xref: /openbmc/linux/drivers/gpu/drm/i915/selftests/i915_request.c (revision b1c3d2beed8ef3699fab106340e33a79052df116)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prime_numbers.h>
26 #include <linux/pm_qos.h>
27 #include <linux/sort.h>
28 
29 #include "gem/i915_gem_internal.h"
30 #include "gem/i915_gem_pm.h"
31 #include "gem/selftests/mock_context.h"
32 
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_engine_pm.h"
35 #include "gt/intel_engine_user.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_clock_utils.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/selftest_engine_heartbeat.h"
40 
41 #include "i915_random.h"
42 #include "i915_selftest.h"
43 #include "igt_flush_test.h"
44 #include "igt_live_test.h"
45 #include "igt_spinner.h"
46 #include "lib_sw_fence.h"
47 
48 #include "mock_drm.h"
49 #include "mock_gem_device.h"
50 
51 static unsigned int num_uabi_engines(struct drm_i915_private *i915)
52 {
53 	struct intel_engine_cs *engine;
54 	unsigned int count;
55 
56 	count = 0;
57 	for_each_uabi_engine(engine, i915)
58 		count++;
59 
60 	return count;
61 }
62 
63 static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
64 {
65 	return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
66 }
67 
68 static int igt_add_request(void *arg)
69 {
70 	struct drm_i915_private *i915 = arg;
71 	struct i915_request *request;
72 
73 	/* Basic preliminary test to create a request and let it loose! */
74 
75 	request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
76 	if (!request)
77 		return -ENOMEM;
78 
79 	i915_request_add(request);
80 
81 	return 0;
82 }
83 
84 static int igt_wait_request(void *arg)
85 {
86 	const long T = HZ / 4;
87 	struct drm_i915_private *i915 = arg;
88 	struct i915_request *request;
89 	int err = -EINVAL;
90 
91 	/* Submit a request, then wait upon it */
92 
93 	request = mock_request(rcs0(i915)->kernel_context, T);
94 	if (!request)
95 		return -ENOMEM;
96 
97 	i915_request_get(request);
98 
99 	if (i915_request_wait(request, 0, 0) != -ETIME) {
100 		pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
101 		goto out_request;
102 	}
103 
104 	if (i915_request_wait(request, 0, T) != -ETIME) {
105 		pr_err("request wait succeeded (expected timeout before submit!)\n");
106 		goto out_request;
107 	}
108 
109 	if (i915_request_completed(request)) {
110 		pr_err("request completed before submit!!\n");
111 		goto out_request;
112 	}
113 
114 	i915_request_add(request);
115 
116 	if (i915_request_wait(request, 0, 0) != -ETIME) {
117 		pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
118 		goto out_request;
119 	}
120 
121 	if (i915_request_completed(request)) {
122 		pr_err("request completed immediately!\n");
123 		goto out_request;
124 	}
125 
126 	if (i915_request_wait(request, 0, T / 2) != -ETIME) {
127 		pr_err("request wait succeeded (expected timeout!)\n");
128 		goto out_request;
129 	}
130 
131 	if (i915_request_wait(request, 0, T) == -ETIME) {
132 		pr_err("request wait timed out!\n");
133 		goto out_request;
134 	}
135 
136 	if (!i915_request_completed(request)) {
137 		pr_err("request not complete after waiting!\n");
138 		goto out_request;
139 	}
140 
141 	if (i915_request_wait(request, 0, T) == -ETIME) {
142 		pr_err("request wait timed out when already complete!\n");
143 		goto out_request;
144 	}
145 
146 	err = 0;
147 out_request:
148 	i915_request_put(request);
149 	mock_device_flush(i915);
150 	return err;
151 }
152 
153 static int igt_fence_wait(void *arg)
154 {
155 	const long T = HZ / 4;
156 	struct drm_i915_private *i915 = arg;
157 	struct i915_request *request;
158 	int err = -EINVAL;
159 
160 	/* Submit a request, treat it as a fence and wait upon it */
161 
162 	request = mock_request(rcs0(i915)->kernel_context, T);
163 	if (!request)
164 		return -ENOMEM;
165 
166 	if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
167 		pr_err("fence wait success before submit (expected timeout)!\n");
168 		goto out;
169 	}
170 
171 	i915_request_add(request);
172 
173 	if (dma_fence_is_signaled(&request->fence)) {
174 		pr_err("fence signaled immediately!\n");
175 		goto out;
176 	}
177 
178 	if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
179 		pr_err("fence wait success after submit (expected timeout)!\n");
180 		goto out;
181 	}
182 
183 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
184 		pr_err("fence wait timed out (expected success)!\n");
185 		goto out;
186 	}
187 
188 	if (!dma_fence_is_signaled(&request->fence)) {
189 		pr_err("fence unsignaled after waiting!\n");
190 		goto out;
191 	}
192 
193 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
194 		pr_err("fence wait timed out when complete (expected success)!\n");
195 		goto out;
196 	}
197 
198 	err = 0;
199 out:
200 	mock_device_flush(i915);
201 	return err;
202 }
203 
204 static int igt_request_rewind(void *arg)
205 {
206 	struct drm_i915_private *i915 = arg;
207 	struct i915_request *request, *vip;
208 	struct i915_gem_context *ctx[2];
209 	struct intel_context *ce;
210 	int err = -EINVAL;
211 
212 	ctx[0] = mock_context(i915, "A");
213 	if (!ctx[0]) {
214 		err = -ENOMEM;
215 		goto err_ctx_0;
216 	}
217 
218 	ce = i915_gem_context_get_engine(ctx[0], RCS0);
219 	GEM_BUG_ON(IS_ERR(ce));
220 	request = mock_request(ce, 2 * HZ);
221 	intel_context_put(ce);
222 	if (!request) {
223 		err = -ENOMEM;
224 		goto err_context_0;
225 	}
226 
227 	i915_request_get(request);
228 	i915_request_add(request);
229 
230 	ctx[1] = mock_context(i915, "B");
231 	if (!ctx[1]) {
232 		err = -ENOMEM;
233 		goto err_ctx_1;
234 	}
235 
236 	ce = i915_gem_context_get_engine(ctx[1], RCS0);
237 	GEM_BUG_ON(IS_ERR(ce));
238 	vip = mock_request(ce, 0);
239 	intel_context_put(ce);
240 	if (!vip) {
241 		err = -ENOMEM;
242 		goto err_context_1;
243 	}
244 
245 	/* Simulate preemption by manual reordering */
246 	if (!mock_cancel_request(request)) {
247 		pr_err("failed to cancel request (already executed)!\n");
248 		i915_request_add(vip);
249 		goto err_context_1;
250 	}
251 	i915_request_get(vip);
252 	i915_request_add(vip);
253 	rcu_read_lock();
254 	request->engine->submit_request(request);
255 	rcu_read_unlock();
256 
257 
258 	if (i915_request_wait(vip, 0, HZ) == -ETIME) {
259 		pr_err("timed out waiting for high priority request\n");
260 		goto err;
261 	}
262 
263 	if (i915_request_completed(request)) {
264 		pr_err("low priority request already completed\n");
265 		goto err;
266 	}
267 
268 	err = 0;
269 err:
270 	i915_request_put(vip);
271 err_context_1:
272 	mock_context_close(ctx[1]);
273 err_ctx_1:
274 	i915_request_put(request);
275 err_context_0:
276 	mock_context_close(ctx[0]);
277 err_ctx_0:
278 	mock_device_flush(i915);
279 	return err;
280 }
281 
282 struct smoketest {
283 	struct intel_engine_cs *engine;
284 	struct i915_gem_context **contexts;
285 	atomic_long_t num_waits, num_fences;
286 	int ncontexts, max_batch;
287 	struct i915_request *(*request_alloc)(struct intel_context *ce);
288 };
289 
290 static struct i915_request *
291 __mock_request_alloc(struct intel_context *ce)
292 {
293 	return mock_request(ce, 0);
294 }
295 
296 static struct i915_request *
297 __live_request_alloc(struct intel_context *ce)
298 {
299 	return intel_context_create_request(ce);
300 }
301 
302 struct smoke_thread {
303 	struct kthread_worker *worker;
304 	struct kthread_work work;
305 	struct smoketest *t;
306 	bool stop;
307 	int result;
308 };
309 
310 static void __igt_breadcrumbs_smoketest(struct kthread_work *work)
311 {
312 	struct smoke_thread *thread = container_of(work, typeof(*thread), work);
313 	struct smoketest *t = thread->t;
314 	const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
315 	const unsigned int total = 4 * t->ncontexts + 1;
316 	unsigned int num_waits = 0, num_fences = 0;
317 	struct i915_request **requests;
318 	I915_RND_STATE(prng);
319 	unsigned int *order;
320 	int err = 0;
321 
322 	/*
323 	 * A very simple test to catch the most egregious of list handling bugs.
324 	 *
325 	 * At its heart, we simply create oodles of requests running across
326 	 * multiple kthreads and enable signaling on them, for the sole purpose
327 	 * of stressing our breadcrumb handling. The only inspection we do is
328 	 * that the fences were marked as signaled.
329 	 */
330 
331 	requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
332 	if (!requests) {
333 		thread->result = -ENOMEM;
334 		return;
335 	}
336 
337 	order = i915_random_order(total, &prng);
338 	if (!order) {
339 		err = -ENOMEM;
340 		goto out_requests;
341 	}
342 
343 	while (!READ_ONCE(thread->stop)) {
344 		struct i915_sw_fence *submit, *wait;
345 		unsigned int n, count;
346 
347 		submit = heap_fence_create(GFP_KERNEL);
348 		if (!submit) {
349 			err = -ENOMEM;
350 			break;
351 		}
352 
353 		wait = heap_fence_create(GFP_KERNEL);
354 		if (!wait) {
355 			i915_sw_fence_commit(submit);
356 			heap_fence_put(submit);
357 			err = -ENOMEM;
358 			break;
359 		}
360 
361 		i915_random_reorder(order, total, &prng);
362 		count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
363 
364 		for (n = 0; n < count; n++) {
365 			struct i915_gem_context *ctx =
366 				t->contexts[order[n] % t->ncontexts];
367 			struct i915_request *rq;
368 			struct intel_context *ce;
369 
370 			ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
371 			GEM_BUG_ON(IS_ERR(ce));
372 			rq = t->request_alloc(ce);
373 			intel_context_put(ce);
374 			if (IS_ERR(rq)) {
375 				err = PTR_ERR(rq);
376 				count = n;
377 				break;
378 			}
379 
380 			err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
381 							       submit,
382 							       GFP_KERNEL);
383 
384 			requests[n] = i915_request_get(rq);
385 			i915_request_add(rq);
386 
387 			if (err >= 0)
388 				err = i915_sw_fence_await_dma_fence(wait,
389 								    &rq->fence,
390 								    0,
391 								    GFP_KERNEL);
392 
393 			if (err < 0) {
394 				i915_request_put(rq);
395 				count = n;
396 				break;
397 			}
398 		}
399 
400 		i915_sw_fence_commit(submit);
401 		i915_sw_fence_commit(wait);
402 
403 		if (!wait_event_timeout(wait->wait,
404 					i915_sw_fence_done(wait),
405 					5 * HZ)) {
406 			struct i915_request *rq = requests[count - 1];
407 
408 			pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
409 			       atomic_read(&wait->pending), count,
410 			       rq->fence.context, rq->fence.seqno,
411 			       t->engine->name);
412 			GEM_TRACE_DUMP();
413 
414 			intel_gt_set_wedged(t->engine->gt);
415 			GEM_BUG_ON(!i915_request_completed(rq));
416 			i915_sw_fence_wait(wait);
417 			err = -EIO;
418 		}
419 
420 		for (n = 0; n < count; n++) {
421 			struct i915_request *rq = requests[n];
422 
423 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
424 				      &rq->fence.flags)) {
425 				pr_err("%llu:%llu was not signaled!\n",
426 				       rq->fence.context, rq->fence.seqno);
427 				err = -EINVAL;
428 			}
429 
430 			i915_request_put(rq);
431 		}
432 
433 		heap_fence_put(wait);
434 		heap_fence_put(submit);
435 
436 		if (err < 0)
437 			break;
438 
439 		num_fences += count;
440 		num_waits++;
441 
442 		cond_resched();
443 	}
444 
445 	atomic_long_add(num_fences, &t->num_fences);
446 	atomic_long_add(num_waits, &t->num_waits);
447 
448 	kfree(order);
449 out_requests:
450 	kfree(requests);
451 	thread->result = err;
452 }
453 
454 static int mock_breadcrumbs_smoketest(void *arg)
455 {
456 	struct drm_i915_private *i915 = arg;
457 	struct smoketest t = {
458 		.engine = rcs0(i915),
459 		.ncontexts = 1024,
460 		.max_batch = 1024,
461 		.request_alloc = __mock_request_alloc
462 	};
463 	unsigned int ncpus = num_online_cpus();
464 	struct smoke_thread *threads;
465 	unsigned int n;
466 	int ret = 0;
467 
468 	/*
469 	 * Smoketest our breadcrumb/signal handling for requests across multiple
470 	 * threads. A very simple test to only catch the most egregious of bugs.
