xref: /openbmc/linux/drivers/gpu/drm/mgag200/mgag200_mode.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2010 Matt Turner.
4  * Copyright 2012 Red Hat
5  *
6  * Authors: Matthew Garrett
7  *	    Matt Turner
8  *	    Dave Airlie
9  */
10 
11 #include <linux/delay.h>
12 
13 #include <drm/drmP.h>
14 #include <drm/drm_crtc_helper.h>
15 #include <drm/drm_plane_helper.h>
16 #include <drm/drm_probe_helper.h>
17 
18 #include "mgag200_drv.h"
19 
20 #define MGAG200_LUT_SIZE 256
21 
22 /*
23  * This file contains setup code for the CRTC.
24  */
25 
26 static void mga_crtc_load_lut(struct drm_crtc *crtc)
27 {
28 	struct drm_device *dev = crtc->dev;
29 	struct mga_device *mdev = dev->dev_private;
30 	struct drm_framebuffer *fb = crtc->primary->fb;
31 	u16 *r_ptr, *g_ptr, *b_ptr;
32 	int i;
33 
34 	if (!crtc->enabled)
35 		return;
36 
37 	r_ptr = crtc->gamma_store;
38 	g_ptr = r_ptr + crtc->gamma_size;
39 	b_ptr = g_ptr + crtc->gamma_size;
40 
41 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
42 
43 	if (fb && fb->format->cpp[0] * 8 == 16) {
44 		int inc = (fb->format->depth == 15) ? 8 : 4;
45 		u8 r, b;
46 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
47 			if (fb->format->depth == 16) {
48 				if (i > (MGAG200_LUT_SIZE >> 1)) {
49 					r = b = 0;
50 				} else {
51 					r = *r_ptr++ >> 8;
52 					b = *b_ptr++ >> 8;
53 					r_ptr++;
54 					b_ptr++;
55 				}
56 			} else {
57 				r = *r_ptr++ >> 8;
58 				b = *b_ptr++ >> 8;
59 			}
60 			/* VGA registers */
61 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
62 			WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
63 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
64 		}
65 		return;
66 	}
67 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
68 		/* VGA registers */
69 		WREG8(DAC_INDEX + MGA1064_COL_PAL, *r_ptr++ >> 8);
70 		WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
71 		WREG8(DAC_INDEX + MGA1064_COL_PAL, *b_ptr++ >> 8);
72 	}
73 }
74 
75 static inline void mga_wait_vsync(struct mga_device *mdev)
76 {
77 	unsigned long timeout = jiffies + HZ/10;
78 	unsigned int status = 0;
79 
80 	do {
81 		status = RREG32(MGAREG_Status);
82 	} while ((status & 0x08) && time_before(jiffies, timeout));
83 	timeout = jiffies + HZ/10;
84 	status = 0;
85 	do {
86 		status = RREG32(MGAREG_Status);
87 	} while (!(status & 0x08) && time_before(jiffies, timeout));
88 }
89 
90 static inline void mga_wait_busy(struct mga_device *mdev)
91 {
92 	unsigned long timeout = jiffies + HZ;
93 	unsigned int status = 0;
94 	do {
95 		status = RREG8(MGAREG_Status + 2);
96 	} while ((status & 0x01) && time_before(jiffies, timeout));
97 }
98 
99 #define P_ARRAY_SIZE 9
100 
101 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
102 {
103 	unsigned int vcomax, vcomin, pllreffreq;
104 	unsigned int delta, tmpdelta, permitteddelta;
105 	unsigned int testp, testm, testn;
106 	unsigned int p, m, n;
107 	unsigned int computed;
108 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
109 	unsigned int fvv;
110 	unsigned int i;
111 
112 	if (mdev->unique_rev_id <= 0x03) {
113 
114 		m = n = p = 0;
115 		vcomax = 320000;
116 		vcomin = 160000;
117 		pllreffreq = 25000;
118 
119 		delta = 0xffffffff;
120 		permitteddelta = clock * 5 / 1000;
121 
122 		for (testp = 8; testp > 0; testp /= 2) {
123 			if (clock * testp > vcomax)
124 				continue;
125 			if (clock * testp < vcomin)
126 				continue;
127 
128 			for (testn = 17; testn < 256; testn++) {
129 				for (testm = 1; testm < 32; testm++) {
130 					computed = (pllreffreq * testn) /
131 						(testm * testp);
132 					if (computed > clock)
133 						tmpdelta = computed - clock;
134 					else
135 						tmpdelta = clock - computed;
136 					if (tmpdelta < delta) {
137 						delta = tmpdelta;
138 						m = testm - 1;
139 						n = testn - 1;
140 						p = testp - 1;
141 					}
142 				}
143 			}
144 		}
145 	} else {
146 
147 
148 		m = n = p = 0;
149 		vcomax        = 1600000;
150 		vcomin        = 800000;
151 		pllreffreq    = 25000;
152 
153 		if (clock < 25000)
154 			clock = 25000;
155 
156 		clock = clock * 2;
157 
158 		delta = 0xFFFFFFFF;
159 		/* Permited delta is 0.5% as VESA Specification */
160 		permitteddelta = clock * 5 / 1000;
161 
162 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
163 			testp = pvalues_e4[i];
164 
165 			if ((clock * testp) > vcomax)
166 				continue;
167 			if ((clock * testp) < vcomin)
168 				continue;
169 
170 			for (testn = 50; testn <= 256; testn++) {
171 				for (testm = 1; testm <= 32; testm++) {
172 					computed = (pllreffreq * testn) /
173 						(testm * testp);
174 					if (computed > clock)
175 						tmpdelta = computed - clock;
176 					else
177 						tmpdelta = clock - computed;
178 
179 					if (tmpdelta < delta) {
180 						delta = tmpdelta;
181 						m = testm - 1;
182 						n = testn - 1;
183 						p = testp - 1;
184 					}
185 				}
186 			}
187 		}
188 
189 		fvv = pllreffreq * (n + 1) / (m + 1);
190 		fvv = (fvv - 800000) / 50000;
191 
192 		if (fvv > 15)
193 			fvv = 15;
194 
195 		p |= (fvv << 4);
196 		m |= 0x80;
197 
198 		clock = clock / 2;
199 	}
200 
201 	if (delta > permitteddelta) {
202 		pr_warn("PLL delta too large\n");
203 		return 1;
204 	}
205 
206 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
207 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
208 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
209 
210 	if (mdev->unique_rev_id >= 0x04) {
211 		WREG_DAC(0x1a, 0x09);
212 		msleep(20);
213 		WREG_DAC(0x1a, 0x01);
214 
215 	}
216 
217 	return 0;
218 }
219 
220 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
221 {
222 	unsigned int vcomax, vcomin, pllreffreq;
223 	unsigned int delta, tmpdelta;
224 	unsigned int testp, testm, testn, testp2;
225 	unsigned int p, m, n;
226 	unsigned int computed;
227 	int i, j, tmpcount, vcount;
228 	bool pll_locked = false;
229 	u8 tmp;
230 
231 	m = n = p = 0;
232 
233 	delta = 0xffffffff;
234 
235 	if (mdev->type == G200_EW3) {
236 
237 		vcomax = 800000;
238 		vcomin = 400000;
239 		pllreffreq = 25000;
240 
241 		for (testp = 1; testp < 8; testp++) {
242 			for (testp2 = 1; testp2 < 8; testp2++) {
243 				if (testp < testp2)
244 					continue;
245 				if ((clock * testp * testp2) > vcomax)
246 					continue;
247 				if ((clock * testp * testp2) < vcomin)
248 					continue;
249 				for (testm = 1; testm < 26; testm++) {
250 					for (testn = 32; testn < 2048 ; testn++) {
251 						computed = (pllreffreq * testn) /
252 							(testm * testp * testp2);
253 						if (computed > clock)
254 							tmpdelta = computed - clock;
255 						else
256 							tmpdelta = clock - computed;
