_CS; 959 if (mdev->has_sdram) 960 option = 0x40049120; 961 else 962 option = 0x4004d120; 963 option2 = 0x00008000; 964 break; 965 case G200_WB: 966 case G200_EW3: 967 dacvalue[MGA1064_VREF_CTL] = 0x07; 968 option = 0x41049120; 969 option2 = 0x0000b000; 970 break; 971 case G200_EV: 972 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 973 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 974 MGA1064_MISC_CTL_DAC_RAM_CS; 975 option = 0x00000120; 976 option2 = 0x0000b000; 977 break; 978 case G200_EH: 979 case G200_EH3: 980 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 981 MGA1064_MISC_CTL_DAC_RAM_CS; 982 option = 0x00000120; 983 option2 = 0x0000b000; 984 break; 985 case G200_ER: 986 break; 987 } 988 989 switch (fb->format->cpp[0] * 8) { 990 case 8: 991 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; 992 break; 993 case 16: 994 if (fb->format->depth == 15) 995 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; 996 else 997 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; 998 break; 999 case 24: 1000 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; 1001 break; 1002 case 32: 1003 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; 1004 break; 1005 } 1006 1007 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1008 misc |= 0x40; 1009 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1010 misc |= 0x80; 1011 1012 1013 for (i = 0; i < sizeof(dacvalue); i++) { 1014 if ((i <= 0x17) || 1015 (i == 0x1b) || 1016 (i == 0x1c) || 1017 ((i >= 0x1f) && (i <= 0x29)) || 1018 ((i >= 0x30) && (i <= 0x37))) 1019 continue; 1020 if (IS_G200_SE(mdev) && 1021 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) 1022 continue; 1023 if ((mdev->type == G200_EV || 1024 mdev->type == G200_WB || 1025 mdev->type == G200_EH || 1026 mdev->type == G200_EW3 || 1027 mdev->type == G200_EH3) && 1028 (i >= 0x44) && (i <= 0x4e)) 1029 continue; 1030 1031 WREG_DAC(i, dacvalue[i]); 1032 } 1033 1034 if (mdev->type == G200_ER) 1035 WREG_DAC(0x90, 0); 1036 1037 if (option) 1038 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); 1039 if (option2) 1040 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); 1041 1042 WREG_SEQ(2, 0xf); 1043 WREG_SEQ(3, 0); 1044 WREG_SEQ(4, 0xe); 1045 1046 pitch = fb->pitches[0] / fb->format->cpp[0]; 1047 if (fb->format->cpp[0] * 8 == 24) 1048 pitch = (pitch * 3) >> (4 - bppshift); 1049 else 1050 pitch = pitch >> (4 - bppshift); 1051 1052 hdisplay = mode->hdisplay / 8 - 1; 1053 hsyncstart = mode->hsync_start / 8 - 1; 1054 hsyncend = mode->hsync_end / 8 - 1; 1055 htotal = mode->htotal / 8 - 1; 1056 1057 /* Work around hardware quirk */ 1058 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) 1059 htotal++; 1060 1061 vdisplay = mode->vdisplay - 1; 1062 vsyncstart = mode->vsync_start - 1; 1063 vsyncend = mode->vsync_end - 1; 1064 vtotal = mode->vtotal - 2; 1065 1066 WREG_GFX(0, 0); 1067 WREG_GFX(1, 0); 1068 WREG_GFX(2, 0); 1069 WREG_GFX(3, 0); 1070 WREG_GFX(4, 0); 1071 WREG_GFX(5, 0x40); 1072 WREG_GFX(6, 0x5); 1073 WREG_GFX(7, 0xf); 1074 WREG_GFX(8, 0xf); 1075 1076 WREG_CRT(0, htotal - 4); 1077 WREG_CRT(1, hdisplay); 1078 WREG_CRT(2, hdisplay); 1079 WREG_CRT(3, (htotal & 0x1F) | 0x80); 1080 WREG_CRT(4, hsyncstart); 