471 	 * See __igt_breadcrumbs_smoketest();
472 	 */
473 
474 	threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
475 	if (!threads)
476 		return -ENOMEM;
477 
478 	t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
479 	if (!t.contexts) {
480 		ret = -ENOMEM;
481 		goto out_threads;
482 	}
483 
484 	for (n = 0; n < t.ncontexts; n++) {
485 		t.contexts[n] = mock_context(t.engine->i915, "mock");
486 		if (!t.contexts[n]) {
487 			ret = -ENOMEM;
488 			goto out_contexts;
489 		}
490 	}
491 
492 	for (n = 0; n < ncpus; n++) {
493 		struct kthread_worker *worker;
494 
495 		worker = kthread_create_worker(0, "igt/%d", n);
496 		if (IS_ERR(worker)) {
497 			ret = PTR_ERR(worker);
498 			ncpus = n;
499 			break;
500 		}
501 
502 		threads[n].worker = worker;
503 		threads[n].t = &t;
504 		threads[n].stop = false;
505 		threads[n].result = 0;
506 
507 		kthread_init_work(&threads[n].work,
508 				  __igt_breadcrumbs_smoketest);
509 		kthread_queue_work(worker, &threads[n].work);
510 	}
511 
512 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
513 
514 	for (n = 0; n < ncpus; n++) {
515 		int err;
516 
517 		WRITE_ONCE(threads[n].stop, true);
518 		kthread_flush_work(&threads[n].work);
519 		err = READ_ONCE(threads[n].result);
520 		if (err < 0 && !ret)
521 			ret = err;
522 
523 		kthread_destroy_worker(threads[n].worker);
524 	}
525 	pr_info("Completed %lu waits for %lu fence across %d cpus\n",
526 		atomic_long_read(&t.num_waits),
527 		atomic_long_read(&t.num_fences),
528 		ncpus);
529 
530 out_contexts:
531 	for (n = 0; n < t.ncontexts; n++) {
532 		if (!t.contexts[n])
533 			break;
534 		mock_context_close(t.contexts[n]);
535 	}
536 	kfree(t.contexts);
537 out_threads:
538 	kfree(threads);
539 	return ret;
540 }
541 
542 int i915_request_mock_selftests(void)
543 {
544 	static const struct i915_subtest tests[] = {
545 		SUBTEST(igt_add_request),
546 		SUBTEST(igt_wait_request),
547 		SUBTEST(igt_fence_wait),
548 		SUBTEST(igt_request_rewind),
549 		SUBTEST(mock_breadcrumbs_smoketest),
550 	};
551 	struct drm_i915_private *i915;
552 	intel_wakeref_t wakeref;
553 	int err = 0;
554 
555 	i915 = mock_gem_device();
556 	if (!i915)
557 		return -ENOMEM;
558 
559 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
560 		err = i915_subtests(tests, i915);
561 
562 	mock_destroy_device(i915);
563 
564 	return err;
565 }
566 
567 static int live_nop_request(void *arg)
568 {
569 	struct drm_i915_private *i915 = arg;
570 	struct intel_engine_cs *engine;
571 	struct igt_live_test t;
572 	int err = -ENODEV;
573 
574 	/*
575 	 * Submit various sized batches of empty requests, to each engine
576 	 * (individually), and wait for the batch to complete. We can check
577 	 * the overhead of submitting requests to the hardware.
578 	 */
579 
580 	for_each_uabi_engine(engine, i915) {
581 		unsigned long n, prime;
582 		IGT_TIMEOUT(end_time);
583 		ktime_t times[2] = {};
584 
585 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
586 		if (err)
587 			return err;
588 
589 		intel_engine_pm_get(engine);
590 		for_each_prime_number_from(prime, 1, 8192) {
591 			struct i915_request *request = NULL;
592 
593 			times[1] = ktime_get_raw();
594 
595 			for (n = 0; n < prime; n++) {
596 				i915_request_put(request);
597 				request = i915_request_create(engine->kernel_context);
598 				if (IS_ERR(request))
599 					return PTR_ERR(request);
600 
601 				/*
602 				 * This space is left intentionally blank.
603 				 *
604 				 * We do not actually want to perform any
605 				 * action with this request, we just want
606 				 * to measure the latency in allocation
607 				 * and submission of our breadcrumbs -
608 				 * ensuring that the bare request is sufficient
609 				 * for the system to work (i.e. proper HEAD
610 				 * tracking of the rings, interrupt handling,
611 				 * etc). It also gives us the lowest bounds
612 				 * for latency.
613 				 */
614 
615 				i915_request_get(request);
616 				i915_request_add(request);
617 			}
618 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
619 			i915_request_put(request);
620 
621 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
622 			if (prime == 1)
623 				times[0] = times[1];
624 
625 			if (__igt_timeout(end_time, NULL))
626 				break;
627 		}
628 		intel_engine_pm_put(engine);
629 
630 		err = igt_live_test_end(&t);
631 		if (err)
632 			return err;
633 
634 		pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
635 			engine->name,
636 			ktime_to_ns(times[0]),
637 			prime, div64_u64(ktime_to_ns(times[1]), prime));
638 	}
639 
640 	return err;
641 }
642 
643 static int __cancel_inactive(struct intel_engine_cs *engine)
644 {
645 	struct intel_context *ce;
646 	struct igt_spinner spin;
647 	struct i915_request *rq;
648 	int err = 0;
649 
650 	if (igt_spinner_init(&spin, engine->gt))
651 		return -ENOMEM;
652 
653 	ce = intel_context_create(engine);
654 	if (IS_ERR(ce)) {
655 		err = PTR_ERR(ce);
656 		goto out_spin;
657 	}
658 
659 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
660 	if (IS_ERR(rq)) {
661 		err = PTR_ERR(rq);
662 		goto out_ce;
663 	}
664 
665 	pr_debug("%s: Cancelling inactive request\n", engine->name);
666 	i915_request_cancel(rq, -EINTR);
667 	i915_request_get(rq);
668 	i915_request_add(rq);
669 
670 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
671 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
672 
673 		pr_err("%s: Failed to cancel inactive request\n", engine->name);
674 		intel_engine_dump(engine, &p, "%s\n", engine->name);
675 		err = -ETIME;
676 		goto out_rq;
677 	}
678 
679 	if (rq->fence.error != -EINTR) {
680 		pr_err("%s: fence not cancelled (%u)\n",
681 		       engine->name, rq->fence.error);
682 		err = -EINVAL;
683 	}
684 
685 out_rq:
686 	i915_request_put(rq);
687 out_ce:
688 	intel_context_put(ce);
689 out_spin:
690 	igt_spinner_fini(&spin);
691 	if (err)
692 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
693 	return err;
694 }
695 
696 static int __cancel_active(struct intel_engine_cs *engine)
697 {
698 	struct intel_context *ce;
699 	struct igt_spinner spin;
700 	struct i915_request *rq;
701 	int err = 0;
702 
703 	if (igt_spinner_init(&spin, engine->gt))
704 		return -ENOMEM;
705 
706 	ce = intel_context_create(engine);
707 	if (IS_ERR(ce)) {
708 		err = PTR_ERR(ce);
709 		goto out_spin;
710 	}
711 
712 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
713 	if (IS_ERR(rq)) {
714 		err = PTR_ERR(rq);
715 		goto out_ce;
716 	}
717 
718 	pr_debug("%s: Cancelling active request\n", engine->name);
719 	i915_request_get(rq);
720 	i915_request_add(rq);
721 	if (!igt_wait_for_spinner(&spin, rq)) {
722 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
723 
724 		pr_err("Failed to start spinner on %s\n", engine->name);
725 		intel_engine_dump(engine, &p, "%s\n", engine->name);
726 		err = -ETIME;
727 		goto out_rq;
728 	}
729 	i915_request_cancel(rq, -EINTR);
730 
731 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
732 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
733 
734 		pr_err("%s: Failed to cancel active request\n", engine->name);
735 		intel_engine_dump(engine, &p, "%s\n", engine->name);
736 		err = -ETIME;
737 		goto out_rq;
738 	}
739 
740 	if (rq->fence.error != -EINTR) {
741 		pr_err("%s: fence not cancelled (%u)\n",
742 		       engine->name, rq->fence.error);
743 		err = -EINVAL;
744 	}
745 
746 out_rq:
747 	i915_request_put(rq);
748 out_ce:
749 	intel_context_put(ce);
750 out_spin:
751 	igt_spinner_fini(&spin);
752 	if (err)
753 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
754 	return err;
755 }
756 
757 static int __cancel_completed(struct intel_engine_cs *engine)
758 {
759 	struct intel_context *ce;
760 	struct igt_spinner spin;
761 	struct i915_request *rq;
762 	int err = 0;
763 
764 	if (igt_spinner_init(&spin, engine->gt))
765 		return -ENOMEM;
766 
767 	ce = intel_context_create(engine);
768 	if (IS_ERR(ce)) {
769 		err = PTR_ERR(ce);
770 		goto out_spin;
771 	}
772 
773 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
774 	if (IS_ERR(rq)) {
775 		err = PTR_ERR(rq);
776 		goto out_ce;
777 	}
778 	igt_spinner_end(&spin);
779 	i915_request_get(rq);
780 	i915_request_add(rq);
781 
782 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
783 		err = -ETIME;
784 		goto out_rq;
785 	}
786 
787 	pr_debug("%s: Cancelling completed request\n", engine->name);
788 	i915_request_cancel(rq, -EINTR);
789 	if (rq->fence.error) {
790 		pr_err("%s: fence not cancelled (%u)\n",
791 		       engine->name, rq->fence.error);
792 		err = -EINVAL;
793 	}
794 
795 out_rq:
796 	i915_request_put(rq);
797 out_ce:
798 	intel_context_put(ce);
799 out_spin:
800 	igt_spinner_fini(&spin);
801 	if (err)
802 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
803 	return err;
804 }
805 
806 /*
807  * Test to prove a non-preemptable request can be cancelled and a subsequent
808  * request on the same context can successfully complete after cancellation.
809  *
810  * Testing methodology is to create a non-preemptible request and submit it,
811  * wait for spinner to start, create a NOP request and submit it, cancel the
812  * spinner, wait for spinner to complete and verify it failed with an error,
813  * finally wait for NOP request to complete verify it succeeded without an
814  * error. Preemption timeout also reduced / restored so test runs in a timely
815  * maner.
816  */
817 static int __cancel_reset(struct drm_i915_private *i915,
818 			  struct intel_engine_cs *engine)
819 {
820 	struct intel_context *ce;
821 	struct igt_spinner spin;
822 	struct i915_request *rq, *nop;
823 	unsigned long preempt_timeout_ms;
824 	int err = 0;
825 
826 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT ||
827 	    !intel_has_reset_engine(engine->gt))
828 		return 0;
829 
830 	preempt_timeout_ms = engine->props.preempt_timeout_ms;
831 	engine->props.preempt_timeout_ms = 100;
832 
833 	if (igt_spinner_init(&spin, engine->gt))
834 		goto out_restore;
835 
836 	ce = intel_context_create(engine);
837 	if (IS_ERR(ce)) {
838 		err = PTR_ERR(ce);
839 		goto out_spin;
840 	}
841 
842 	rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
843 	if (IS_ERR(rq)) {
844 		err = PTR_ERR(rq);
845 		goto out_ce;
846 	}
847 
848 	pr_debug("%s: Cancelling active non-preemptable request\n",
849 		 engine->name);
850 	i915_request_get(rq);
851 	i915_request_add(rq);
852 	if (!igt_wait_for_spinner(&spin, rq)) {
853 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
854 
855 		pr_err("Failed to start spinner on %s\n", engine->name);
856 		intel_engine_dump(engine, &p, "%s\n", engine->name);
857 		err = -ETIME;
858 		goto out_rq;
859 	}
860 
861 	nop = intel_context_create_request(ce);
862 	if (IS_ERR(nop))
863 		goto out_rq;
864 	i915_request_get(nop);
865 	i915_request_add(nop);
866 
867 	i915_request_cancel(rq, -EINTR);
868 
869 	if (i915_request_wait(rq, 0, HZ) < 0) {
870 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
871 
872 		pr_err("%s: Failed to cancel hung request\n", engine->name);
873 		intel_engine_dump(engine, &p, "%s\n", engine->name);
874 		err = -ETIME;
875 		goto out_nop;
876 	}
877 
878 	if (rq->fence.error != -EINTR) {
879 		pr_err("%s: fence not cancelled (%u)\n",
880 		       engine->name, rq->fence.error);
881 		err = -EINVAL;
882 		goto out_nop;
883 	}
884 
885 	if (i915_request_wait(nop, 0, HZ) < 0) {
886 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
887 
888 		pr_err("%s: Failed to complete nop request\n", engine->name);
889 		intel_engine_dump(engine, &p, "%s\n", engine->name);
890 		err = -ETIME;
891 		goto out_nop;
892 	}
893 
894 	if (nop->fence.error != 0) {
895 		pr_err("%s: Nop request errored (%u)\n",
896 		       engine->name, nop->fence.error);
897 		err = -EINVAL;
898 	}
899 
900 out_nop:
901 	i915_request_put(nop);
902 out_rq:
903 	i915_request_put(rq);
904 out_ce:
905 	intel_context_put(ce);
906 out_spin:
907 	igt_spinner_fini(&spin);
908 out_restore:
909 	engine->props.preempt_timeout_ms = preempt_timeout_ms;
910 	if (err)
911 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
912 	return err;
913 }
914 
915 static int live_cancel_request(void *arg)
916 {
917 	struct drm_i915_private *i915 = arg;
918 	struct intel_engine_cs *engine;
919 
920 	/*
921 	 * Check cancellation of requests. We expect to be able to immediately
922 	 * cancel active requests, even if they are currently on the GPU.