257 						if (tmpdelta < delta) {
258 							delta = tmpdelta;
259 							m = ((testn & 0x100) >> 1) |
260 								(testm);
261 							n = (testn & 0xFF);
262 							p = ((testn & 0x600) >> 3) |
263 								(testp2 << 3) |
264 								(testp);
265 						}
266 					}
267 				}
268 			}
269 		}
270 	} else {
271 
272 		vcomax = 550000;
273 		vcomin = 150000;
274 		pllreffreq = 48000;
275 
276 		for (testp = 1; testp < 9; testp++) {
277 			if (clock * testp > vcomax)
278 				continue;
279 			if (clock * testp < vcomin)
280 				continue;
281 
282 			for (testm = 1; testm < 17; testm++) {
283 				for (testn = 1; testn < 151; testn++) {
284 					computed = (pllreffreq * testn) /
285 						(testm * testp);
286 					if (computed > clock)
287 						tmpdelta = computed - clock;
288 					else
289 						tmpdelta = clock - computed;
290 					if (tmpdelta < delta) {
291 						delta = tmpdelta;
292 						n = testn - 1;
293 						m = (testm - 1) |
294 							((n >> 1) & 0x80);
295 						p = testp - 1;
296 					}
297 				}
298 			}
299 		}
300 	}
301 
302 	for (i = 0; i <= 32 && pll_locked == false; i++) {
303 		if (i > 0) {
304 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
305 			tmp = RREG8(MGAREG_CRTC_DATA);
306 			if (tmp < 0xff)
307 				WREG8(MGAREG_CRTC_DATA, tmp+1);
308 		}
309 
310 		/* set pixclkdis to 1 */
311 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
312 		tmp = RREG8(DAC_DATA);
313 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
314 		WREG8(DAC_DATA, tmp);
315 
316 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
317 		tmp = RREG8(DAC_DATA);
318 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
319 		WREG8(DAC_DATA, tmp);
320 
321 		/* select PLL Set C */
322 		tmp = RREG8(MGAREG_MEM_MISC_READ);
323 		tmp |= 0x3 << 2;
324 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
325 
326 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
327 		tmp = RREG8(DAC_DATA);
328 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
329 		WREG8(DAC_DATA, tmp);
330 
331 		udelay(500);
332 
333 		/* reset the PLL */
334 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
335 		tmp = RREG8(DAC_DATA);
336 		tmp &= ~0x04;
337 		WREG8(DAC_DATA, tmp);
338 
339 		udelay(50);
340 
341 		/* program pixel pll register */
342 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
343 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
344 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
345 
346 		udelay(50);
347 
348 		/* turn pll on */
349 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
350 		tmp = RREG8(DAC_DATA);
351 		tmp |= 0x04;
352 		WREG_DAC(MGA1064_VREF_CTL, tmp);
353 
354 		udelay(500);
355 
356 		/* select the pixel pll */
357 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
358 		tmp = RREG8(DAC_DATA);
359 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
360 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
361 		WREG8(DAC_DATA, tmp);
362 
363 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
364 		tmp = RREG8(DAC_DATA);
365 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
366 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
367 		WREG8(DAC_DATA, tmp);
368 
369 		/* reset dotclock rate bit */
370 		WREG8(MGAREG_SEQ_INDEX, 1);
371 		tmp = RREG8(MGAREG_SEQ_DATA);
372 		tmp &= ~0x8;
373 		WREG8(MGAREG_SEQ_DATA, tmp);
374 
375 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
376 		tmp = RREG8(DAC_DATA);
377 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
378 		WREG8(DAC_DATA, tmp);
379 
380 		vcount = RREG8(MGAREG_VCOUNT);
381 
382 		for (j = 0; j < 30 && pll_locked == false; j++) {
383 			tmpcount = RREG8(MGAREG_VCOUNT);
384 			if (tmpcount < vcount)
385 				vcount = 0;
386 			if ((tmpcount - vcount) > 2)
387 				pll_locked = true;
388 			else
389 				udelay(5);
390 		}
391 	}
392 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
393 	tmp = RREG8(DAC_DATA);
394 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
395 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
396 	return 0;
397 }
398 
399 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
400 {
401 	unsigned int vcomax, vcomin, pllreffreq;
402 	unsigned int delta, tmpdelta;
403 	unsigned int testp, testm, testn;
404 	unsigned int p, m, n;
405 	unsigned int computed;
406 	u8 tmp;
407 
408 	m = n = p = 0;
409 	vcomax = 550000;
410 	vcomin = 150000;
411 	pllreffreq = 50000;
412 
413 	delta = 0xffffffff;
414 
415 	for (testp = 16; testp > 0; testp--) {
416 		if (clock * testp > vcomax)
417 			continue;
418 		if (clock * testp < vcomin)
419 			continue;
420 
421 		for (testn = 1; testn < 257; testn++) {
422 			for (testm = 1; testm < 17; testm++) {
423 				computed = (pllreffreq * testn) /
424 					(testm * testp);
425 				if (computed > clock)
426 					tmpdelta = computed - clock;
427 				else
428 					tmpdelta = clock - computed;
429 				if (tmpdelta < delta) {
430 					delta = tmpdelta;
431 					n = testn - 1;
432 					m = testm - 1;
433 					p = testp - 1;
434 				}
435 			}
436 		}
437 	}
438 
439 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
440 	tmp = RREG8(DAC_DATA);
441 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
442 	WREG8(DAC_DATA, tmp);
443 
444 	tmp = RREG8(MGAREG_MEM_MISC_READ);
445 	tmp |= 0x3 << 2;
446 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
447 
448 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
449 	tmp = RREG8(DAC_DATA);
450 	WREG8(DAC_DATA, tmp & ~0x40);
451 
452 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
453 	tmp = RREG8(DAC_DATA);
454 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
455 	WREG8(DAC_DATA, tmp);
456 
457 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
458 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
459 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
460 
461 	udelay(50);
462 
463 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
464 	tmp = RREG8(DAC_DATA);
465 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
466 	WREG8(DAC_DATA, tmp);
467 
468 	udelay(500);
469 
470 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
471 	tmp = RREG8(DAC_DATA);
472 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
473 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
474 	WREG8(DAC_DATA, tmp);
475 
476 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
477 	tmp = RREG8(DAC_DATA);
478 	WREG8(DAC_DATA, tmp | 0x40);
479 
480 	tmp = RREG8(MGAREG_MEM_MISC_READ);
481 	tmp |= (0x3 << 2);
482 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
483 
484 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
485 	tmp = RREG8(DAC_DATA);