1081 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); 1082 WREG_CRT(6, vtotal & 0xFF); 1083 WREG_CRT(7, ((vtotal & 0x100) >> 8) | 1084 ((vdisplay & 0x100) >> 7) | 1085 ((vsyncstart & 0x100) >> 6) | 1086 ((vdisplay & 0x100) >> 5) | 1087 ((vdisplay & 0x100) >> 4) | /* linecomp */ 1088 ((vtotal & 0x200) >> 4)| 1089 ((vdisplay & 0x200) >> 3) | 1090 ((vsyncstart & 0x200) >> 2)); 1091 WREG_CRT(9, ((vdisplay & 0x200) >> 4) | 1092 ((vdisplay & 0x200) >> 3)); 1093 WREG_CRT(10, 0); 1094 WREG_CRT(11, 0); 1095 WREG_CRT(12, 0); 1096 WREG_CRT(13, 0); 1097 WREG_CRT(14, 0); 1098 WREG_CRT(15, 0); 1099 WREG_CRT(16, vsyncstart & 0xFF); 1100 WREG_CRT(17, (vsyncend & 0x0F) | 0x20); 1101 WREG_CRT(18, vdisplay & 0xFF); 1102 WREG_CRT(19, pitch & 0xFF); 1103 WREG_CRT(20, 0); 1104 WREG_CRT(21, vdisplay & 0xFF); 1105 WREG_CRT(22, (vtotal + 1) & 0xFF); 1106 WREG_CRT(23, 0xc3); 1107 WREG_CRT(24, vdisplay & 0xFF); 1108 1109 ext_vga[0] = 0; 1110 ext_vga[5] = 0; 1111 1112 /* TODO interlace */ 1113 1114 ext_vga[0] |= (pitch & 0x300) >> 4; 1115 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | 1116 ((hdisplay & 0x100) >> 7) | 1117 ((hsyncstart & 0x100) >> 6) | 1118 (htotal & 0x40); 1119 ext_vga[2] = ((vtotal & 0xc00) >> 10) | 1120 ((vdisplay & 0x400) >> 8) | 1121 ((vdisplay & 0xc00) >> 7) | 1122 ((vsyncstart & 0xc00) >> 5) | 1123 ((vdisplay & 0x400) >> 3); 1124 if (fb->format->cpp[0] * 8 == 24) 1125 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; 1126 else 1127 ext_vga[3] = ((1 << bppshift) - 1) | 0x80; 1128 ext_vga[4] = 0; 1129 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1130 ext_vga[1] |= 0x88; 1131 1132 /* Set pixel clocks */ 1133 misc = 0x2d; 1134 WREG8(MGA_MISC_OUT, misc); 1135 1136 mga_crtc_set_plls(mdev, mode->clock); 1137 1138 for (i = 0; i < 6; i++) { 1139 WREG_ECRT(i, ext_vga[i]); 1140 } 1141 1142 if (mdev->type == G200_ER) 1143 WREG_ECRT(0x24, 0x5); 1144 1145 if (mdev->type == G200_EW3) 1146 WREG_ECRT(0x34, 0x5); 1147 1148 if (mdev->type == G200_EV) { 1149 WREG_ECRT(6, 0); 1150 } 1151 1152 WREG_ECRT(0, ext_vga[0]); 1153 /* Enable mga pixel clock */ 1154 misc = 0x2d; 1155 1156 WREG8(MGA_MISC_OUT, misc); 1157 1158 if (adjusted_mode) 1159 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); 1160 1161 mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 1162 1163 /* reset tagfifo */ 1164 if (mdev->type == G200_ER) { 1165 u32 mem_ctl = RREG32(MGAREG_MEMCTL); 1166 u8 seq1; 1167 1168 /* screen off */ 1169 WREG8(MGAREG_SEQ_INDEX, 0x01); 1170 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; 1171 WREG8(MGAREG_SEQ_DATA, seq1); 1172 1173 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); 1174 udelay(1000); 1175 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); 1176 1177 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); 1178 } 1179 1180 1181 if (IS_G200_SE(mdev)) { 1182 if (mdev->unique_rev_id >= 0x04) { 1183 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1184 WREG8(MGAREG_CRTCEXT_DATA, 0); 1185 } else if (mdev->unique_rev_id >= 0x02) { 1186 u8 hi_pri_lvl; 1187 u32 bpp; 1188 u32 mb; 1189 1190 if (fb->format->cpp[0] * 8 > 16) 1191 bpp = 32; 1192 else if (fb->format->cpp[0] * 8 > 8) 1193 bpp = 16; 1194 else 1195 bpp = 8; 1196 