923 	 */
924 
925 	for_each_uabi_engine(engine, i915) {
926 		struct igt_live_test t;
927 		int err, err2;
928 
929 		if (!intel_engine_has_preemption(engine))
930 			continue;
931 
932 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
933 		if (err)
934 			return err;
935 
936 		err = __cancel_inactive(engine);
937 		if (err == 0)
938 			err = __cancel_active(engine);
939 		if (err == 0)
940 			err = __cancel_completed(engine);
941 
942 		err2 = igt_live_test_end(&t);
943 		if (err)
944 			return err;
945 		if (err2)
946 			return err2;
947 
948 		/* Expects reset so call outside of igt_live_test_* */
949 		err = __cancel_reset(i915, engine);
950 		if (err)
951 			return err;
952 
953 		if (igt_flush_test(i915))
954 			return -EIO;
955 	}
956 
957 	return 0;
958 }
959 
960 static struct i915_vma *empty_batch(struct drm_i915_private *i915)
961 {
962 	struct drm_i915_gem_object *obj;
963 	struct i915_vma *vma;
964 	u32 *cmd;
965 	int err;
966 
967 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
968 	if (IS_ERR(obj))
969 		return ERR_CAST(obj);
970 
971 	cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB);
972 	if (IS_ERR(cmd)) {
973 		err = PTR_ERR(cmd);
974 		goto err;
975 	}
976 
977 	*cmd = MI_BATCH_BUFFER_END;
978 
979 	__i915_gem_object_flush_map(obj, 0, 64);
980 	i915_gem_object_unpin_map(obj);
981 
982 	intel_gt_chipset_flush(to_gt(i915));
983 
984 	vma = i915_vma_instance(obj, &to_gt(i915)->ggtt->vm, NULL);
985 	if (IS_ERR(vma)) {
986 		err = PTR_ERR(vma);
987 		goto err;
988 	}
989 
990 	err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
991 	if (err)
992 		goto err;
993 
994 	/* Force the wait now to avoid including it in the benchmark */
995 	err = i915_vma_sync(vma);
996 	if (err)
997 		goto err_pin;
998 
999 	return vma;
1000 
1001 err_pin:
1002 	i915_vma_unpin(vma);
1003 err:
1004 	i915_gem_object_put(obj);
1005 	return ERR_PTR(err);
1006 }
1007 
1008 static struct i915_request *
1009 empty_request(struct intel_engine_cs *engine,
1010 	      struct i915_vma *batch)
1011 {
1012 	struct i915_request *request;
1013 	int err;
1014 
1015 	request = i915_request_create(engine->kernel_context);
1016 	if (IS_ERR(request))
1017 		return request;
1018 
1019 	err = engine->emit_bb_start(request,
1020 				    batch->node.start,
1021 				    batch->node.size,
1022 				    I915_DISPATCH_SECURE);
1023 	if (err)
1024 		goto out_request;
1025 
1026 	i915_request_get(request);
1027 out_request:
1028 	i915_request_add(request);
1029 	return err ? ERR_PTR(err) : request;
1030 }
1031 
1032 static int live_empty_request(void *arg)
1033 {
1034 	struct drm_i915_private *i915 = arg;
1035 	struct intel_engine_cs *engine;
1036 	struct igt_live_test t;
1037 	struct i915_vma *batch;
1038 	int err = 0;
1039 
1040 	/*
1041 	 * Submit various sized batches of empty requests, to each engine
1042 	 * (individually), and wait for the batch to complete. We can check
1043 	 * the overhead of submitting requests to the hardware.
1044 	 */
1045 
1046 	batch = empty_batch(i915);
1047 	if (IS_ERR(batch))
1048 		return PTR_ERR(batch);
1049 
1050 	for_each_uabi_engine(engine, i915) {
1051 		IGT_TIMEOUT(end_time);
1052 		struct i915_request *request;
1053 		unsigned long n, prime;
1054 		ktime_t times[2] = {};
1055 
1056 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
1057 		if (err)
1058 			goto out_batch;
1059 
1060 		intel_engine_pm_get(engine);
1061 
1062 		/* Warmup / preload */
1063 		request = empty_request(engine, batch);
1064 		if (IS_ERR(request)) {
1065 			err = PTR_ERR(request);
1066 			intel_engine_pm_put(engine);
1067 			goto out_batch;
1068 		}
1069 		i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1070 
1071 		for_each_prime_number_from(prime, 1, 8192) {
1072 			times[1] = ktime_get_raw();
1073 
1074 			for (n = 0; n < prime; n++) {
1075 				i915_request_put(request);
1076 				request = empty_request(engine, batch);
1077 				if (IS_ERR(request)) {
1078 					err = PTR_ERR(request);
1079 					intel_engine_pm_put(engine);
1080 					goto out_batch;
1081 				}
1082 			}
1083 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1084 
1085 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
1086 			if (prime == 1)
1087 				times[0] = times[1];
1088 
1089 			if (__igt_timeout(end_time, NULL))
1090 				break;
1091 		}
1092 		i915_request_put(request);
1093 		intel_engine_pm_put(engine);
1094 
1095 		err = igt_live_test_end(&t);
1096 		if (err)
1097 			goto out_batch;
1098 
1099 		pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
1100 			engine->name,
1101 			ktime_to_ns(times[0]),
1102 			prime, div64_u64(ktime_to_ns(times[1]), prime));
1103 	}
1104 
1105 out_batch:
1106 	i915_vma_unpin(batch);
1107 	i915_vma_put(batch);
1108 	return err;
1109 }
1110 
1111 static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
1112 {
1113 	struct drm_i915_gem_object *obj;
1114 	const int ver = GRAPHICS_VER(i915);
1115 	struct i915_vma *vma;
1116 	u32 *cmd;
1117 	int err;
1118 
1119 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
1120 	if (IS_ERR(obj))
1121 		return ERR_CAST(obj);
1122 
1123 	vma = i915_vma_instance(obj, to_gt(i915)->vm, NULL);
1124 	if (IS_ERR(vma)) {
1125 		err = PTR_ERR(vma);
1126 		goto err;
1127 	}
1128 
1129 	err = i915_vma_pin(vma, 0, 0, PIN_USER);
1130 	if (err)
1131 		goto err;
1132 
1133 	cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
1134 	if (IS_ERR(cmd)) {
1135 		err = PTR_ERR(cmd);
1136 		goto err;
1137 	}
1138 
1139 	if (ver >= 8) {
1140 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
1141 		*cmd++ = lower_32_bits(vma->node.start);
1142 		*cmd++ = upper_32_bits(vma->node.start);
1143 	} else if (ver >= 6) {
1144 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
1145 		*cmd++ = lower_32_bits(vma->node.start);
1146 	} else {
1147 		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1148 		*cmd++ = lower_32_bits(vma->node.start);
1149 	}
1150 	*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
1151 
1152 	__i915_gem_object_flush_map(obj, 0, 64);
1153 	i915_gem_object_unpin_map(obj);
1154 
1155 	intel_gt_chipset_flush(to_gt(i915));
1156 
1157 	return vma;
1158 
1159 err:
1160 	i915_gem_object_put(obj);
1161 	return ERR_PTR(err);
1162 }
1163 
1164 static int recursive_batch_resolve(struct i915_vma *batch)
1165 {
1166 	u32 *cmd;
1167 
1168 	cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
1169 	if (IS_ERR(cmd))
1170 		return PTR_ERR(cmd);
1171 
1172 	*cmd = MI_BATCH_BUFFER_END;
1173 
1174 	__i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
1175 	i915_gem_object_unpin_map(batch->obj);
1176 
1177 	intel_gt_chipset_flush(batch->vm->gt);
1178 
1179 	return 0;
1180 }
1181 
1182 static int live_all_engines(void *arg)
1183 {
1184 	struct drm_i915_private *i915 = arg;
1185 	const unsigned int nengines = num_uabi_engines(i915);
1186 	struct intel_engine_cs *engine;
1187 	struct i915_request **request;
1188 	struct igt_live_test t;
1189 	struct i915_vma *batch;
1190 	unsigned int idx;
1191 	int err;
1192 
1193 	/*
1194 	 * Check we can submit requests to all engines simultaneously. We
1195 	 * send a recursive batch to each engine - checking that we don't
1196 	 * block doing so, and that they don't complete too soon.
1197 	 */
1198 
1199 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1200 	if (!request)
1201 		return -ENOMEM;
1202 
1203 	err = igt_live_test_begin(&t, i915, __func__, "");
1204 	if (err)
1205 		goto out_free;
1206 
1207 	batch = recursive_batch(i915);
1208 	if (IS_ERR(batch)) {
1209 		err = PTR_ERR(batch);
1210 		pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
1211 		goto out_free;
1212 	}
1213 
1214 	i915_vma_lock(batch);
1215 
1216 	idx = 0;
1217 	for_each_uabi_engine(engine, i915) {
1218 		request[idx] = intel_engine_create_kernel_request(engine);
1219 		if (IS_ERR(request[idx])) {
1220 			err = PTR_ERR(request[idx]);
1221 			pr_err("%s: Request allocation failed with err=%d\n",
1222 			       __func__, err);
1223 			goto out_request;
1224 		}
1225 
1226 		err = i915_vma_move_to_active(batch, request[idx], 0);
1227 		GEM_BUG_ON(err);
1228 
1229 		err = engine->emit_bb_start(request[idx],
1230 					    batch->node.start,
1231 					    batch->node.size,
1232 					    0);
1233 		GEM_BUG_ON(err);
1234 		request[idx]->batch = batch;
1235 
1236 		i915_request_get(request[idx]);
1237 		i915_request_add(request[idx]);
1238 		idx++;
1239 	}
1240 
1241 	i915_vma_unlock(batch);
1242 
1243 	idx = 0;
1244 	for_each_uabi_engine(engine, i915) {
1245 		if (i915_request_completed(request[idx])) {
1246 			pr_err("%s(%s): request completed too early!\n",
1247 			       __func__, engine->name);
1248 			err = -EINVAL;
1249 			goto out_request;
1250 		}
1251 		idx++;
1252 	}
1253 
1254 	err = recursive_batch_resolve(batch);
1255 	if (err) {
1256 		pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
1257 		goto out_request;
1258 	}
1259 
1260 	idx = 0;
1261 	for_each_uabi_engine(engine, i915) {
1262 		long timeout;
1263 
1264 		timeout = i915_request_wait(request[idx], 0,
1265 					    MAX_SCHEDULE_TIMEOUT);
1266 		if (timeout < 0) {
1267 			err = timeout;
1268 			pr_err("%s: error waiting for request on %s, err=%d\n",
1269 			       __func__, engine->name, err);
1270 			goto out_request;
1271 		}
1272 
1273 		GEM_BUG_ON(!i915_request_completed(request[idx]));
1274 		i915_request_put(request[idx]);
1275 		request[idx] = NULL;
1276 		idx++;
1277 	}
1278 
1279 	err = igt_live_test_end(&t);
1280 
1281 out_request:
1282 	idx = 0;
1283 	for_each_uabi_engine(engine, i915) {
1284 		if (request[idx])
1285 			i915_request_put(request[idx]);
1286 		idx++;
1287 	}
1288 	i915_vma_unpin(batch);
1289 	i915_vma_put(batch);
1290 out_free:
1291 	kfree(request);
1292 	return err;
1293 }
1294 
1295 static int live_sequential_engines(void *arg)
1296 {
1297 	struct drm_i915_private *i915 = arg;
1298 	const unsigned int nengines = num_uabi_engines(i915);
1299 	struct i915_request **request;
1300 	struct i915_request *prev = NULL;
1301 	struct intel_engine_cs *engine;
1302 	struct igt_live_test t;
1303 	unsigned int idx;
1304 	int err;
1305 
1306 	/*
1307 	 * Check we can submit requests to all engines sequentially, such
1308 	 * that each successive request waits for the earlier ones. This
1309 	 * tests that we don't execute requests out of order, even though
1310 	 * they are running on independent engines.