486 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
487 	WREG8(DAC_DATA, tmp);
488 
489 	return 0;
490 }
491 
492 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
493 {
494 	unsigned int vcomax, vcomin, pllreffreq;
495 	unsigned int delta, tmpdelta;
496 	unsigned int testp, testm, testn;
497 	unsigned int p, m, n;
498 	unsigned int computed;
499 	int i, j, tmpcount, vcount;
500 	u8 tmp;
501 	bool pll_locked = false;
502 
503 	m = n = p = 0;
504 
505 	if (mdev->type == G200_EH3) {
506 		vcomax = 3000000;
507 		vcomin = 1500000;
508 		pllreffreq = 25000;
509 
510 		delta = 0xffffffff;
511 
512 		testp = 0;
513 
514 		for (testm = 150; testm >= 6; testm--) {
515 			if (clock * testm > vcomax)
516 				continue;
517 			if (clock * testm < vcomin)
518 				continue;
519 			for (testn = 120; testn >= 60; testn--) {
520 				computed = (pllreffreq * testn) / testm;
521 				if (computed > clock)
522 					tmpdelta = computed - clock;
523 				else
524 					tmpdelta = clock - computed;
525 				if (tmpdelta < delta) {
526 					delta = tmpdelta;
527 					n = testn;
528 					m = testm;
529 					p = testp;
530 				}
531 				if (delta == 0)
532 					break;
533 			}
534 			if (delta == 0)
535 				break;
536 		}
537 	} else {
538 
539 		vcomax = 800000;
540 		vcomin = 400000;
541 		pllreffreq = 33333;
542 
543 		delta = 0xffffffff;
544 
545 		for (testp = 16; testp > 0; testp >>= 1) {
546 			if (clock * testp > vcomax)
547 				continue;
548 			if (clock * testp < vcomin)
549 				continue;
550 
551 			for (testm = 1; testm < 33; testm++) {
552 				for (testn = 17; testn < 257; testn++) {
553 					computed = (pllreffreq * testn) /
554 						(testm * testp);
555 					if (computed > clock)
556 						tmpdelta = computed - clock;
557 					else
558 						tmpdelta = clock - computed;
559 					if (tmpdelta < delta) {
560 						delta = tmpdelta;
561 						n = testn - 1;
562 						m = (testm - 1);
563 						p = testp - 1;
564 					}
565 					if ((clock * testp) >= 600000)
566 						p |= 0x80;
567 				}
568 			}
569 		}
570 	}
571 	for (i = 0; i <= 32 && pll_locked == false; i++) {
572 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
573 		tmp = RREG8(DAC_DATA);
574 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
575 		WREG8(DAC_DATA, tmp);
576 
577 		tmp = RREG8(MGAREG_MEM_MISC_READ);
578 		tmp |= 0x3 << 2;
579 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
580 
581 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
582 		tmp = RREG8(DAC_DATA);
583 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
584 		WREG8(DAC_DATA, tmp);
585 
586 		udelay(500);
587 
588 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
589 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
590 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
591 
592 		udelay(500);
593 
594 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
595 		tmp = RREG8(DAC_DATA);
596 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
597 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
598 		WREG8(DAC_DATA, tmp);
599 
600 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
601 		tmp = RREG8(DAC_DATA);
602 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
603 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
604 		WREG8(DAC_DATA, tmp);
605 
606 		vcount = RREG8(MGAREG_VCOUNT);
607 
608 		for (j = 0; j < 30 && pll_locked == false; j++) {
609 			tmpcount = RREG8(MGAREG_VCOUNT);
610 			if (tmpcount < vcount)
611 				vcount = 0;
612 			if ((tmpcount - vcount) > 2)
613 				pll_locked = true;
614 			else
615 				udelay(5);
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
623 {
624 	unsigned int vcomax, vcomin, pllreffreq;
625 	unsigned int delta, tmpdelta;
626 	int testr, testn, testm, testo;
627 	unsigned int p, m, n;
628 	unsigned int computed, vco;
629 	int tmp;
630 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
631 
632 	m = n = p = 0;
633 	vcomax = 1488000;
634 	vcomin = 1056000;
635 	pllreffreq = 48000;
636 
637 	delta = 0xffffffff;
638 
639 	for (testr = 0; testr < 4; testr++) {
640 		if (delta == 0)
641 			break;
642 		for (testn = 5; testn < 129; testn++) {
643 			if (delta == 0)
644 				break;
645 			for (testm = 3; testm >= 0; testm--) {
646 				if (delta == 0)
647 					break;
648 				for (testo = 5; testo < 33; testo++) {
649 					vco = pllreffreq * (testn + 1) /
650 						(testr + 1);
651 					if (vco < vcomin)
652 						continue;
653 					if (vco > vcomax)
654 						continue;
655 					computed = vco / (m_div_val[testm] * (testo + 1));
656 					if (computed > clock)
657 						tmpdelta = computed - clock;
658 					else
659 						tmpdelta = clock - computed;
660 					if (tmpdelta < delta) {
661 						delta = tmpdelta;
662 						m = testm | (testo << 3);
663 						n = testn;
664 						p = testr | (testr << 3);
665 					}
666 				}
667 			}
668 		}
669 	}
670 
671 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
672 	tmp = RREG8(DAC_DATA);
673 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
674 	WREG8(DAC_DATA, tmp);
675 
676 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
677 	tmp = RREG8(DAC_DATA);
678 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
679 	WREG8(DAC_DATA, tmp);
680 
681 	tmp = RREG8(MGAREG_MEM_MISC_READ);
682 	tmp |= (0x3<<2) | 0xc0;
683 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
684 
685 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
686 	tmp = RREG8(DAC_DATA);
687 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
688 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
689 	WREG8(DAC_DATA, tmp);
690 
691 	udelay(500);
692 
693 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
694 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
695 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
696 
697 	udelay(50);
698 
699 	return 0;
700 }
701 
702 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
703 {
704 	switch(mdev->type) {
705 	case G200_SE_A:
706 	case G200_SE_B:
707 		return mga_g200se_set_plls(mdev, clock);
708 		break;
709 	case G200_WB:
710 	case G200_EW3:
711 		return mga_g200wb_set_plls(mdev, clock);
712 		break;
713 	case G200_EV:
714 		return mga_g200ev_set_plls(mdev, clock);
715 		break;
716 	case G200_EH:
717 	case G200_EH3:
718 		return mga_g200eh_set_plls(mdev, clock);
719 		break;
720 	case G200_ER:
721 		return mga_g200er_set_plls(mdev, clock);
722 		break;
723 	}
724 	return 0;
725 }
726 
727 static void mga_g200wb_prepare(struct drm_crtc *crtc)
728 {
729 	struct mga_device *mdev = crtc->dev->dev_private;
730 	u8 tmp;
731 	int iter_max;
732 
733 	/* 1- The first step is to warn the BMC of an upcoming mode change.