1197 mb = (mode->clock * bpp) / 1000; 1198 if (mb > 3100) 1199 hi_pri_lvl = 0; 1200 else if (mb > 2600) 1201 hi_pri_lvl = 1; 1202 else if (mb > 1900) 1203 hi_pri_lvl = 2; 1204 else if (mb > 1160) 1205 hi_pri_lvl = 3; 1206 else if (mb > 440) 1207 hi_pri_lvl = 4; 1208 else 1209 hi_pri_lvl = 5; 1210 1211 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1212 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl); 1213 } else { 1214 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1215 if (mdev->unique_rev_id >= 0x01) 1216 WREG8(MGAREG_CRTCEXT_DATA, 0x03); 1217 else 1218 WREG8(MGAREG_CRTCEXT_DATA, 0x04); 1219 } 1220 } 1221 return 0; 1222 } 1223 1224 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ 1225 static int mga_suspend(struct drm_crtc *crtc) 1226 { 1227 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1228 struct drm_device *dev = crtc->dev; 1229 struct mga_device *mdev = dev->dev_private; 1230 struct pci_dev *pdev = dev->pdev; 1231 int option; 1232 1233 if (mdev->suspended) 1234 return 0; 1235 1236 WREG_SEQ(1, 0x20); 1237 WREG_ECRT(1, 0x30); 1238 /* Disable the pixel clock */ 1239 WREG_DAC(0x1a, 0x05); 1240 /* Power down the DAC */ 1241 WREG_DAC(0x1e, 0x18); 1242 /* Power down the pixel PLL */ 1243 WREG_DAC(0x1a, 0x0d); 1244 1245 /* Disable PLLs and clocks */ 1246 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1247 option &= ~(0x1F8024); 1248 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1249 pci_set_power_state(pdev, PCI_D3hot); 1250 pci_disable_device(pdev); 1251 1252 mdev->suspended = true; 1253 1254 return 0; 1255 } 1256 1257 static int mga_resume(struct drm_crtc *crtc) 1258 { 1259 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1260 struct drm_device *dev = crtc->dev; 1261 struct mga_device *mdev = dev->dev_private; 1262 struct pci_dev *pdev = dev->pdev; 1263 int option; 1264 1265 if (!mdev->suspended) 1266 return 0; 1267 1268 pci_set_power_state(pdev, PCI_D0); 1269 pci_enable_device(pdev); 1270 1271 /* Disable sysclk */ 1272 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1273 option &= ~(0x4); 1274 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1275 1276 mdev->suspended = false; 1277 1278 return 0; 1279 } 1280 1281 #endif 1282 1283 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) 1284 { 1285 struct drm_device *dev = crtc->dev; 1286 struct mga_device *mdev = dev->dev_private; 1287 u8 seq1 = 0, crtcext1 = 0; 1288 1289 switch (mode) { 1290 case DRM_MODE_DPMS_ON: 1291 seq1 = 0; 1292 crtcext1 = 0; 1293 mga_crtc_load_lut(crtc); 1294 break; 1295 case DRM_MODE_DPMS_STANDBY: 1296 seq1 = 0x20; 1297 crtcext1 = 0x10; 1298 break; 1299 case DRM_MODE_DPMS_SUSPEND: 1300 seq1 = 0x20; 1301 crtcext1 = 0x20; 1302 break; 1303 case DRM_MODE_DPMS_OFF: 1304 seq1 = 0x20; 1305 crtcext1 = 0x30; 1306 break; 1307 } 1308 1309 #if 0 1310 if (mode == DRM_MODE_DPMS_OFF) { 1311 mga_suspend(crtc); 1312 } 1313 #endif 1314 WREG8(MGAREG_SEQ_INDEX, 0x01); 1315 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; 1316 mga_wait_vsync(mdev); 1317 mga_wait_busy(mdev); 1318 WREG8(MGAREG_SEQ_DATA, seq1); 1319 msleep(20); 1320 WREG8(MGAREG_CRTCEXT_INDEX, 0x01); 1321 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; 1322 