1311 	 */
1312 
1313 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1314 	if (!request)
1315 		return -ENOMEM;
1316 
1317 	err = igt_live_test_begin(&t, i915, __func__, "");
1318 	if (err)
1319 		goto out_free;
1320 
1321 	idx = 0;
1322 	for_each_uabi_engine(engine, i915) {
1323 		struct i915_vma *batch;
1324 
1325 		batch = recursive_batch(i915);
1326 		if (IS_ERR(batch)) {
1327 			err = PTR_ERR(batch);
1328 			pr_err("%s: Unable to create batch for %s, err=%d\n",
1329 			       __func__, engine->name, err);
1330 			goto out_free;
1331 		}
1332 
1333 		i915_vma_lock(batch);
1334 		request[idx] = intel_engine_create_kernel_request(engine);
1335 		if (IS_ERR(request[idx])) {
1336 			err = PTR_ERR(request[idx]);
1337 			pr_err("%s: Request allocation failed for %s with err=%d\n",
1338 			       __func__, engine->name, err);
1339 			goto out_unlock;
1340 		}
1341 
1342 		if (prev) {
1343 			err = i915_request_await_dma_fence(request[idx],
1344 							   &prev->fence);
1345 			if (err) {
1346 				i915_request_add(request[idx]);
1347 				pr_err("%s: Request await failed for %s with err=%d\n",
1348 				       __func__, engine->name, err);
1349 				goto out_unlock;
1350 			}
1351 		}
1352 
1353 		err = i915_vma_move_to_active(batch, request[idx], 0);
1354 		GEM_BUG_ON(err);
1355 
1356 		err = engine->emit_bb_start(request[idx],
1357 					    batch->node.start,
1358 					    batch->node.size,
1359 					    0);
1360 		GEM_BUG_ON(err);
1361 		request[idx]->batch = batch;
1362 
1363 		i915_request_get(request[idx]);
1364 		i915_request_add(request[idx]);
1365 
1366 		prev = request[idx];
1367 		idx++;
1368 
1369 out_unlock:
1370 		i915_vma_unlock(batch);
1371 		if (err)
1372 			goto out_request;
1373 	}
1374 
1375 	idx = 0;
1376 	for_each_uabi_engine(engine, i915) {
1377 		long timeout;
1378 
1379 		if (i915_request_completed(request[idx])) {
1380 			pr_err("%s(%s): request completed too early!\n",
1381 			       __func__, engine->name);
1382 			err = -EINVAL;
1383 			goto out_request;
1384 		}
1385 
1386 		err = recursive_batch_resolve(request[idx]->batch);
1387 		if (err) {
1388 			pr_err("%s: failed to resolve batch, err=%d\n",
1389 			       __func__, err);
1390 			goto out_request;
1391 		}
1392 
1393 		timeout = i915_request_wait(request[idx], 0,
1394 					    MAX_SCHEDULE_TIMEOUT);
1395 		if (timeout < 0) {
1396 			err = timeout;
1397 			pr_err("%s: error waiting for request on %s, err=%d\n",
1398 			       __func__, engine->name, err);
1399 			goto out_request;
1400 		}
1401 
1402 		GEM_BUG_ON(!i915_request_completed(request[idx]));
1403 		idx++;
1404 	}
1405 
1406 	err = igt_live_test_end(&t);
1407 
1408 out_request:
1409 	idx = 0;
1410 	for_each_uabi_engine(engine, i915) {
1411 		u32 *cmd;
1412 
1413 		if (!request[idx])
1414 			break;
1415 
1416 		cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
1417 						       I915_MAP_WC);
1418 		if (!IS_ERR(cmd)) {
1419 			*cmd = MI_BATCH_BUFFER_END;
1420 
1421 			__i915_gem_object_flush_map(request[idx]->batch->obj,
1422 						    0, sizeof(*cmd));
1423 			i915_gem_object_unpin_map(request[idx]->batch->obj);
1424 
1425 			intel_gt_chipset_flush(engine->gt);
1426 		}
1427 
1428 		i915_vma_put(request[idx]->batch);
1429 		i915_request_put(request[idx]);
1430 		idx++;
1431 	}
1432 out_free:
1433 	kfree(request);
1434 	return err;
1435 }
1436 
1437 struct parallel_thread {
1438 	struct kthread_worker *worker;
1439 	struct kthread_work work;
1440 	struct intel_engine_cs *engine;
1441 	int result;
1442 };
1443 
1444 static void __live_parallel_engine1(struct kthread_work *work)
1445 {
1446 	struct parallel_thread *thread =
1447 		container_of(work, typeof(*thread), work);
1448 	struct intel_engine_cs *engine = thread->engine;
1449 	IGT_TIMEOUT(end_time);
1450 	unsigned long count;
1451 	int err = 0;
1452 
1453 	count = 0;
1454 	intel_engine_pm_get(engine);
1455 	do {
1456 		struct i915_request *rq;
1457 
1458 		rq = i915_request_create(engine->kernel_context);
1459 		if (IS_ERR(rq)) {
1460 			err = PTR_ERR(rq);
1461 			break;
1462 		}
1463 
1464 		i915_request_get(rq);
1465 		i915_request_add(rq);
1466 
1467 		err = 0;
1468 		if (i915_request_wait(rq, 0, HZ) < 0)
1469 			err = -ETIME;
1470 		i915_request_put(rq);
1471 		if (err)
1472 			break;
1473 
1474 		count++;
1475 	} while (!__igt_timeout(end_time, NULL));
1476 	intel_engine_pm_put(engine);
1477 
1478 	pr_info("%s: %lu request + sync\n", engine->name, count);
1479 	thread->result = err;
1480 }
1481 
1482 static void __live_parallel_engineN(struct kthread_work *work)
1483 {
1484 	struct parallel_thread *thread =
1485 		container_of(work, typeof(*thread), work);
1486 	struct intel_engine_cs *engine = thread->engine;
1487 	IGT_TIMEOUT(end_time);
1488 	unsigned long count;
1489 	int err = 0;
1490 
1491 	count = 0;
1492 	intel_engine_pm_get(engine);
1493 	do {
1494 		struct i915_request *rq;
1495 
1496 		rq = i915_request_create(engine->kernel_context);
1497 		if (IS_ERR(rq)) {
1498 			err = PTR_ERR(rq);
1499 			break;
1500 		}
1501 
1502 		i915_request_add(rq);
1503 		count++;
1504 	} while (!__igt_timeout(end_time, NULL));
1505 	intel_engine_pm_put(engine);
1506 
1507 	pr_info("%s: %lu requests\n", engine->name, count);
1508 	thread->result = err;
1509 }
1510 
1511 static bool wake_all(struct drm_i915_private *i915)
1512 {
1513 	if (atomic_dec_and_test(&i915->selftest.counter)) {
1514 		wake_up_var(&i915->selftest.counter);
1515 		return true;
1516 	}
1517 
1518 	return false;
1519 }
1520 
1521 static int wait_for_all(struct drm_i915_private *i915)
1522 {
1523 	if (wake_all(i915))
1524 		return 0;
1525 
1526 	if (wait_var_event_timeout(&i915->selftest.counter,
1527 				   !atomic_read(&i915->selftest.counter),
1528 				   i915_selftest.timeout_jiffies))
1529 		return 0;
1530 
1531 	return -ETIME;
1532 }
1533 
1534 static void __live_parallel_spin(struct kthread_work *work)
1535 {
1536 	struct parallel_thread *thread =
1537 		container_of(work, typeof(*thread), work);
1538 	struct intel_engine_cs *engine = thread->engine;
1539 	struct igt_spinner spin;
1540 	struct i915_request *rq;
1541 	int err = 0;
1542 
1543 	/*
1544 	 * Create a spinner running for eternity on each engine. If a second
1545 	 * spinner is incorrectly placed on the same engine, it will not be
1546 	 * able to start in time.
1547 	 */
1548 
1549 	if (igt_spinner_init(&spin, engine->gt)) {
1550 		wake_all(engine->i915);
1551 		thread->result = -ENOMEM;
1552 		return;
1553 	}
1554 
1555 	intel_engine_pm_get(engine);
1556 	rq = igt_spinner_create_request(&spin,
1557 					engine->kernel_context,
1558 					MI_NOOP); /* no preemption */
1559 	intel_engine_pm_put(engine);
1560 	if (IS_ERR(rq)) {
1561 		err = PTR_ERR(rq);
1562 		if (err == -ENODEV)
1563 			err = 0;
1564 		wake_all(engine->i915);
1565 		goto out_spin;
1566 	}
1567 
1568 	i915_request_get(rq);
1569 	i915_request_add(rq);
1570 	if (igt_wait_for_spinner(&spin, rq)) {
1571 		/* Occupy this engine for the whole test */
1572 		err = wait_for_all(engine->i915);
1573 	} else {
1574 		pr_err("Failed to start spinner on %s\n", engine->name);
1575 		err = -EINVAL;
1576 	}
1577 	igt_spinner_end(&spin);
1578 
1579 	if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
1580 		err = -EIO;
1581 	i915_request_put(rq);
1582 
1583 out_spin:
1584 	igt_spinner_fini(&spin);
1585 	thread->result = err;
1586 }
1587 
1588 static int live_parallel_engines(void *arg)
1589 {
1590 	struct drm_i915_private *i915 = arg;
1591 	static void (* const func[])(struct kthread_work *) = {
1592 		__live_parallel_engine1,
1593 		__live_parallel_engineN,
1594 		__live_parallel_spin,
1595 		NULL,
1596 	};
1597 	const unsigned int nengines = num_uabi_engines(i915);
1598 	struct parallel_thread *threads;
1599 	struct intel_engine_cs *engine;
1600 	void (* const *fn)(struct kthread_work *);
1601 	int err = 0;
1602 
1603 	/*
1604 	 * Check we can submit requests to all engines concurrently. This
1605 	 * tests that we load up the system maximally.
1606 	 */
1607 
1608 	threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL);
1609 	if (!threads)
1610 		return -ENOMEM;
1611 
1612 	for (fn = func; !err && *fn; fn++) {
1613 		char name[KSYM_NAME_LEN];
1614 		struct igt_live_test t;
1615 		unsigned int idx;
1616 
1617 		snprintf(name, sizeof(name), "%ps", *fn);
1618 		err = igt_live_test_begin(&t, i915, __func__, name);
1619 		if (err)
1620 			break;
1621 
1622 		atomic_set(&i915->selftest.counter, nengines);
1623 
1624 		idx = 0;
1625 		for_each_uabi_engine(engine, i915) {
1626 			struct kthread_worker *worker;
1627 
1628 			worker = kthread_create_worker(0, "igt/parallel:%s",
1629 						       engine->name);
1630 			if (IS_ERR(worker)) {
1631 				err = PTR_ERR(worker);
1632 				break;
1633 			}
1634 
1635 			threads[idx].worker = worker;
1636 			threads[idx].result = 0;
1637 			threads[idx].engine = engine;
1638 
1639 			kthread_init_work(&threads[idx].work, *fn);
1640 			kthread_queue_work(worker, &threads[idx].work);
1641 			idx++;
1642 		}
1643 
1644 		idx = 0;
1645 		for_each_uabi_engine(engine, i915) {
1646 			int status;
1647 
1648 			if (!threads[idx].worker)
1649 				break;
1650 
1651 			kthread_flush_work(&threads[idx].work);
1652 			status = READ_ONCE(threads[idx].result);
1653 			if (status && !err)
1654 				err = status;
1655 
1656 			kthread_destroy_worker(threads[idx++].worker);
1657 		}
1658 
1659 		if (igt_live_test_end(&t))
1660 			err = -EIO;
1661 	}
1662 
1663 	kfree(threads);
1664 	return err;
1665 }
1666 
1667 static int
1668 max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
1669 {
1670 	struct i915_request *rq;
1671 	int ret;
1672 
1673 	/*
1674 	 * Before execlists, all contexts share the same ringbuffer. With
1675 	 * execlists, each context/engine has a separate ringbuffer and
1676 	 * for the purposes of this test, inexhaustible.