734 	 * We are putting the misc<0> to output.*/
735 
736 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
737 	tmp = RREG8(DAC_DATA);
738 	tmp |= 0x10;
739 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
740 
741 	/* we are putting a 1 on the misc<0> line */
742 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
743 	tmp = RREG8(DAC_DATA);
744 	tmp |= 0x10;
745 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
746 
747 	/* 2- Second step to mask and further scan request
748 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
749 	 */
750 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
751 	tmp = RREG8(DAC_DATA);
752 	tmp |= 0x80;
753 	WREG_DAC(MGA1064_SPAREREG, tmp);
754 
755 	/* 3a- the third step is to verifu if there is an active scan
756 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
757 	 */
758 	iter_max = 300;
759 	while (!(tmp & 0x1) && iter_max) {
760 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
761 		tmp = RREG8(DAC_DATA);
762 		udelay(1000);
763 		iter_max--;
764 	}
765 
766 	/* 3b- this step occurs only if the remove is actually scanning
767 	 * we are waiting for the end of the frame which is a 1 on
768 	 * remvsyncsts (XSPAREREG<1>)
769 	 */
770 	if (iter_max) {
771 		iter_max = 300;
772 		while ((tmp & 0x2) && iter_max) {
773 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
774 			tmp = RREG8(DAC_DATA);
775 			udelay(1000);
776 			iter_max--;
777 		}
778 	}
779 }
780 
781 static void mga_g200wb_commit(struct drm_crtc *crtc)
782 {
783 	u8 tmp;
784 	struct mga_device *mdev = crtc->dev->dev_private;
785 
786 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
787 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
788 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
789 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
790 
791 	/* 2- second step is to assert the rstlvl2 */
792 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
793 	tmp = RREG8(DAC_DATA);
794 	tmp |= 0x8;
795 	WREG8(DAC_DATA, tmp);
796 
797 	/* wait 10 us */
798 	udelay(10);
799 
800 	/* 3- deassert rstlvl2 */
801 	tmp &= ~0x08;
802 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
803 	WREG8(DAC_DATA, tmp);
804 
805 	/* 4- remove mask of scan request */
806 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
807 	tmp = RREG8(DAC_DATA);
808 	tmp &= ~0x80;
809 	WREG8(DAC_DATA, tmp);
810 
811 	/* 5- put back a 0 on the misc<0> line */
812 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
813 	tmp = RREG8(DAC_DATA);
814 	tmp &= ~0x10;
815 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
816 }
817 
818 /*
819    This is how the framebuffer base address is stored in g200 cards:
820    * Assume @offset is the gpu_addr variable of the framebuffer object
821    * Then addr is the number of _pixels_ (not bytes) from the start of
822      VRAM to the first pixel we want to display. (divided by 2 for 32bit
823      framebuffers)
824    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
825    addr<20> -> CRTCEXT0<6>
826    addr<19-16> -> CRTCEXT0<3-0>
827    addr<15-8> -> CRTCC<7-0>
828    addr<7-0> -> CRTCD<7-0>
829    CRTCEXT0 has to be programmed last to trigger an update and make the
830    new addr variable take effect.
831  */
832 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
833 {
834 	struct mga_device *mdev = crtc->dev->dev_private;
835 	u32 addr;
836 	int count;
837 	u8 crtcext0;
838 
839 	while (RREG8(0x1fda) & 0x08);
840 	while (!(RREG8(0x1fda) & 0x08));
841 
842 	count = RREG8(MGAREG_VCOUNT) + 2;
843 	while (RREG8(MGAREG_VCOUNT) < count);
844 
845 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
846 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
847 	crtcext0 &= 0xB0;
848 	addr = offset / 8;
849 	/* Can't store addresses any higher than that...
850 	   but we also don't have more than 16MB of memory, so it should be fine. */
851 	WARN_ON(addr > 0x1fffff);
852 	crtcext0 |= (!!(addr & (1<<20)))<<6;
853 	WREG_CRT(0x0d, (u8)(addr & 0xff));
854 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
855 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
856 }
857 
858 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
859 				struct drm_framebuffer *fb,
860 				int x, int y, int atomic)
861 {
862 	struct mga_device *mdev = crtc->dev->dev_private;
863 	struct drm_gem_object *obj;
864 	struct mga_framebuffer *mga_fb;
865 	struct drm_gem_vram_object *gbo;
866 	int ret;
867 	s64 gpu_addr;
868 	void *base;
869 
870 	if (!atomic && fb) {
871 		mga_fb = to_mga_framebuffer(fb);
872 		obj = mga_fb->obj;
873 		gbo = drm_gem_vram_of_gem(obj);
874 
875 		/* unmap if console */
876 		if (&mdev->mfbdev->mfb == mga_fb)
877 			drm_gem_vram_kunmap(gbo);
878 		drm_gem_vram_unpin(gbo);
879 	}
880 
881 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
882 	obj = mga_fb->obj;
883 	gbo = drm_gem_vram_of_gem(obj);
884 
885 	ret = drm_gem_vram_pin(gbo, DRM_GEM_VRAM_PL_FLAG_VRAM);
886 	if (ret)
887 		return ret;
888 	gpu_addr = drm_gem_vram_offset(gbo);
889 	if (gpu_addr < 0) {
890 		ret = (int)gpu_addr;
891 		goto err_drm_gem_vram_unpin;
892 	}
893 
894 	if (&mdev->mfbdev->mfb == mga_fb) {
895 		/* if pushing console in kmap it */
896 		base = drm_gem_vram_kmap(gbo, true, NULL);
897 		if (IS_ERR(base)) {
898 			ret = PTR_ERR(base);
899 			DRM_ERROR("failed to kmap fbcon\n");
900 		}
901 	}
902 
903 	mga_set_start_address(crtc, (u32)gpu_addr);
904 
905 	return 0;
906 
907 err_drm_gem_vram_unpin:
908 	drm_gem_vram_unpin(gbo);
909 	return ret;
910 }
911 
912 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
913 				  struct drm_framebuffer *old_fb)
914 {
915 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
916 }
917 
918 static int mga_crtc_mode_set(struct drm_crtc *crtc,
919 				struct drm_display_mode *mode,
920 				struct drm_display_mode *adjusted_mode,
921 				int x, int y, struct drm_framebuffer *old_fb)
922 {
923 	struct drm_device *dev = crtc->dev;
924 	struct mga_device *mdev = dev->dev_private;
925 	const struct drm_framebuffer *fb = crtc->primary->fb;
926 	int hdisplay, hsyncstart, hsyncend, htotal;
927 	int vdisplay, vsyncstart, vsyncend, vtotal;
928 	int pitch;