WREG8(MGAREG_CRTCEXT_DATA, crtcext1); 1323 1324 #if 0 1325 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { 1326 mga_resume(crtc); 1327 drm_helper_resume_force_mode(dev); 1328 } 1329 #endif 1330 } 1331 1332 /* 1333 * This is called before a mode is programmed. A typical use might be to 1334 * enable DPMS during the programming to avoid seeing intermediate stages, 1335 * but that's not relevant to us 1336 */ 1337 static void mga_crtc_prepare(struct drm_crtc *crtc) 1338 { 1339 struct drm_device *dev = crtc->dev; 1340 struct mga_device *mdev = dev->dev_private; 1341 u8 tmp; 1342 1343 /* mga_resume(crtc);*/ 1344 1345 WREG8(MGAREG_CRTC_INDEX, 0x11); 1346 tmp = RREG8(MGAREG_CRTC_DATA); 1347 WREG_CRT(0x11, tmp | 0x80); 1348 1349 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1350 WREG_SEQ(0, 1); 1351 msleep(50); 1352 WREG_SEQ(1, 0x20); 1353 msleep(20); 1354 } else { 1355 WREG8(MGAREG_SEQ_INDEX, 0x1); 1356 tmp = RREG8(MGAREG_SEQ_DATA); 1357 1358 /* start sync reset */ 1359 WREG_SEQ(0, 1); 1360 WREG_SEQ(1, tmp | 0x20); 1361 } 1362 1363 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1364 mga_g200wb_prepare(crtc); 1365 1366 WREG_CRT(17, 0); 1367 } 1368 1369 /* 1370 * This is called after a mode is programmed. It should reverse anything done 1371 * by the prepare function 1372 */ 1373 static void mga_crtc_commit(struct drm_crtc *crtc) 1374 { 1375 struct drm_device *dev = crtc->dev; 1376 struct mga_device *mdev = dev->dev_private; 1377 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1378 u8 tmp; 1379 1380 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1381 mga_g200wb_commit(crtc); 1382 1383 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1384 msleep(50); 1385 WREG_SEQ(1, 0x0); 1386 msleep(20); 1387 WREG_SEQ(0, 0x3); 1388 } else { 1389 WREG8(MGAREG_SEQ_INDEX, 0x1); 1390 tmp = RREG8(MGAREG_SEQ_DATA); 1391 1392 tmp &= ~0x20; 1393 WREG_SEQ(0x1, tmp); 1394 WREG_SEQ(0, 3); 1395 } 1396 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 1397 } 1398 1399 /* 1400 * The core can pass us a set of gamma values to program. We actually only 1401 * use this for 8-bit mode so can't perform smooth fades on deeper modes, 1402 * but it's a requirement that we provide the function 1403 */ 1404 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 1405 u16 *blue, uint32_t size, 1406 struct drm_modeset_acquire_ctx *ctx) 1407 { 1408 mga_crtc_load_lut(crtc); 1409 1410 return 0; 1411 } 1412 1413 /* Simple cleanup function */ 1414 static void mga_crtc_destroy(struct drm_crtc *crtc) 1415 { 1416 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1417 1418 drm_crtc_cleanup(crtc); 1419 kfree(mga_crtc); 1420 } 1421 1422 static void mga_crtc_disable(struct drm_crtc *crtc) 1423 { 1424 int ret; 1425 DRM_DEBUG_KMS("\n"); 1426 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 1427 if (crtc->primary->fb) { 1428 struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb); 1429 struct drm_gem_object *obj = mga_fb->obj; 1430 struct mgag200_bo *bo = gem_to_mga_bo(obj); 1431 ret = mgag200_bo_reserve(bo, false); 1432 if (ret) 1433 return; 1434 mgag200_bo_push_sysram(bo); 1435 mgag200_bo_unreserve(bo); 1436 } 1437 crtc->primary->fb = NULL; 1438 } 1439 1440 /* These