1677 	 *
1678 	 * For the global ringbuffer though, we have to be very careful
1679 	 * that we do not wrap while preventing the execution of requests
1680 	 * with a unsignaled fence.
1681 	 */
1682 	if (HAS_EXECLISTS(ctx->i915))
1683 		return INT_MAX;
1684 
1685 	rq = igt_request_alloc(ctx, engine);
1686 	if (IS_ERR(rq)) {
1687 		ret = PTR_ERR(rq);
1688 	} else {
1689 		int sz;
1690 
1691 		ret = rq->ring->size - rq->reserved_space;
1692 		i915_request_add(rq);
1693 
1694 		sz = rq->ring->emit - rq->head;
1695 		if (sz < 0)
1696 			sz += rq->ring->size;
1697 		ret /= sz;
1698 		ret /= 2; /* leave half spare, in case of emergency! */
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 static int live_breadcrumbs_smoketest(void *arg)
1705 {
1706 	struct drm_i915_private *i915 = arg;
1707 	const unsigned int nengines = num_uabi_engines(i915);
1708 	const unsigned int ncpus = /* saturate with nengines * ncpus */
1709 		max_t(int, 2, DIV_ROUND_UP(num_online_cpus(), nengines));
1710 	unsigned long num_waits, num_fences;
1711 	struct intel_engine_cs *engine;
1712 	struct smoke_thread *threads;
1713 	struct igt_live_test live;
1714 	intel_wakeref_t wakeref;
1715 	struct smoketest *smoke;
1716 	unsigned int n, idx;
1717 	struct file *file;
1718 	int ret = 0;
1719 
1720 	/*
1721 	 * Smoketest our breadcrumb/signal handling for requests across multiple
1722 	 * threads. A very simple test to only catch the most egregious of bugs.
1723 	 * See __igt_breadcrumbs_smoketest();
1724 	 *
1725 	 * On real hardware this time.
1726 	 */
1727 
1728 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1729 
1730 	file = mock_file(i915);
1731 	if (IS_ERR(file)) {
1732 		ret = PTR_ERR(file);
1733 		goto out_rpm;
1734 	}
1735 
1736 	smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
1737 	if (!smoke) {
1738 		ret = -ENOMEM;
1739 		goto out_file;
1740 	}
1741 
1742 	threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
1743 	if (!threads) {
1744 		ret = -ENOMEM;
1745 		goto out_smoke;
1746 	}
1747 
1748 	smoke[0].request_alloc = __live_request_alloc;
1749 	smoke[0].ncontexts = 64;
1750 	smoke[0].contexts = kcalloc(smoke[0].ncontexts,
1751 				    sizeof(*smoke[0].contexts),
1752 				    GFP_KERNEL);
1753 	if (!smoke[0].contexts) {
1754 		ret = -ENOMEM;
1755 		goto out_threads;
1756 	}
1757 
1758 	for (n = 0; n < smoke[0].ncontexts; n++) {
1759 		smoke[0].contexts[n] = live_context(i915, file);
1760 		if (IS_ERR(smoke[0].contexts[n])) {
1761 			ret = PTR_ERR(smoke[0].contexts[n]);
1762 			goto out_contexts;
1763 		}
1764 	}
1765 
1766 	ret = igt_live_test_begin(&live, i915, __func__, "");
1767 	if (ret)
1768 		goto out_contexts;
1769 
1770 	idx = 0;
1771 	for_each_uabi_engine(engine, i915) {
1772 		smoke[idx] = smoke[0];
1773 		smoke[idx].engine = engine;
1774 		smoke[idx].max_batch =
1775 			max_batches(smoke[0].contexts[0], engine);
1776 		if (smoke[idx].max_batch < 0) {
1777 			ret = smoke[idx].max_batch;
1778 			goto out_flush;
1779 		}
1780 		/* One ring interleaved between requests from all cpus */
1781 		smoke[idx].max_batch /= ncpus + 1;
1782 		pr_debug("Limiting batches to %d requests on %s\n",
1783 			 smoke[idx].max_batch, engine->name);
1784 
1785 		for (n = 0; n < ncpus; n++) {
1786 			unsigned int i = idx * ncpus + n;
1787 			struct kthread_worker *worker;
1788 
1789 			worker = kthread_create_worker(0, "igt/%d.%d", idx, n);
1790 			if (IS_ERR(worker)) {
1791 				ret = PTR_ERR(worker);
1792 				goto out_flush;
1793 			}
1794 
1795 			threads[i].worker = worker;
1796 			threads[i].t = &smoke[idx];
1797 
1798 			kthread_init_work(&threads[i].work,
1799 					  __igt_breadcrumbs_smoketest);
1800 			kthread_queue_work(worker, &threads[i].work);
1801 		}
1802 
1803 		idx++;
1804 	}
1805 
1806 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
1807 
1808 out_flush:
1809 	idx = 0;
1810 	num_waits = 0;
1811 	num_fences = 0;
1812 	for_each_uabi_engine(engine, i915) {
1813 		for (n = 0; n < ncpus; n++) {
1814 			unsigned int i = idx * ncpus + n;
1815 			int err;
1816 
1817 			if (!threads[i].worker)
1818 				continue;
1819 
1820 			WRITE_ONCE(threads[i].stop, true);
1821 			kthread_flush_work(&threads[i].work);
1822 			err = READ_ONCE(threads[i].result);
1823 			if (err < 0 && !ret)
1824 				ret = err;
1825 
1826 			kthread_destroy_worker(threads[i].worker);
1827 		}
1828 
1829 		num_waits += atomic_long_read(&smoke[idx].num_waits);
1830 		num_fences += atomic_long_read(&smoke[idx].num_fences);
1831 		idx++;
1832 	}
1833 	pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
1834 		num_waits, num_fences, idx, ncpus);
1835 
1836 	ret = igt_live_test_end(&live) ?: ret;
1837 out_contexts:
1838 	kfree(smoke[0].contexts);
1839 out_threads:
1840 	kfree(threads);
1841 out_smoke:
1842 	kfree(smoke);
1843 out_file:
1844 	fput(file);
1845 out_rpm:
1846 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1847 
1848 	return ret;
1849 }
1850 
1851 int i915_request_live_selftests(struct drm_i915_private *i915)
1852 {
1853 	static const struct i915_subtest tests[] = {
1854 		SUBTEST(live_nop_request),
1855 		SUBTEST(live_all_engines),
1856 		SUBTEST(live_sequential_engines),
1857 		SUBTEST(live_parallel_engines),
1858 		SUBTEST(live_empty_request),
1859 		SUBTEST(live_cancel_request),
1860 		SUBTEST(live_breadcrumbs_smoketest),
1861 	};
1862 
1863 	if (intel_gt_is_wedged(to_gt(i915)))
1864 		return 0;
1865 
1866 	return i915_live_subtests(tests, i915);
1867 }
1868 
1869 static int switch_to_kernel_sync(struct intel_context *ce, int err)
1870 {
1871 	struct i915_request *rq;
1872 	struct dma_fence *fence;
1873 
1874 	rq = intel_engine_create_kernel_request(ce->engine);
1875 	if (IS_ERR(rq))
1876 		return PTR_ERR(rq);
1877 
1878 	fence = i915_active_fence_get(&ce->timeline->last_request);
1879 	if (fence) {
1880 		i915_request_await_dma_fence(rq, fence);
1881 		dma_fence_put(fence);
1882 	}
1883 
1884 	rq = i915_request_get(rq);
1885 	i915_request_add(rq);
1886 	if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
1887 		err = -ETIME;
1888 	i915_request_put(rq);
1889 
1890 	while (!err && !intel_engine_is_idle(ce->engine))
1891 		intel_engine_flush_submission(ce->engine);
1892 
1893 	return err;
1894 }
1895 
1896 struct perf_stats {
1897 	struct intel_engine_cs *engine;
1898 	unsigned long count;
1899 	ktime_t time;
1900 	ktime_t busy;
1901 	u64 runtime;
1902 };
1903 
1904 struct perf_series {
1905 	struct drm_i915_private *i915;
1906 	unsigned int nengines;
1907 	struct intel_context *ce[];
1908 };
1909 
1910 static int cmp_u32(const void *A, const void *B)
1911 {
1912 	const u32 *a = A, *b = B;
1913 
1914 	return *a - *b;
1915 }
1916 
1917 static u32 trifilter(u32 *a)
1918 {
1919 	u64 sum;
1920 
1921 #define TF_COUNT 5
1922 	sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
1923 
1924 	sum = mul_u32_u32(a[2], 2);
1925 	sum += a[1];
1926 	sum += a[3];
1927 
1928 	GEM_BUG_ON(sum > U32_MAX);
1929 	return sum;
1930 #define TF_BIAS 2
1931 }
1932 
1933 static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
1934 {
1935 	u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
1936 
1937 	return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
1938 }
1939 
1940 static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
1941 {
1942 	*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
1943 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
1944 	*cs++ = offset;
1945 	*cs++ = 0;
1946 
1947 	return cs;
1948 }
1949 
1950 static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
1951 {
1952 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1953 	*cs++ = offset;
1954 	*cs++ = 0;
1955 	*cs++ = value;
1956 
1957 	return cs;
1958 }
1959 
1960 static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
1961 {
1962 	*cs++ = MI_SEMAPHORE_WAIT |
1963 		MI_SEMAPHORE_GLOBAL_GTT |
1964 		MI_SEMAPHORE_POLL |
1965 		mode;
1966 	*cs++ = value;
1967 	*cs++ = offset;
1968 	*cs++ = 0;
1969 
1970 	return cs;
1971 }
1972 
1973 static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
1974 {
1975 	return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
1976 }
1977 
1978 static void semaphore_set(u32 *sema, u32 value)
1979 {
1980 	WRITE_ONCE(*sema, value);
1981 	wmb(); /* flush the update to the cache, and beyond */
1982 }
1983 
1984 static u32 *hwsp_scratch(const struct intel_context *ce)
1985 {
1986 	return memset32(ce->engine->status_page.addr + 1000, 0, 21);
1987 }
1988 
1989 static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
1990 {
1991 	return (i915_ggtt_offset(ce->engine->status_page.vma) +
1992 		offset_in_page(dw));
1993 }
1994 
1995 static int measure_semaphore_response(struct intel_context *ce)
1996 {
1997 	u32 *sema = hwsp_scratch(ce);
1998 	const u32 offset = hwsp_offset(ce, sema);
1999 	u32 elapsed[TF_COUNT], cycles;
2000 	struct i915_request *rq;
2001 	u32 *cs;
2002 	int err;
2003 	int i;
2004 
2005 	/*
2006 	 * Measure how many cycles it takes for the HW to detect the change
2007 	 * in a semaphore value.
2008 	 *
2009 	 *    A: read CS_TIMESTAMP from CPU
2010 	 *    poke semaphore
2011 	 *    B: read CS_TIMESTAMP on GPU
2012 	 *
2013 	 * Semaphore latency: B - A
2014 	 */
2015 
2016 	semaphore_set(sema, -1);
2017 
2018 	rq = i915_request_create(ce);
2019 	if (IS_ERR(rq))
2020 		return PTR_ERR(rq);
2021 
2022 	cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
2023 	if (IS_ERR(cs)) {
2024 		i915_request_add(rq);
2025 		err = PTR_ERR(cs);
2026 		goto err;
2027 	}
2028 
2029 	cs = emit_store_dw(cs, offset, 0);
2030 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2031 		cs = emit_semaphore_poll_until(cs, offset, i);
2032 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2033 		cs = emit_store_dw(cs, offset, 0);
2034 	}
2035 
2036 	intel_ring_advance(rq, cs);
2037 	i915_request_add(rq);
2038 
2039 	if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2040 		err = -EIO;
2041 		goto err;
2042 	}
2043 
2044 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2045 		preempt_disable();
2046 		cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2047 		semaphore_set(sema, i);
2048 		preempt_enable();
2049 
2050 		if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2051 			err = -EIO;
2052 			goto err;
2053 		}
2054 
2055 		elapsed[i - 1] = sema[i] - cycles;
2056 	}
2057 
2058 	cycles = trifilter(elapsed);
2059 	pr_info("%s: semaphore response %d cycles, %lluns\n",
2060 		ce->engine->name, cycles >> TF_BIAS,
2061 		cycles_to_ns(ce->engine, cycles));
2062 
2063 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2064 
2065 err:
2066 	intel_gt_set_wedged(ce->engine->gt);
2067 	return err;
2068 }
2069 
2070 static int measure_idle_dispatch(struct intel_context *ce)
2071 {
2072 	u32 *sema = hwsp_scratch(ce);
2073 	const u32 offset = hwsp_offset(ce, sema);
2074 	u32 elapsed[TF_COUNT], cycles;
2075 	u32 *cs;
2076 	int err;
2077 	int i;
2078 
2079 	/*
2080 	 * Measure how long it takes for us to submit a request while the
2081 	 * engine is idle, but is resting in our context.