929 	int option = 0, option2 = 0;
930 	int i;
931 	unsigned char misc = 0;
932 	unsigned char ext_vga[6];
933 	u8 bppshift;
934 
935 	static unsigned char dacvalue[] = {
936 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
937 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
938 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
939 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
940 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
941 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
942 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
943 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
944 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
945 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
946 	};
947 
948 	bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1];
949 
950 	switch (mdev->type) {
951 	case G200_SE_A:
952 	case G200_SE_B:
953 		dacvalue[MGA1064_VREF_CTL] = 0x03;
954 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
955 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
956 					     MGA1064_MISC_CTL_VGA8 |
957 					     MGA1064_MISC_CTL_DAC_RAM_CS;
958 		if (mdev->has_sdram)
959 			option = 0x40049120;
960 		else
961 			option = 0x4004d120;
962 		option2 = 0x00008000;
963 		break;
964 	case G200_WB:
965 	case G200_EW3:
966 		dacvalue[MGA1064_VREF_CTL] = 0x07;
967 		option = 0x41049120;
968 		option2 = 0x0000b000;
969 		break;
970 	case G200_EV:
971 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
972 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
973 					     MGA1064_MISC_CTL_DAC_RAM_CS;
974 		option = 0x00000120;
975 		option2 = 0x0000b000;
976 		break;
977 	case G200_EH:
978 	case G200_EH3:
979 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
980 					     MGA1064_MISC_CTL_DAC_RAM_CS;
981 		option = 0x00000120;
982 		option2 = 0x0000b000;
983 		break;
984 	case G200_ER:
985 		break;
986 	}
987 
988 	switch (fb->format->cpp[0] * 8) {
989 	case 8:
990 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
991 		break;
992 	case 16:
993 		if (fb->format->depth == 15)
994 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
995 		else
996 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
997 		break;
998 	case 24:
999 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
1000 		break;
1001 	case 32:
1002 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
1003 		break;
1004 	}
1005 
1006 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1007 		misc |= 0x40;
1008 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1009 		misc |= 0x80;
1010 
1011 
1012 	for (i = 0; i < sizeof(dacvalue); i++) {
1013 		if ((i <= 0x17) ||
1014 		    (i == 0x1b) ||
1015 		    (i == 0x1c) ||
1016 		    ((i >= 0x1f) && (i <= 0x29)) ||
1017 		    ((i >= 0x30) && (i <= 0x37)))
1018 			continue;
1019 		if (IS_G200_SE(mdev) &&
1020 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
1021 			continue;
1022 		if ((mdev->type == G200_EV ||
1023 		    mdev->type == G200_WB ||
1024 		    mdev->type == G200_EH ||
1025 		    mdev->type == G200_EW3 ||
1026 		    mdev->type == G200_EH3) &&
1027 		    (i >= 0x44) && (i <= 0x4e))
1028 			continue;
1029 
1030 		WREG_DAC(i, dacvalue[i]);
1031 	}
1032 
1033 	if (mdev->type == G200_ER)
1034 		WREG_DAC(0x90, 0);
1035 
1036 	if (option)
1037 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
1038 	if (option2)
1039 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
1040 
1041 	WREG_SEQ(2, 0xf);
1042 	WREG_SEQ(3, 0);
1043 	WREG_SEQ(4, 0xe);
1044 
1045 	pitch = fb->pitches[0] / fb->format->cpp[0];
1046 	if (fb->format->cpp[0] * 8 == 24)
1047 		pitch = (pitch * 3) >> (4 - bppshift);
1048 	else
1049 		pitch = pitch >> (4 - bppshift);
1050 
1051 	hdisplay = mode->hdisplay / 8 - 1;
1052 	hsyncstart = mode->hsync_start / 8 - 1;
1053 	hsyncend = mode->hsync_end / 8 - 1;
1054 	htotal = mode->htotal / 8 - 1;
1055 
1056 	/* Work around hardware quirk */
1057 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1058 		htotal++;
1059 
1060 	vdisplay = mode->vdisplay - 1;
1061 	vsyncstart = mode->vsync_start - 1;
1062 	vsyncend = mode->vsync_end - 1;
1063 	vtotal = mode->vtotal - 2;
1064 
1065 	WREG_GFX(0, 0);
1066 	WREG_GFX(1, 0);
1067 	WREG_GFX(2, 0);
1068 	WREG_GFX(3, 0);
1069 	WREG_GFX(4, 0);
1070 	WREG_GFX(5, 0x40);
1071 	WREG_GFX(6, 0x5);
1072 	WREG_GFX(7, 0xf);
1073 	WREG_GFX(8, 0xf);
1074 
1075 	WREG_CRT(0, htotal - 4);
1076 	WREG_CRT(1, hdisplay);
1077 	WREG_CRT(2, hdisplay);
1078 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1079 	WREG_CRT(4, hsyncstart);
1080 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1081 	WREG_CRT(6, vtotal & 0xFF);
1082 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1083 		 ((vdisplay & 0x100) >> 7) |
1084 		 ((vsyncstart & 0x100) >> 6) |
1085 		 ((vdisplay & 0x100) >> 5) |
1086 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1087 		 ((vtotal & 0x200) >> 4)|
1088 		 ((vdisplay & 0x200) >> 3) |
1089 		 ((vsyncstart & 0x200) >> 2));
1090 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1091 		 ((vdisplay & 0x200) >> 3));
1092 	WREG_CRT(10, 0);
1093 	WREG_CRT(11, 0);
1094 	WREG_CRT(12, 0);
1095 	WREG_CRT(13, 0);
1096 	WREG_CRT(14, 0);
1097 	WREG_CRT(15, 0);
1098 	WREG_CRT(16, vsyncstart & 0xFF);
1099 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1100 	WREG_CRT(18, vdisplay & 0xFF);
1101 	WREG_CRT(19, pitch & 0xFF);
1102 	WREG_CRT(20, 0);
1103 	WREG_CRT(21, vdisplay & 0xFF);
1104 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1105 	WREG_CRT(23, 0xc3);
1106 	WREG_CRT(24, vdisplay & 0xFF);
1107 
1108 	ext_vga[0] = 0;
1109 	ext_vga[5] = 0;
1110 
1111 	/* TODO interlace */
1112 
1113 	ext_vga[0] |= (pitch & 0x300) >> 4;
1114 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1115 		((hdisplay & 0x100) >> 7) |
1116 		((hsyncstart & 0x100) >> 6) |
1117 		(htotal & 0x40);
1118 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1119 		((vdisplay & 0x400) >> 8) |
1120 		((vdisplay & 0xc00) >> 7) |
1121 		((vsyncstart & 0xc00) >> 5) |
1122 		((vdisplay & 0x400) >> 3);
1123 	if (fb->format->cpp[0] * 8 == 24)
1124 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1125 	else