provide the minimum set of functions required to handle a CRTC */ 1441 static const struct drm_crtc_funcs mga_crtc_funcs = { 1442 .cursor_set = mga_crtc_cursor_set, 1443 .cursor_move = mga_crtc_cursor_move, 1444 .gamma_set = mga_crtc_gamma_set, 1445 .set_config = drm_crtc_helper_set_config, 1446 .destroy = mga_crtc_destroy, 1447 }; 1448 1449 static const struct drm_crtc_helper_funcs mga_helper_funcs = { 1450 .disable = mga_crtc_disable, 1451 .dpms = mga_crtc_dpms, 1452 .mode_set = mga_crtc_mode_set, 1453 .mode_set_base = mga_crtc_mode_set_base, 1454 .prepare = mga_crtc_prepare, 1455 .commit = mga_crtc_commit, 1456 }; 1457 1458 /* CRTC setup */ 1459 static void mga_crtc_init(struct mga_device *mdev) 1460 { 1461 struct mga_crtc *mga_crtc; 1462 1463 mga_crtc = kzalloc(sizeof(struct mga_crtc) + 1464 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), 1465 GFP_KERNEL); 1466 1467 if (mga_crtc == NULL) 1468 return; 1469 1470 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs); 1471 1472 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); 1473 mdev->mode_info.crtc = mga_crtc; 1474 1475 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); 1476 } 1477 1478 /* 1479 * The encoder comes after the CRTC in the output pipeline, but before 1480 * the connector. It's responsible for ensuring that the digital 1481 * stream is appropriately converted into the output format. Setup is 1482 * very simple in this case - all we have to do is inform qemu of the 1483 * colour depth in order to ensure that it displays appropriately 1484 */ 1485 1486 /* 1487 * These functions are analagous to those in the CRTC code, but are intended 1488 * to handle any encoder-specific limitations 1489 */ 1490 static void mga_encoder_mode_set(struct drm_encoder *encoder, 1491 struct drm_display_mode *mode, 1492 struct drm_display_mode *adjusted_mode) 1493 { 1494 1495 } 1496 1497 static void mga_encoder_dpms(struct drm_encoder *encoder, int state) 1498 { 1499 return; 1500 } 1501 1502 static void mga_encoder_prepare(struct drm_encoder *encoder) 1503 { 1504 } 1505 1506 static void mga_encoder_commit(struct drm_encoder *encoder) 1507 { 1508 } 1509 1510 static void mga_encoder_destroy(struct drm_encoder *encoder) 1511 { 1512 struct mga_encoder *mga_encoder = to_mga_encoder(encoder); 1513 drm_encoder_cleanup(encoder); 1514 kfree(mga_encoder); 1515 } 1516 1517 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { 1518 .dpms = mga_encoder_dpms, 1519 .mode_set = mga_encoder_mode_set, 1520 .prepare = mga_encoder_prepare, 1521 .commit = mga_encoder_commit, 1522 }; 1523 1524 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { 1525 .destroy = mga_encoder_destroy, 1526 }; 1527 1528 static struct drm_encoder *mga_encoder_init(struct drm_device *dev) 1529 { 1530 struct drm_encoder *encoder; 1531 struct mga_encoder *mga_encoder; 1532 1533 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); 1534 if (!mga_encoder) 1535 return NULL; 1536 1537 encoder = &mga_encoder->base; 1538 encoder->possible_crtcs = 0x1; 1539 1540 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, 1541 DRM_MODE_ENCODER_DAC, NULL); 1542 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); 1543 1544 return encoder; 