2082 	 *
2083 	 *    A: read CS_TIMESTAMP from CPU
2084 	 *    submit request
2085 	 *    B: read CS_TIMESTAMP on GPU
2086 	 *
2087 	 * Submission latency: B - A
2088 	 */
2089 
2090 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2091 		struct i915_request *rq;
2092 
2093 		err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2094 		if (err)
2095 			return err;
2096 
2097 		rq = i915_request_create(ce);
2098 		if (IS_ERR(rq)) {
2099 			err = PTR_ERR(rq);
2100 			goto err;
2101 		}
2102 
2103 		cs = intel_ring_begin(rq, 4);
2104 		if (IS_ERR(cs)) {
2105 			i915_request_add(rq);
2106 			err = PTR_ERR(cs);
2107 			goto err;
2108 		}
2109 
2110 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2111 
2112 		intel_ring_advance(rq, cs);
2113 
2114 		preempt_disable();
2115 		local_bh_disable();
2116 		elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2117 		i915_request_add(rq);
2118 		local_bh_enable();
2119 		preempt_enable();
2120 	}
2121 
2122 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2123 	if (err)
2124 		goto err;
2125 
2126 	for (i = 0; i < ARRAY_SIZE(elapsed); i++)
2127 		elapsed[i] = sema[i] - elapsed[i];
2128 
2129 	cycles = trifilter(elapsed);
2130 	pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
2131 		ce->engine->name, cycles >> TF_BIAS,
2132 		cycles_to_ns(ce->engine, cycles));
2133 
2134 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2135 
2136 err:
2137 	intel_gt_set_wedged(ce->engine->gt);
2138 	return err;
2139 }
2140 
2141 static int measure_busy_dispatch(struct intel_context *ce)
2142 {
2143 	u32 *sema = hwsp_scratch(ce);
2144 	const u32 offset = hwsp_offset(ce, sema);
2145 	u32 elapsed[TF_COUNT + 1], cycles;
2146 	u32 *cs;
2147 	int err;
2148 	int i;
2149 
2150 	/*
2151 	 * Measure how long it takes for us to submit a request while the
2152 	 * engine is busy, polling on a semaphore in our context. With
2153 	 * direct submission, this will include the cost of a lite restore.
2154 	 *
2155 	 *    A: read CS_TIMESTAMP from CPU
2156 	 *    submit request
2157 	 *    B: read CS_TIMESTAMP on GPU
2158 	 *
2159 	 * Submission latency: B - A
2160 	 */
2161 
2162 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2163 		struct i915_request *rq;
2164 
2165 		rq = i915_request_create(ce);
2166 		if (IS_ERR(rq)) {
2167 			err = PTR_ERR(rq);
2168 			goto err;
2169 		}
2170 
2171 		cs = intel_ring_begin(rq, 12);
2172 		if (IS_ERR(cs)) {
2173 			i915_request_add(rq);
2174 			err = PTR_ERR(cs);
2175 			goto err;
2176 		}
2177 
2178 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2179 		cs = emit_semaphore_poll_until(cs, offset, i);
2180 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2181 
2182 		intel_ring_advance(rq, cs);
2183 
2184 		if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
2185 			err = -EIO;
2186 			goto err;
2187 		}
2188 
2189 		preempt_disable();
2190 		local_bh_disable();
2191 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2192 		i915_request_add(rq);
2193 		local_bh_enable();
2194 		semaphore_set(sema, i - 1);
2195 		preempt_enable();
2196 	}
2197 
2198 	wait_for(READ_ONCE(sema[i - 1]), 500);
2199 	semaphore_set(sema, i - 1);
2200 
2201 	for (i = 1; i <= TF_COUNT; i++) {
2202 		GEM_BUG_ON(sema[i] == -1);
2203 		elapsed[i - 1] = sema[i] - elapsed[i];
2204 	}
2205 
2206 	cycles = trifilter(elapsed);
2207 	pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
2208 		ce->engine->name, cycles >> TF_BIAS,
2209 		cycles_to_ns(ce->engine, cycles));
2210 
2211 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2212 
2213 err:
2214 	intel_gt_set_wedged(ce->engine->gt);
2215 	return err;
2216 }
2217 
2218 static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
2219 {
2220 	const u32 offset =
2221 		i915_ggtt_offset(engine->status_page.vma) +
2222 		offset_in_page(sema);
2223 	struct i915_request *rq;
2224 	u32 *cs;
2225 
2226 	rq = i915_request_create(engine->kernel_context);
2227 	if (IS_ERR(rq))
2228 		return PTR_ERR(rq);
2229 
2230 	cs = intel_ring_begin(rq, 4);
2231 	if (IS_ERR(cs)) {
2232 		i915_request_add(rq);
2233 		return PTR_ERR(cs);
2234 	}
2235 
2236 	cs = emit_semaphore_poll(cs, mode, value, offset);
2237 
2238 	intel_ring_advance(rq, cs);
2239 	i915_request_add(rq);
2240 
2241 	return 0;
2242 }
2243 
2244 static int measure_inter_request(struct intel_context *ce)
2245 {
2246 	u32 *sema = hwsp_scratch(ce);
2247 	const u32 offset = hwsp_offset(ce, sema);
2248 	u32 elapsed[TF_COUNT + 1], cycles;
2249 	struct i915_sw_fence *submit;
2250 	int i, err;
2251 
2252 	/*
2253 	 * Measure how long it takes to advance from one request into the
2254 	 * next. Between each request we flush the GPU caches to memory,
2255 	 * update the breadcrumbs, and then invalidate those caches.
2256 	 * We queue up all the requests to be submitted in one batch so
2257 	 * it should be one set of contiguous measurements.
2258 	 *
2259 	 *    A: read CS_TIMESTAMP on GPU
2260 	 *    advance request
2261 	 *    B: read CS_TIMESTAMP on GPU
2262 	 *
2263 	 * Request latency: B - A
2264 	 */
2265 
2266 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2267 	if (err)
2268 		return err;
2269 
2270 	submit = heap_fence_create(GFP_KERNEL);
2271 	if (!submit) {
2272 		semaphore_set(sema, 1);
2273 		return -ENOMEM;
2274 	}
2275 
2276 	intel_engine_flush_submission(ce->engine);
2277 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2278 		struct i915_request *rq;
2279 		u32 *cs;
2280 
2281 		rq = i915_request_create(ce);
2282 		if (IS_ERR(rq)) {
2283 			err = PTR_ERR(rq);
2284 			goto err_submit;
2285 		}
2286 
2287 		err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
2288 						       submit,
2289 						       GFP_KERNEL);
2290 		if (err < 0) {
2291 			i915_request_add(rq);
2292 			goto err_submit;
2293 		}
2294 
2295 		cs = intel_ring_begin(rq, 4);
2296 		if (IS_ERR(cs)) {
2297 			i915_request_add(rq);
2298 			err = PTR_ERR(cs);
2299 			goto err_submit;
2300 		}
2301 
2302 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2303 
2304 		intel_ring_advance(rq, cs);
2305 		i915_request_add(rq);
2306 	}
2307 	i915_sw_fence_commit(submit);
2308 	intel_engine_flush_submission(ce->engine);
2309 	heap_fence_put(submit);
2310 
2311 	semaphore_set(sema, 1);
2312 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2313 	if (err)
2314 		goto err;
2315 
2316 	for (i = 1; i <= TF_COUNT; i++)
2317 		elapsed[i - 1] = sema[i + 1] - sema[i];
2318 
2319 	cycles = trifilter(elapsed);
2320 	pr_info("%s: inter-request latency %d cycles, %lluns\n",
2321 		ce->engine->name, cycles >> TF_BIAS,
2322 		cycles_to_ns(ce->engine, cycles));
2323 
2324 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2325 
2326 err_submit:
2327 	i915_sw_fence_commit(submit);
2328 	heap_fence_put(submit);
2329 	semaphore_set(sema, 1);
2330 err:
2331 	intel_gt_set_wedged(ce->engine->gt);
2332 	return err;
2333 }
2334 
2335 static int measure_context_switch(struct intel_context *ce)
2336 {
2337 	u32 *sema = hwsp_scratch(ce);
2338 	const u32 offset = hwsp_offset(ce, sema);
2339 	struct i915_request *fence = NULL;
2340 	u32 elapsed[TF_COUNT + 1], cycles;
2341 	int i, j, err;
2342 	u32 *cs;
2343 
2344 	/*
2345 	 * Measure how long it takes to advance from one request in one
2346 	 * context to a request in another context. This allows us to
2347 	 * measure how long the context save/restore take, along with all
2348 	 * the inter-context setup we require.
2349 	 *
2350 	 *    A: read CS_TIMESTAMP on GPU
2351 	 *    switch context
2352 	 *    B: read CS_TIMESTAMP on GPU
2353 	 *
2354 	 * Context switch latency: B - A
2355 	 */
2356 
2357 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2358 	if (err)
2359 		return err;
2360 
2361 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2362 		struct intel_context *arr[] = {
2363 			ce, ce->engine->kernel_context
2364 		};
2365 		u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
2366 
2367 		for (j = 0; j < ARRAY_SIZE(arr); j++) {
2368 			struct i915_request *rq;
2369 
2370 			rq = i915_request_create(arr[j]);
2371 			if (IS_ERR(rq)) {
2372 				err = PTR_ERR(rq);
2373 				goto err_fence;
2374 			}
2375 
2376 			if (fence) {
2377 				err = i915_request_await_dma_fence(rq,
2378 								   &fence->fence);
2379 				if (err) {
2380 					i915_request_add(rq);
2381 					goto err_fence;
2382 				}
2383 			}
2384 
2385 			cs = intel_ring_begin(rq, 4);
2386 			if (IS_ERR(cs)) {
2387 				i915_request_add(rq);
2388 				err = PTR_ERR(cs);
2389 				goto err_fence;
2390 			}
2391 
2392 			cs = emit_timestamp_store(cs, ce, addr);
2393 			addr += sizeof(u32);
2394 
2395 			intel_ring_advance(rq, cs);
2396 
2397 			i915_request_put(fence);
2398 			fence = i915_request_get(rq);
2399 
2400 			i915_request_add(rq);
2401 		}
2402 	}
2403 	i915_request_put(fence);
2404 	intel_engine_flush_submission(ce->engine);
2405 
2406 	semaphore_set(sema, 1);
2407 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2408 	if (err)
2409 		goto err;
2410 
2411 	for (i = 1; i <= TF_COUNT; i++)
2412 		elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
2413 
2414 	cycles = trifilter(elapsed);
2415 	pr_info("%s: context switch latency %d cycles, %lluns\n",
2416 		ce->engine->name, cycles >> TF_BIAS,
2417 		cycles_to_ns(ce->engine, cycles));
2418 
2419 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2420 
2421 err_fence:
2422 	i915_request_put(fence);
2423 	semaphore_set(sema, 1);
2424 err:
2425 	intel_gt_set_wedged(ce->engine->gt);
2426 	return err;
2427 }
2428 
2429 static int measure_preemption(struct intel_context *ce)
2430 {
2431 	u32 *sema = hwsp_scratch(ce);
2432 	const u32 offset = hwsp_offset(ce, sema);
2433 	u32 elapsed[TF_COUNT], cycles;
2434 	u32 *cs;
2435 	int err;
2436 	int i;
2437 
2438 	/*
2439 	 * We measure two latencies while triggering preemption. The first
2440 	 * latency is how long it takes for us to submit a preempting request.
2441 	 * The second latency is how it takes for us to return from the
2442 	 * preemption back to the original context.