1126 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1127 	ext_vga[4] = 0;
1128 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1129 		ext_vga[1] |= 0x88;
1130 
1131 	/* Set pixel clocks */
1132 	misc = 0x2d;
1133 	WREG8(MGA_MISC_OUT, misc);
1134 
1135 	mga_crtc_set_plls(mdev, mode->clock);
1136 
1137 	for (i = 0; i < 6; i++) {
1138 		WREG_ECRT(i, ext_vga[i]);
1139 	}
1140 
1141 	if (mdev->type == G200_ER)
1142 		WREG_ECRT(0x24, 0x5);
1143 
1144 	if (mdev->type == G200_EW3)
1145 		WREG_ECRT(0x34, 0x5);
1146 
1147 	if (mdev->type == G200_EV) {
1148 		WREG_ECRT(6, 0);
1149 	}
1150 
1151 	WREG_ECRT(0, ext_vga[0]);
1152 	/* Enable mga pixel clock */
1153 	misc = 0x2d;
1154 
1155 	WREG8(MGA_MISC_OUT, misc);
1156 
1157 	if (adjusted_mode)
1158 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1159 
1160 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1161 
1162 	/* reset tagfifo */
1163 	if (mdev->type == G200_ER) {
1164 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1165 		u8 seq1;
1166 
1167 		/* screen off */
1168 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1169 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1170 		WREG8(MGAREG_SEQ_DATA, seq1);
1171 
1172 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1173 		udelay(1000);
1174 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1175 
1176 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1177 	}
1178 
1179 
1180 	if (IS_G200_SE(mdev)) {
1181 		if  (mdev->unique_rev_id >= 0x04) {
1182 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1183 			WREG8(MGAREG_CRTCEXT_DATA, 0);
1184 		} else if (mdev->unique_rev_id >= 0x02) {
1185 			u8 hi_pri_lvl;
1186 			u32 bpp;
1187 			u32 mb;
1188 
1189 			if (fb->format->cpp[0] * 8 > 16)
1190 				bpp = 32;
1191 			else if (fb->format->cpp[0] * 8 > 8)
1192 				bpp = 16;
1193 			else
1194 				bpp = 8;
1195 
1196 			mb = (mode->clock * bpp) / 1000;
1197 			if (mb > 3100)
1198 				hi_pri_lvl = 0;
1199 			else if (mb > 2600)
1200 				hi_pri_lvl = 1;
1201 			else if (mb > 1900)
1202 				hi_pri_lvl = 2;
1203 			else if (mb > 1160)
1204 				hi_pri_lvl = 3;
1205 			else if (mb > 440)
1206 				hi_pri_lvl = 4;
1207 			else
1208 				hi_pri_lvl = 5;
1209 
1210 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1211 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1212 		} else {
1213 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1214 			if (mdev->unique_rev_id >= 0x01)
1215 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1216 			else
1217 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1218 		}
1219 	}
1220 	return 0;
1221 }
1222 
1223 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1224 static int mga_suspend(struct drm_crtc *crtc)
1225 {
1226 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1227 	struct drm_device *dev = crtc->dev;
1228 	struct mga_device *mdev = dev->dev_private;
1229 	struct pci_dev *pdev = dev->pdev;
1230 	int option;
1231 
1232 	if (mdev->suspended)
1233 		return 0;
1234 
1235 	WREG_SEQ(1, 0x20);
1236 	WREG_ECRT(1, 0x30);
1237 	/* Disable the pixel clock */
1238 	WREG_DAC(0x1a, 0x05);
1239 	/* Power down the DAC */
1240 	WREG_DAC(0x1e, 0x18);
1241 	/* Power down the pixel PLL */
1242 	WREG_DAC(0x1a, 0x0d);
1243 
1244 	/* Disable PLLs and clocks */
1245 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1246 	option &= ~(0x1F8024);
1247 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1248 	pci_set_power_state(pdev, PCI_D3hot);
1249 	pci_disable_device(pdev);
1250 
1251 	mdev->suspended = true;
1252 
1253 	return 0;
1254 }
1255 
1256 static int mga_resume(struct drm_crtc *crtc)
1257 {
1258 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1259 	struct drm_device *dev = crtc->dev;
1260 	struct mga_device *mdev = dev->dev_private;
1261 	struct pci_dev *pdev = dev->pdev;
1262 	int option;
1263 
1264 	if (!mdev->suspended)
1265 		return 0;
1266 
1267 	pci_set_power_state(pdev, PCI_D0);
1268 	pci_enable_device(pdev);
1269 
1270 	/* Disable sysclk */
1271 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1272 	option &= ~(0x4);
1273 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1274 
1275 	mdev->suspended = false;
1276 
1277 	return 0;
1278 }
1279 
1280 #endif
1281 
1282 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1283 {
1284 	struct drm_device *dev = crtc->dev;
1285 	struct mga_device *mdev = dev->dev_private;
1286 	u8 seq1 = 0, crtcext1 = 0;
1287 
1288 	switch (mode) {
1289 	case DRM_MODE_DPMS_ON:
1290 		seq1 = 0;
1291 		crtcext1 = 0;
1292 		mga_crtc_load_lut(crtc);
1293 		break;
1294 	case DRM_MODE_DPMS_STANDBY:
1295 		seq1 = 0x20;
1296 		crtcext1 = 0x10;
1297 		break;
1298 	case DRM_MODE_DPMS_SUSPEND:
1299 		seq1 = 0x20;
1300 		crtcext1 = 0x20;
1301 		break;
1302 	case DRM_MODE_DPMS_OFF:
1303 		seq1 = 0x20;
1304 		crtcext1 = 0x30;
1305 		break;
1306 	}
1307 
1308 #if 0
1309 	if (mode == DRM_MODE_DPMS_OFF) {
1310 		mga_suspend(crtc);
1311 	}
1312 #endif
1313 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1314 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1315 	mga_wait_vsync(mdev);
1316 	mga_wait_busy(mdev);
1317 	WREG8(MGAREG_SEQ_DATA, seq1);
1318 	msleep(20);
1319 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1320 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1321 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1322 
1323 #if 0
1324 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1325 		mga_resume(crtc);
1326 		drm_helper_resume_force_mode(dev);
1327 	}
1328 #endif
1329 }
1330 
1331 /*
1332  * This is called before a mode is programmed. A typical use might be to
1333  * enable DPMS during the programming to avoid seeing intermediate stages,
1334  * but that's not relevant to us
1335  */
1336 static void mga_crtc_prepare(struct drm_crtc *crtc)
1337 {
1338 	struct drm_device *dev = crtc->dev;
1339 	struct mga_device *mdev = dev->dev_private;
1340 	u8 tmp;
1341 
1342 	/*	mga_resume(crtc);*/
1343 
1344 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1345 	tmp = RREG8(MGAREG_CRTC_DATA);
1346 	WREG_CRT(0x11, tmp | 0x80);
1347 
1348 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1349 		WREG_SEQ(0, 1);
1350 		msleep(50);
1351 		WREG_SEQ(1, 0x20);