1545 } 1546 1547 1548 static int mga_vga_get_modes(struct drm_connector *connector) 1549 { 1550 struct mga_connector *mga_connector = to_mga_connector(connector); 1551 struct edid *edid; 1552 int ret = 0; 1553 1554 edid = drm_get_edid(connector, &mga_connector->i2c->adapter); 1555 if (edid) { 1556 drm_mode_connector_update_edid_property(connector, edid); 1557 ret = drm_add_edid_modes(connector, edid); 1558 kfree(edid); 1559 } 1560 return ret; 1561 } 1562 1563 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode, 1564 int bits_per_pixel) 1565 { 1566 uint32_t total_area, divisor; 1567 uint64_t active_area, pixels_per_second, bandwidth; 1568 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8; 1569 1570 divisor = 1024; 1571 1572 if (!mode->htotal || !mode->vtotal || !mode->clock) 1573 return 0; 1574 1575 active_area = mode->hdisplay * mode->vdisplay; 1576 total_area = mode->htotal * mode->vtotal; 1577 1578 pixels_per_second = active_area * mode->clock * 1000; 1579 do_div(pixels_per_second, total_area); 1580 1581 bandwidth = pixels_per_second * bytes_per_pixel * 100; 1582 do_div(bandwidth, divisor); 1583 1584 return (uint32_t)(bandwidth); 1585 } 1586 1587 #define MODE_BANDWIDTH MODE_BAD 1588 1589 static int mga_vga_mode_valid(struct drm_connector *connector, 1590 struct drm_display_mode *mode) 1591 { 1592 struct drm_device *dev = connector->dev; 1593 struct mga_device *mdev = (struct mga_device*)dev->dev_private; 1594 int bpp = 32; 1595 1596 if (IS_G200_SE(mdev)) { 1597 if (mdev->unique_rev_id == 0x01) { 1598 if (mode->hdisplay > 1600) 1599 return MODE_VIRTUAL_X; 1600 if (mode->vdisplay > 1200) 1601 return MODE_VIRTUAL_Y; 1602 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1603 > (24400 * 1024)) 1604 return MODE_BANDWIDTH; 1605 } else if (mdev->unique_rev_id == 0x02) { 1606 if (mode->hdisplay > 1920) 1607 return MODE_VIRTUAL_X; 1608 if (mode->vdisplay > 1200) 1609 return MODE_VIRTUAL_Y; 1610 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1611 > (30100 * 1024)) 1612 return MODE_BANDWIDTH; 1613 } else { 1614 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1615 > (55000 * 1024)) 1616 return MODE_BANDWIDTH; 1617 } 1618 } else if (mdev->type == G200_WB) { 1619 if (mode->hdisplay > 1280) 1620 return MODE_VIRTUAL_X; 1621 if (mode->vdisplay > 1024) 1622 return MODE_VIRTUAL_Y; 1623 if (mga_vga_calculate_mode_bandwidth(mode, 1624 bpp > (31877 * 1024))) 1625 return MODE_BANDWIDTH; 1626 } else if (mdev->type == G200_EV && 1627 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1628 > (32700 * 1024))) { 1629 return MODE_BANDWIDTH; 1630 } else if (mdev->type == G200_EH && 1631 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1632 > (37500 * 1024))) { 1633 return MODE_BANDWIDTH; 1634 } else if (mdev->type == G200_ER && 1635 (mga_vga_calculate_mode_bandwidth(mode, 1636 bpp) > (55000 * 1024))) { 1637 return MODE_BANDWIDTH; 1638 } 1639 1640 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 || 1641 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) { 1642 return MODE_H_ILLEGAL; 1643 } 1644 1645 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || 1646 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || 1647 