2443 	 *
2444 	 *    A: read CS_TIMESTAMP from CPU
2445 	 *    submit preemption
2446 	 *    B: read CS_TIMESTAMP on GPU (in preempting context)
2447 	 *    context switch
2448 	 *    C: read CS_TIMESTAMP on GPU (in original context)
2449 	 *
2450 	 * Preemption dispatch latency: B - A
2451 	 * Preemption switch latency: C - B
2452 	 */
2453 
2454 	if (!intel_engine_has_preemption(ce->engine))
2455 		return 0;
2456 
2457 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2458 		u32 addr = offset + 2 * i * sizeof(u32);
2459 		struct i915_request *rq;
2460 
2461 		rq = i915_request_create(ce);
2462 		if (IS_ERR(rq)) {
2463 			err = PTR_ERR(rq);
2464 			goto err;
2465 		}
2466 
2467 		cs = intel_ring_begin(rq, 12);
2468 		if (IS_ERR(cs)) {
2469 			i915_request_add(rq);
2470 			err = PTR_ERR(cs);
2471 			goto err;
2472 		}
2473 
2474 		cs = emit_store_dw(cs, addr, -1);
2475 		cs = emit_semaphore_poll_until(cs, offset, i);
2476 		cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
2477 
2478 		intel_ring_advance(rq, cs);
2479 		i915_request_add(rq);
2480 
2481 		if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
2482 			err = -EIO;
2483 			goto err;
2484 		}
2485 
2486 		rq = i915_request_create(ce->engine->kernel_context);
2487 		if (IS_ERR(rq)) {
2488 			err = PTR_ERR(rq);
2489 			goto err;
2490 		}
2491 
2492 		cs = intel_ring_begin(rq, 8);
2493 		if (IS_ERR(cs)) {
2494 			i915_request_add(rq);
2495 			err = PTR_ERR(cs);
2496 			goto err;
2497 		}
2498 
2499 		cs = emit_timestamp_store(cs, ce, addr);
2500 		cs = emit_store_dw(cs, offset, i);
2501 
2502 		intel_ring_advance(rq, cs);
2503 		rq->sched.attr.priority = I915_PRIORITY_BARRIER;
2504 
2505 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2506 		i915_request_add(rq);
2507 	}
2508 
2509 	if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
2510 		err = -EIO;
2511 		goto err;
2512 	}
2513 
2514 	for (i = 1; i <= TF_COUNT; i++)
2515 		elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
2516 
2517 	cycles = trifilter(elapsed);
2518 	pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
2519 		ce->engine->name, cycles >> TF_BIAS,
2520 		cycles_to_ns(ce->engine, cycles));
2521 
2522 	for (i = 1; i <= TF_COUNT; i++)
2523 		elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
2524 
2525 	cycles = trifilter(elapsed);
2526 	pr_info("%s: preemption switch latency %d cycles, %lluns\n",
2527 		ce->engine->name, cycles >> TF_BIAS,
2528 		cycles_to_ns(ce->engine, cycles));
2529 
2530 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2531 
2532 err:
2533 	intel_gt_set_wedged(ce->engine->gt);
2534 	return err;
2535 }
2536 
2537 struct signal_cb {
2538 	struct dma_fence_cb base;
2539 	bool seen;
2540 };
2541 
2542 static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2543 {
2544 	struct signal_cb *s = container_of(cb, typeof(*s), base);
2545 
2546 	smp_store_mb(s->seen, true); /* be safe, be strong */
2547 }
2548 
2549 static int measure_completion(struct intel_context *ce)
2550 {
2551 	u32 *sema = hwsp_scratch(ce);
2552 	const u32 offset = hwsp_offset(ce, sema);
2553 	u32 elapsed[TF_COUNT], cycles;
2554 	u32 *cs;
2555 	int err;
2556 	int i;
2557 
2558 	/*
2559 	 * Measure how long it takes for the signal (interrupt) to be
2560 	 * sent from the GPU to be processed by the CPU.
2561 	 *
2562 	 *    A: read CS_TIMESTAMP on GPU
2563 	 *    signal
2564 	 *    B: read CS_TIMESTAMP from CPU
2565 	 *
2566 	 * Completion latency: B - A
2567 	 */
2568 
2569 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2570 		struct signal_cb cb = { .seen = false };
2571 		struct i915_request *rq;
2572 
2573 		rq = i915_request_create(ce);
2574 		if (IS_ERR(rq)) {
2575 			err = PTR_ERR(rq);
2576 			goto err;
2577 		}
2578 
2579 		cs = intel_ring_begin(rq, 12);
2580 		if (IS_ERR(cs)) {
2581 			i915_request_add(rq);
2582 			err = PTR_ERR(cs);
2583 			goto err;
2584 		}
2585 
2586 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2587 		cs = emit_semaphore_poll_until(cs, offset, i);
2588 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2589 
2590 		intel_ring_advance(rq, cs);
2591 
2592 		dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
2593 		i915_request_add(rq);
2594 
2595 		intel_engine_flush_submission(ce->engine);
2596 		if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
2597 			err = -EIO;
2598 			goto err;
2599 		}
2600 
2601 		preempt_disable();
2602 		semaphore_set(sema, i);
2603 		while (!READ_ONCE(cb.seen))
2604 			cpu_relax();
2605 
2606 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2607 		preempt_enable();
2608 	}
2609 
2610 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2611 	if (err)
2612 		goto err;
2613 
2614 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2615 		GEM_BUG_ON(sema[i + 1] == -1);
2616 		elapsed[i] = elapsed[i] - sema[i + 1];
2617 	}
2618 
2619 	cycles = trifilter(elapsed);
2620 	pr_info("%s: completion latency %d cycles, %lluns\n",
2621 		ce->engine->name, cycles >> TF_BIAS,
2622 		cycles_to_ns(ce->engine, cycles));
2623 
2624 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2625 
2626 err:
2627 	intel_gt_set_wedged(ce->engine->gt);
2628 	return err;
2629 }
2630 
2631 static void rps_pin(struct intel_gt *gt)
2632 {
2633 	/* Pin the frequency to max */
2634 	atomic_inc(&gt->rps.num_waiters);
2635 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
2636 
2637 	mutex_lock(&gt->rps.lock);
2638 	intel_rps_set(&gt->rps, gt->rps.max_freq);
2639 	mutex_unlock(&gt->rps.lock);
2640 }
2641 
2642 static void rps_unpin(struct intel_gt *gt)
2643 {
2644 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
2645 	atomic_dec(&gt->rps.num_waiters);
2646 }
2647 
2648 static int perf_request_latency(void *arg)
2649 {
2650 	struct drm_i915_private *i915 = arg;
2651 	struct intel_engine_cs *engine;
2652 	struct pm_qos_request qos;
2653 	int err = 0;
2654 
2655 	if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
2656 		return 0;
2657 
2658 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2659 
2660 	for_each_uabi_engine(engine, i915) {
2661 		struct intel_context *ce;
2662 
2663 		ce = intel_context_create(engine);
2664 		if (IS_ERR(ce)) {
2665 			err = PTR_ERR(ce);
2666 			goto out;
2667 		}
2668 
2669 		err = intel_context_pin(ce);
2670 		if (err) {
2671 			intel_context_put(ce);
2672 			goto out;
2673 		}
2674 
2675 		st_engine_heartbeat_disable(engine);
2676 		rps_pin(engine->gt);
2677 
2678 		if (err == 0)
2679 			err = measure_semaphore_response(ce);
2680 		if (err == 0)
2681 			err = measure_idle_dispatch(ce);
2682 		if (err == 0)
2683 			err = measure_busy_dispatch(ce);
2684 		if (err == 0)
2685 			err = measure_inter_request(ce);
2686 		if (err == 0)
2687 			err = measure_context_switch(ce);
2688 		if (err == 0)
2689 			err = measure_preemption(ce);
2690 		if (err == 0)
2691 			err = measure_completion(ce);
2692 
2693 		rps_unpin(engine->gt);
2694 		st_engine_heartbeat_enable(engine);
2695 
2696 		intel_context_unpin(ce);
2697 		intel_context_put(ce);
2698 		if (err)
2699 			goto out;
2700 	}
2701 
2702 out:
2703 	if (igt_flush_test(i915))
2704 		err = -EIO;
2705 
2706 	cpu_latency_qos_remove_request(&qos);
2707 	return err;
2708 }
2709 
2710 static int s_sync0(void *arg)
2711 {
2712 	struct perf_series *ps = arg;
2713 	IGT_TIMEOUT(end_time);
2714 	unsigned int idx = 0;
2715 	int err = 0;
2716 
2717 	GEM_BUG_ON(!ps->nengines);
2718 	do {
2719 		struct i915_request *rq;
2720 
2721 		rq = i915_request_create(ps->ce[idx]);
2722 		if (IS_ERR(rq)) {
2723 			err = PTR_ERR(rq);
2724 			break;
2725 		}
2726 
2727 		i915_request_get(rq);
2728 		i915_request_add(rq);
2729 
2730 		if (i915_request_wait(rq, 0, HZ / 5) < 0)
2731 			err = -ETIME;
2732 		i915_request_put(rq);
2733 		if (err)
2734 			break;
2735 
2736 		if (++idx == ps->nengines)
2737 			idx = 0;
2738 	} while (!__igt_timeout(end_time, NULL));
2739 
2740 	return err;
2741 }
2742 
2743 static int s_sync1(void *arg)
2744 {
2745 	struct perf_series *ps = arg;
2746 	struct i915_request *prev = NULL;
2747 	IGT_TIMEOUT(end_time);
2748 	unsigned int idx = 0;
2749 	int err = 0;
2750 
2751 	GEM_BUG_ON(!ps->nengines);
2752 	do {
2753 		struct i915_request *rq;
2754 
2755 		rq = i915_request_create(ps->ce[idx]);
2756 		if (IS_ERR(rq)) {
2757 			err = PTR_ERR(rq);
2758 			break;
2759 		}
2760 
2761 		i915_request_get(rq);
2762 		i915_request_add(rq);
2763 
2764 		if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2765 			err = -ETIME;
2766 		i915_request_put(prev);
2767 		prev = rq;
2768 		if (err)
2769 			break;
2770 
2771 		if (++idx == ps->nengines)
2772 			idx = 0;
2773 	} while (!__igt_timeout(end_time, NULL));
2774 	i915_request_put(prev);
2775 
2776 	return err;
2777 }
2778 
2779 static int s_many(void *arg)
2780 {
2781 	struct perf_series *ps = arg;
2782 	IGT_TIMEOUT(end_time);
2783 	unsigned int idx = 0;
2784 
2785 	GEM_BUG_ON(!ps->nengines);
2786 	do {
2787 		struct i915_request *rq;
2788 
2789 		rq = i915_request_create(ps->ce[idx]);
2790 		if (IS_ERR(rq))
2791 			return PTR_ERR(rq);
2792 
2793 		i915_request_add(rq);
2794 
2795 		if (++idx == ps->nengines)
2796 			idx = 0;
2797 	} while (!__igt_timeout(end_time, NULL));
2798 
2799 	return 0;
2800 }
2801 
2802 static int perf_series_engines(void *arg)
2803 {
2804 	struct drm_i915_private *i915 = arg;
2805 	static int (* const func[])(void *arg) = {
2806 		s_sync0,
2807 		s_sync1,
2808 		s_many,
2809 		NULL,
2810 	};
2811 	const unsigned int nengines = num_uabi_engines(i915);
2812 	struct intel_engine_cs *engine;
2813 	int (* const *fn)(void *arg);
2814 	struct pm_qos_request qos;
2815 	struct perf_stats *stats;
2816 	struct perf_series *ps;
2817 	unsigned int idx;
2818 	int err = 0;
2819 
2820 	stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
2821 	if (!stats)
2822 		return -ENOMEM;
2823 
2824 	ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
2825 	if (!ps) {
2826 		kfree(stats);
2827 		return -ENOMEM;
2828 	}
2829 
2830 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2831 
2832 	ps->i915 = i915;
2833 	ps->nengines = nengines;
2834 
2835 	idx = 0;
2836 	for_each_uabi_engine(engine, i915) {
2837 		struct intel_context *ce;
2838 
2839 		ce = intel_context_create(engine);
2840 		if (IS_ERR(ce)) {
2841 			err = PTR_ERR(ce);
2842 			goto out;
2843 		}
2844 
2845 		err = intel_context_pin(ce);
2846 		if (err) {
2847 			intel_context_put(ce);
2848 			goto out;
2849 		}
2850 
2851 		ps->ce[idx++] = ce;
2852 	}
2853 	GEM_BUG_ON(idx != ps->nengines);
2854 
2855 	for (fn = func; *fn && !err; fn++) {
2856 		char name[KSYM_NAME_LEN];
2857 		struct igt_live_test t;
2858 
2859 		snprintf(name, sizeof(name), "%ps", *fn);
2860 		err = igt_live_test_begin(&t, i915, __func__, name);
2861 		if (err)
2862 			break;
2863 
2864 		for (idx = 0; idx < nengines; idx++) {
2865 			struct perf_stats *p =
2866 				memset(&stats[idx], 0, sizeof(stats[idx]));