1352 		msleep(20);
1353 	} else {
1354 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1355 		tmp = RREG8(MGAREG_SEQ_DATA);
1356 
1357 		/* start sync reset */
1358 		WREG_SEQ(0, 1);
1359 		WREG_SEQ(1, tmp | 0x20);
1360 	}
1361 
1362 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1363 		mga_g200wb_prepare(crtc);
1364 
1365 	WREG_CRT(17, 0);
1366 }
1367 
1368 /*
1369  * This is called after a mode is programmed. It should reverse anything done
1370  * by the prepare function
1371  */
1372 static void mga_crtc_commit(struct drm_crtc *crtc)
1373 {
1374 	struct drm_device *dev = crtc->dev;
1375 	struct mga_device *mdev = dev->dev_private;
1376 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1377 	u8 tmp;
1378 
1379 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1380 		mga_g200wb_commit(crtc);
1381 
1382 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1383 		msleep(50);
1384 		WREG_SEQ(1, 0x0);
1385 		msleep(20);
1386 		WREG_SEQ(0, 0x3);
1387 	} else {
1388 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1389 		tmp = RREG8(MGAREG_SEQ_DATA);
1390 
1391 		tmp &= ~0x20;
1392 		WREG_SEQ(0x1, tmp);
1393 		WREG_SEQ(0, 3);
1394 	}
1395 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1396 }
1397 
1398 /*
1399  * The core can pass us a set of gamma values to program. We actually only
1400  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1401  * but it's a requirement that we provide the function
1402  */
1403 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1404 			      u16 *blue, uint32_t size,
1405 			      struct drm_modeset_acquire_ctx *ctx)
1406 {
1407 	mga_crtc_load_lut(crtc);
1408 
1409 	return 0;
1410 }
1411 
1412 /* Simple cleanup function */
1413 static void mga_crtc_destroy(struct drm_crtc *crtc)
1414 {
1415 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1416 
1417 	drm_crtc_cleanup(crtc);
1418 	kfree(mga_crtc);
1419 }
1420 
1421 static void mga_crtc_disable(struct drm_crtc *crtc)
1422 {
1423 	DRM_DEBUG_KMS("\n");
1424 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1425 	if (crtc->primary->fb) {
1426 		struct mga_device *mdev = crtc->dev->dev_private;
1427 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1428 		struct drm_gem_object *obj = mga_fb->obj;
1429 		struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(obj);
1430 
1431 		/* unmap if console */
1432 		if (&mdev->mfbdev->mfb == mga_fb)
1433 			drm_gem_vram_kunmap(gbo);
1434 		drm_gem_vram_unpin(gbo);
1435 	}
1436 	crtc->primary->fb = NULL;
1437 }
1438 
1439 /* These provide the minimum set of functions required to handle a CRTC */
1440 static const struct drm_crtc_funcs mga_crtc_funcs = {
1441 	.cursor_set = mga_crtc_cursor_set,
1442 	.cursor_move = mga_crtc_cursor_move,
1443 	.gamma_set = mga_crtc_gamma_set,
1444 	.set_config = drm_crtc_helper_set_config,
1445 	.destroy = mga_crtc_destroy,
1446 };
1447 
1448 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1449 	.disable = mga_crtc_disable,
1450 	.dpms = mga_crtc_dpms,
1451 	.mode_set = mga_crtc_mode_set,
1452 	.mode_set_base = mga_crtc_mode_set_base,
1453 	.prepare = mga_crtc_prepare,
1454 	.commit = mga_crtc_commit,
1455 };
1456 
1457 /* CRTC setup */
1458 static void mga_crtc_init(struct mga_device *mdev)
1459 {
1460 	struct mga_crtc *mga_crtc;
1461 
1462 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1463 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1464 			      GFP_KERNEL);
1465 
1466 	if (mga_crtc == NULL)
1467 		return;
1468 
1469 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1470 
1471 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1472 	mdev->mode_info.crtc = mga_crtc;
1473 
1474 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1475 }
1476 
1477 /*
1478  * The encoder comes after the CRTC in the output pipeline, but before
1479  * the connector. It's responsible for ensuring that the digital
1480  * stream is appropriately converted into the output format. Setup is
1481  * very simple in this case - all we have to do is inform qemu of the
1482  * colour depth in order to ensure that it displays appropriately
1483  */
1484 
1485 /*
1486  * These functions are analagous to those in the CRTC code, but are intended
1487  * to handle any encoder-specific limitations
1488  */
1489 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1490 				struct drm_display_mode *mode,
1491 				struct drm_display_mode *adjusted_mode)
1492 {
1493 
1494 }
1495 
1496 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1497 {
1498 	return;
1499 }
1500 
1501 static void mga_encoder_prepare(struct drm_encoder *encoder)
1502 {
1503 }
1504 
1505 static void mga_encoder_commit(struct drm_encoder *encoder)
1506 {
1507 }
1508 
1509 static void mga_encoder_destroy(struct drm_encoder *encoder)
1510 {
1511 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1512 	drm_encoder_cleanup(encoder);
1513 	kfree(mga_encoder);
1514 }
1515 
1516 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1517 	.dpms = mga_encoder_dpms,
1518 	.mode_set = mga_encoder_mode_set,
1519 	.prepare = mga_encoder_prepare,
1520 	.commit = mga_encoder_commit,
1521 };
1522 
1523 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1524 	.destroy = mga_encoder_destroy,
1525 };
1526 
1527 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1528 {
1529 	struct drm_encoder *encoder;
1530 	struct mga_encoder *mga_encoder;
1531 
1532 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1533 	if (!mga_encoder)
1534 		return NULL;
1535 
1536 	encoder = &mga_encoder->base;
1537 	encoder->possible_crtcs = 0x1;
1538 
1539 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1540 			 DRM_MODE_ENCODER_DAC, NULL);
1541 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1542 
1543 	return encoder;
1544 }
1545 
1546 
1547 static int mga_vga_get_modes(struct drm_connector *connector)
1548 {
1549 	struct mga_connector *mga_connector = to_mga_connector(connector);
1550 	struct edid *edid;
1551 	int ret = 0;
1552 
1553 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1554 	if (edid) {
1555 		drm_connector_update_edid_property(connector, edid);
1556 		ret = drm_add_edid_modes(connector, edid);
1557 		kfree(edid);
1558 	}