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || 1648 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { 1649 return MODE_BAD; 1650 } 1651 1652 /* Validate the mode input by the user */ 1653 if (connector->cmdline_mode.specified) { 1654 if (connector->cmdline_mode.bpp_specified) 1655 bpp = connector->cmdline_mode.bpp; 1656 } 1657 1658 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { 1659 if (connector->cmdline_mode.specified) 1660 connector->cmdline_mode.specified = false; 1661 return MODE_BAD; 1662 } 1663 1664 return MODE_OK; 1665 } 1666 1667 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector 1668 *connector) 1669 { 1670 int enc_id = connector->encoder_ids[0]; 1671 /* pick the encoder ids */ 1672 if (enc_id) 1673 return drm_encoder_find(connector->dev, NULL, enc_id); 1674 return NULL; 1675 } 1676 1677 static void mga_connector_destroy(struct drm_connector *connector) 1678 { 1679 struct mga_connector *mga_connector = to_mga_connector(connector); 1680 mgag200_i2c_destroy(mga_connector->i2c); 1681 drm_connector_cleanup(connector); 1682 kfree(connector); 1683 } 1684 1685 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { 1686 .get_modes = mga_vga_get_modes, 1687 .mode_valid = mga_vga_mode_valid, 1688 .best_encoder = mga_connector_best_encoder, 1689 }; 1690 1691 static const struct drm_connector_funcs mga_vga_connector_funcs = { 1692 .dpms = drm_helper_connector_dpms, 1693 .fill_modes = drm_helper_probe_single_connector_modes, 1694 .destroy = mga_connector_destroy, 1695 }; 1696 1697 static struct drm_connector *mga_vga_init(struct drm_device *dev) 1698 { 1699 struct drm_connector *connector; 1700 struct mga_connector *mga_connector; 1701 1702 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); 1703 if (!mga_connector) 1704 return NULL; 1705 1706 connector = &mga_connector->base; 1707 1708 drm_connector_init(dev, connector, 1709 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1710 1711 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); 1712 1713 drm_connector_register(connector); 1714 1715 mga_connector->i2c = mgag200_i2c_create(dev); 1716 if (!mga_connector->i2c) 1717 DRM_ERROR("failed to add ddc bus\n"); 1718 1719 return connector; 1720 } 1721 1722 1723 int mgag200_modeset_init(struct mga_device *mdev) 1724 { 1725 struct drm_encoder *encoder; 1726 struct drm_connector *connector; 1727 int ret; 1728 1729 mdev->mode_info.mode_config_initialized = true; 1730 1731 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; 1732 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; 1733 1734 mdev->dev->mode_config.fb_base = mdev->mc.vram_base; 1735 1736 mga_crtc_init(mdev); 1737 1738 encoder = mga_encoder_init(mdev->dev); 1739 if (!encoder) { 1740 DRM_ERROR("mga_encoder_init failed\n"); 1741 return -1; 1742 } 1743 1744 connector = mga_vga_init(mdev->dev); 1745 if (!connector) { 1746 DRM_ERROR("mga_vga_init failed\n"); 1747 return -1; 1748 } 1749 1750 drm_mode_connector_attach_encoder(connector, encoder); 1751 1752 ret = mgag200_fbdev_init(mdev); 1753 if (ret) { 1754 DRM_ERROR("mga_fbdev_init failed\n"); 1755 return ret; 1756 } 1757 1758 return 0; 1759 } 1760 1761 void mgag200_modeset_fini(struct mga_device *mdev) 1762 { 1763 1764 } 1765