2867 			struct intel_context *ce = ps->ce[idx];
2868 
2869 			p->engine = ps->ce[idx]->engine;
2870 			intel_engine_pm_get(p->engine);
2871 
2872 			if (intel_engine_supports_stats(p->engine))
2873 				p->busy = intel_engine_get_busy_time(p->engine,
2874 								     &p->time) + 1;
2875 			else
2876 				p->time = ktime_get();
2877 			p->runtime = -intel_context_get_total_runtime_ns(ce);
2878 		}
2879 
2880 		err = (*fn)(ps);
2881 		if (igt_live_test_end(&t))
2882 			err = -EIO;
2883 
2884 		for (idx = 0; idx < nengines; idx++) {
2885 			struct perf_stats *p = &stats[idx];
2886 			struct intel_context *ce = ps->ce[idx];
2887 			int integer, decimal;
2888 			u64 busy, dt, now;
2889 
2890 			if (p->busy)
2891 				p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
2892 									       &now),
2893 						    p->busy - 1);
2894 			else
2895 				now = ktime_get();
2896 			p->time = ktime_sub(now, p->time);
2897 
2898 			err = switch_to_kernel_sync(ce, err);
2899 			p->runtime += intel_context_get_total_runtime_ns(ce);
2900 			intel_engine_pm_put(p->engine);
2901 
2902 			busy = 100 * ktime_to_ns(p->busy);
2903 			dt = ktime_to_ns(p->time);
2904 			if (dt) {
2905 				integer = div64_u64(busy, dt);
2906 				busy -= integer * dt;
2907 				decimal = div64_u64(100 * busy, dt);
2908 			} else {
2909 				integer = 0;
2910 				decimal = 0;
2911 			}
2912 
2913 			pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2914 				name, p->engine->name, ce->timeline->seqno,
2915 				integer, decimal,
2916 				div_u64(p->runtime, 1000 * 1000),
2917 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
2918 		}
2919 	}
2920 
2921 out:
2922 	for (idx = 0; idx < nengines; idx++) {
2923 		if (IS_ERR_OR_NULL(ps->ce[idx]))
2924 			break;
2925 
2926 		intel_context_unpin(ps->ce[idx]);
2927 		intel_context_put(ps->ce[idx]);
2928 	}
2929 	kfree(ps);
2930 
2931 	cpu_latency_qos_remove_request(&qos);
2932 	kfree(stats);
2933 	return err;
2934 }
2935 
2936 struct p_thread {
2937 	struct perf_stats p;
2938 	struct kthread_worker *worker;
2939 	struct kthread_work work;
2940 	struct intel_engine_cs *engine;
2941 	int result;
2942 };
2943 
2944 static void p_sync0(struct kthread_work *work)
2945 {
2946 	struct p_thread *thread = container_of(work, typeof(*thread), work);
2947 	struct perf_stats *p = &thread->p;
2948 	struct intel_engine_cs *engine = p->engine;
2949 	struct intel_context *ce;
2950 	IGT_TIMEOUT(end_time);
2951 	unsigned long count;
2952 	bool busy;
2953 	int err = 0;
2954 
2955 	ce = intel_context_create(engine);
2956 	if (IS_ERR(ce)) {
2957 		thread->result = PTR_ERR(ce);
2958 		return;
2959 	}
2960 
2961 	err = intel_context_pin(ce);
2962 	if (err) {
2963 		intel_context_put(ce);
2964 		thread->result = err;
2965 		return;
2966 	}
2967 
2968 	if (intel_engine_supports_stats(engine)) {
2969 		p->busy = intel_engine_get_busy_time(engine, &p->time);
2970 		busy = true;
2971 	} else {
2972 		p->time = ktime_get();
2973 		busy = false;
2974 	}
2975 
2976 	count = 0;
2977 	do {
2978 		struct i915_request *rq;
2979 
2980 		rq = i915_request_create(ce);
2981 		if (IS_ERR(rq)) {
2982 			err = PTR_ERR(rq);
2983 			break;
2984 		}
2985 
2986 		i915_request_get(rq);
2987 		i915_request_add(rq);
2988 
2989 		err = 0;
2990 		if (i915_request_wait(rq, 0, HZ) < 0)
2991 			err = -ETIME;
2992 		i915_request_put(rq);
2993 		if (err)
2994 			break;
2995 
2996 		count++;
2997 	} while (!__igt_timeout(end_time, NULL));
2998 
2999 	if (busy) {
3000 		ktime_t now;
3001 
3002 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3003 				    p->busy);
3004 		p->time = ktime_sub(now, p->time);
3005 	} else {
3006 		p->time = ktime_sub(ktime_get(), p->time);
3007 	}
3008 
3009 	err = switch_to_kernel_sync(ce, err);
3010 	p->runtime = intel_context_get_total_runtime_ns(ce);
3011 	p->count = count;
3012 
3013 	intel_context_unpin(ce);
3014 	intel_context_put(ce);
3015 	thread->result = err;
3016 }
3017 
3018 static void p_sync1(struct kthread_work *work)
3019 {
3020 	struct p_thread *thread = container_of(work, typeof(*thread), work);
3021 	struct perf_stats *p = &thread->p;
3022 	struct intel_engine_cs *engine = p->engine;
3023 	struct i915_request *prev = NULL;
3024 	struct intel_context *ce;
3025 	IGT_TIMEOUT(end_time);
3026 	unsigned long count;
3027 	bool busy;
3028 	int err = 0;
3029 
3030 	ce = intel_context_create(engine);
3031 	if (IS_ERR(ce)) {
3032 		thread->result = PTR_ERR(ce);
3033 		return;
3034 	}
3035 
3036 	err = intel_context_pin(ce);
3037 	if (err) {
3038 		intel_context_put(ce);
3039 		thread->result = err;
3040 		return;
3041 	}
3042 
3043 	if (intel_engine_supports_stats(engine)) {
3044 		p->busy = intel_engine_get_busy_time(engine, &p->time);
3045 		busy = true;
3046 	} else {
3047 		p->time = ktime_get();
3048 		busy = false;
3049 	}
3050 
3051 	count = 0;
3052 	do {
3053 		struct i915_request *rq;
3054 
3055 		rq = i915_request_create(ce);
3056 		if (IS_ERR(rq)) {
3057 			err = PTR_ERR(rq);
3058 			break;
3059 		}
3060 
3061 		i915_request_get(rq);
3062 		i915_request_add(rq);
3063 
3064 		err = 0;
3065 		if (prev && i915_request_wait(prev, 0, HZ) < 0)
3066 			err = -ETIME;
3067 		i915_request_put(prev);
3068 		prev = rq;
3069 		if (err)
3070 			break;
3071 
3072 		count++;
3073 	} while (!__igt_timeout(end_time, NULL));
3074 	i915_request_put(prev);
3075 
3076 	if (busy) {
3077 		ktime_t now;
3078 
3079 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3080 				    p->busy);
3081 		p->time = ktime_sub(now, p->time);
3082 	} else {
3083 		p->time = ktime_sub(ktime_get(), p->time);
3084 	}
3085 
3086 	err = switch_to_kernel_sync(ce, err);
3087 	p->runtime = intel_context_get_total_runtime_ns(ce);
3088 	p->count = count;
3089 
3090 	intel_context_unpin(ce);
3091 	intel_context_put(ce);
3092 	thread->result = err;
3093 }
3094 
3095 static void p_many(struct kthread_work *work)
3096 {
3097 	struct p_thread *thread = container_of(work, typeof(*thread), work);
3098 	struct perf_stats *p = &thread->p;
3099 	struct intel_engine_cs *engine = p->engine;
3100 	struct intel_context *ce;
3101 	IGT_TIMEOUT(end_time);
3102 	unsigned long count;
3103 	int err = 0;
3104 	bool busy;
3105 
3106 	ce = intel_context_create(engine);
3107 	if (IS_ERR(ce)) {
3108 		thread->result = PTR_ERR(ce);
3109 		return;
3110 	}
3111 
3112 	err = intel_context_pin(ce);
3113 	if (err) {
3114 		intel_context_put(ce);
3115 		thread->result = err;
3116 		return;
3117 	}
3118 
3119 	if (intel_engine_supports_stats(engine)) {
3120 		p->busy = intel_engine_get_busy_time(engine, &p->time);
3121 		busy = true;
3122 	} else {
3123 		p->time = ktime_get();
3124 		busy = false;
3125 	}
3126 
3127 	count = 0;
3128 	do {
3129 		struct i915_request *rq;
3130 
3131 		rq = i915_request_create(ce);
3132 		if (IS_ERR(rq)) {
3133 			err = PTR_ERR(rq);
3134 			break;
3135 		}
3136 
3137 		i915_request_add(rq);
3138 		count++;
3139 	} while (!__igt_timeout(end_time, NULL));
3140 
3141 	if (busy) {
3142 		ktime_t now;
3143 
3144 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3145 				    p->busy);
3146 		p->time = ktime_sub(now, p->time);
3147 	} else {
3148 		p->time = ktime_sub(ktime_get(), p->time);
3149 	}
3150 
3151 	err = switch_to_kernel_sync(ce, err);
3152 	p->runtime = intel_context_get_total_runtime_ns(ce);
3153 	p->count = count;
3154 
3155 	intel_context_unpin(ce);
3156 	intel_context_put(ce);
3157 	thread->result = err;
3158 }
3159 
3160 static int perf_parallel_engines(void *arg)
3161 {
3162 	struct drm_i915_private *i915 = arg;
3163 	static void (* const func[])(struct kthread_work *) = {
3164 		p_sync0,
3165 		p_sync1,
3166 		p_many,
3167 		NULL,
3168 	};
3169 	const unsigned int nengines = num_uabi_engines(i915);
3170 	void (* const *fn)(struct kthread_work *);
3171 	struct intel_engine_cs *engine;
3172 	struct pm_qos_request qos;
3173 	struct p_thread *engines;
3174 	int err = 0;
3175 
3176 	engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
3177 	if (!engines)
3178 		return -ENOMEM;
3179 
3180 	cpu_latency_qos_add_request(&qos, 0);
3181 
3182 	for (fn = func; *fn; fn++) {
3183 		char name[KSYM_NAME_LEN];
3184 		struct igt_live_test t;
3185 		unsigned int idx;
3186 
3187 		snprintf(name, sizeof(name), "%ps", *fn);
3188 		err = igt_live_test_begin(&t, i915, __func__, name);
3189 		if (err)
3190 			break;
3191 
3192 		atomic_set(&i915->selftest.counter, nengines);
3193 
3194 		idx = 0;
3195 		for_each_uabi_engine(engine, i915) {
3196 			struct kthread_worker *worker;
3197 
3198 			intel_engine_pm_get(engine);
3199 
3200 			memset(&engines[idx].p, 0, sizeof(engines[idx].p));
3201 
3202 			worker = kthread_create_worker(0, "igt:%s",
3203 						       engine->name);
3204 			if (IS_ERR(worker)) {
3205 				err = PTR_ERR(worker);
3206 				intel_engine_pm_put(engine);
3207 				break;
3208 			}
3209 			engines[idx].worker = worker;
3210 			engines[idx].result = 0;
3211 			engines[idx].p.engine = engine;
3212 			engines[idx].engine = engine;
3213 
3214 			kthread_init_work(&engines[idx].work, *fn);
3215 			kthread_queue_work(worker, &engines[idx].work);
3216 			idx++;
3217 		}
3218 
3219 		idx = 0;
3220 		for_each_uabi_engine(engine, i915) {
3221 			int status;
3222 
3223 			if (!engines[idx].worker)
3224 				break;
3225 
3226 			kthread_flush_work(&engines[idx].work);
3227 			status = READ_ONCE(engines[idx].result);
3228 			if (status && !err)
3229 				err = status;
3230 
3231 			intel_engine_pm_put(engine);
3232 
3233 			kthread_destroy_worker(engines[idx].worker);
3234 			idx++;
3235 		}
3236 
3237 		if (igt_live_test_end(&t))
3238 			err = -EIO;
3239 		if (err)
3240 			break;
3241 
3242 		idx = 0;
3243 		for_each_uabi_engine(engine, i915) {
3244 			struct perf_stats *p = &engines[idx].p;
3245 			u64 busy = 100 * ktime_to_ns(p->busy);
3246 			u64 dt = ktime_to_ns(p->time);
3247 			int integer, decimal;
3248 
3249 			if (dt) {
3250 				integer = div64_u64(busy, dt);
3251 				busy -= integer * dt;
3252 				decimal = div64_u64(100 * busy, dt);
3253 			} else {
3254 				integer = 0;
3255 				decimal = 0;
3256 			}
3257 
3258 			GEM_BUG_ON(engine != p->engine);
3259 			pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
3260 				name, engine->name, p->count, integer, decimal,
3261 				div_u64(p->runtime, 1000 * 1000),
3262 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
3263 			idx++;
3264 		}
3265 	}
3266 
3267 	cpu_latency_qos_remove_request(&qos);
3268 	kfree(engines);
3269 	return err;
3270 }
3271 
3272 int i915_request_perf_selftests(struct drm_i915_private *i915)
3273 {
3274 	static const struct i915_subtest tests[] = {
3275 		SUBTEST(perf_request_latency),
3276 		SUBTEST(perf_series_engines),
3277 		SUBTEST(perf_parallel_engines),
3278 	};
3279 
3280 	if (intel_gt_is_wedged(to_gt(i915)))
3281 		return 0;
3282 
3283 	return i915_subtests(tests, i915);
3284 }
3285