1559 	return ret;
1560 }
1561 
1562 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1563 							int bits_per_pixel)
1564 {
1565 	uint32_t total_area, divisor;
1566 	uint64_t active_area, pixels_per_second, bandwidth;
1567 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1568 
1569 	divisor = 1024;
1570 
1571 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1572 		return 0;
1573 
1574 	active_area = mode->hdisplay * mode->vdisplay;
1575 	total_area = mode->htotal * mode->vtotal;
1576 
1577 	pixels_per_second = active_area * mode->clock * 1000;
1578 	do_div(pixels_per_second, total_area);
1579 
1580 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1581 	do_div(bandwidth, divisor);
1582 
1583 	return (uint32_t)(bandwidth);
1584 }
1585 
1586 #define MODE_BANDWIDTH	MODE_BAD
1587 
1588 static enum drm_mode_status mga_vga_mode_valid(struct drm_connector *connector,
1589 				 struct drm_display_mode *mode)
1590 {
1591 	struct drm_device *dev = connector->dev;
1592 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1593 	int bpp = 32;
1594 
1595 	if (IS_G200_SE(mdev)) {
1596 		if (mdev->unique_rev_id == 0x01) {
1597 			if (mode->hdisplay > 1600)
1598 				return MODE_VIRTUAL_X;
1599 			if (mode->vdisplay > 1200)
1600 				return MODE_VIRTUAL_Y;
1601 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1602 				> (24400 * 1024))
1603 				return MODE_BANDWIDTH;
1604 		} else if (mdev->unique_rev_id == 0x02) {
1605 			if (mode->hdisplay > 1920)
1606 				return MODE_VIRTUAL_X;
1607 			if (mode->vdisplay > 1200)
1608 				return MODE_VIRTUAL_Y;
1609 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1610 				> (30100 * 1024))
1611 				return MODE_BANDWIDTH;
1612 		} else {
1613 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1614 				> (55000 * 1024))
1615 				return MODE_BANDWIDTH;
1616 		}
1617 	} else if (mdev->type == G200_WB) {
1618 		if (mode->hdisplay > 1280)
1619 			return MODE_VIRTUAL_X;
1620 		if (mode->vdisplay > 1024)
1621 			return MODE_VIRTUAL_Y;
1622 		if (mga_vga_calculate_mode_bandwidth(mode, bpp) >
1623 		    (31877 * 1024))
1624 			return MODE_BANDWIDTH;
1625 	} else if (mdev->type == G200_EV &&
1626 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1627 			> (32700 * 1024))) {
1628 		return MODE_BANDWIDTH;
1629 	} else if (mdev->type == G200_EH &&
1630 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1631 			> (37500 * 1024))) {
1632 		return MODE_BANDWIDTH;
1633 	} else if (mdev->type == G200_ER &&
1634 		(mga_vga_calculate_mode_bandwidth(mode,
1635 			bpp) > (55000 * 1024))) {
1636 		return MODE_BANDWIDTH;
1637 	}
1638 
1639 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1640 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1641 		return MODE_H_ILLEGAL;
1642 	}
1643 
1644 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1645 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1646 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1647 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1648 		return MODE_BAD;
1649 	}
1650 
1651 	/* Validate the mode input by the user */
1652 	if (connector->cmdline_mode.specified) {
1653 		if (connector->cmdline_mode.bpp_specified)
1654 			bpp = connector->cmdline_mode.bpp;
1655 	}
1656 
1657 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1658 		if (connector->cmdline_mode.specified)
1659 			connector->cmdline_mode.specified = false;
1660 		return MODE_BAD;
1661 	}
1662 
1663 	return MODE_OK;
1664 }
1665 
1666 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1667 						  *connector)
1668 {
1669 	int enc_id = connector->encoder_ids[0];
1670 	/* pick the encoder ids */
1671 	if (enc_id)
1672 		return drm_encoder_find(connector->dev, NULL, enc_id);
1673 	return NULL;
1674 }
1675 
1676 static void mga_connector_destroy(struct drm_connector *connector)
1677 {
1678 	struct mga_connector *mga_connector = to_mga_connector(connector);
1679 	mgag200_i2c_destroy(mga_connector->i2c);
1680 	drm_connector_cleanup(connector);
1681 	kfree(connector);
1682 }
1683 
1684 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1685 	.get_modes = mga_vga_get_modes,
1686 	.mode_valid = mga_vga_mode_valid,
1687 	.best_encoder = mga_connector_best_encoder,
1688 };
1689 
1690 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1691 	.dpms = drm_helper_connector_dpms,
1692 	.fill_modes = drm_helper_probe_single_connector_modes,
1693 	.destroy = mga_connector_destroy,
1694 };
1695 
1696 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1697 {
1698 	struct drm_connector *connector;
1699 	struct mga_connector *mga_connector;
1700 
1701 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1702 	if (!mga_connector)
1703 		return NULL;
1704 
1705 	connector = &mga_connector->base;
1706 
1707 	drm_connector_init(dev, connector,
1708 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1709 
1710 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1711 
1712 	drm_connector_register(connector);
1713 
1714 	mga_connector->i2c = mgag200_i2c_create(dev);
1715 	if (!mga_connector->i2c)
1716 		DRM_ERROR("failed to add ddc bus\n");
1717 
1718 	return connector;
1719 }
1720 
1721 
1722 int mgag200_modeset_init(struct mga_device *mdev)
1723 {
1724 	struct drm_encoder *encoder;
1725 	struct drm_connector *connector;
1726 	int ret;
1727 
1728 	mdev->mode_info.mode_config_initialized = true;
1729 
1730 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1731 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1732 
1733 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1734 
1735 	mga_crtc_init(mdev);
1736 
1737 	encoder = mga_encoder_init(mdev->dev);
1738 	if (!encoder) {
1739 		DRM_ERROR("mga_encoder_init failed\n");
1740 		return -1;
1741 	}
1742 
1743 	connector = mga_vga_init(mdev->dev);
1744 	if (!connector) {
1745 		DRM_ERROR("mga_vga_init failed\n");
1746 		return -1;
1747 	}
1748 
1749 	drm_connector_attach_encoder(connector, encoder);
1750 
1751 	ret = mgag200_fbdev_init(mdev);
1752 	if (ret) {
1753 		DRM_ERROR("mga_fbdev_init failed\n");
1754 		return ret;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 void mgag200_modeset_fini(struct mga_device *mdev)
1761 {
1762 
1763 }
1764