1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prime_numbers.h>
26 #include <linux/pm_qos.h>
27 #include <linux/sort.h>
28 
29 #include "gem/i915_gem_internal.h"
30 #include "gem/i915_gem_pm.h"
31 #include "gem/selftests/mock_context.h"
32 
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_engine_pm.h"
35 #include "gt/intel_engine_user.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_clock_utils.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/selftest_engine_heartbeat.h"
40 
41 #include "i915_random.h"
42 #include "i915_selftest.h"
43 #include "igt_flush_test.h"
44 #include "igt_live_test.h"
45 #include "igt_spinner.h"
46 #include "lib_sw_fence.h"
47 
48 #include "mock_drm.h"
49 #include "mock_gem_device.h"
50 
51 static unsigned int num_uabi_engines(struct drm_i915_private *i915)
52 {
53 	struct intel_engine_cs *engine;
54 	unsigned int count;
55 
56 	count = 0;
57 	for_each_uabi_engine(engine, i915)
58 		count++;
59 
60 	return count;
61 }
62 
63 static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
64 {
65 	return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
66 }
67 
68 static int igt_add_request(void *arg)
69 {
70 	struct drm_i915_private *i915 = arg;
71 	struct i915_request *request;
72 
73 	/* Basic preliminary test to create a request and let it loose! */
74 
75 	request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
76 	if (!request)
77 		return -ENOMEM;
78 
79 	i915_request_add(request);
80 
81 	return 0;
82 }
83 
84 static int igt_wait_request(void *arg)
85 {
86 	const long T = HZ / 4;
87 	struct drm_i915_private *i915 = arg;
88 	struct i915_request *request;
89 	int err = -EINVAL;
90 
91 	/* Submit a request, then wait upon it */
92 
93 	request = mock_request(rcs0(i915)->kernel_context, T);
94 	if (!request)
95 		return -ENOMEM;
96 
97 	i915_request_get(request);
98 
99 	if (i915_request_wait(request, 0, 0) != -ETIME) {
100 		pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
101 		goto out_request;
102 	}
103 
104 	if (i915_request_wait(request, 0, T) != -ETIME) {
105 		pr_err("request wait succeeded (expected timeout before submit!)\n");
106 		goto out_request;
107 	}
108 
109 	if (i915_request_completed(request)) {
110 		pr_err("request completed before submit!!\n");
111 		goto out_request;
112 	}
113 
114 	i915_request_add(request);
115 
116 	if (i915_request_wait(request, 0, 0) != -ETIME) {
117 		pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
118 		goto out_request;
119 	}
120 
121 	if (i915_request_completed(request)) {
122 		pr_err("request completed immediately!\n");
123 		goto out_request;
124 	}
125 
126 	if (i915_request_wait(request, 0, T / 2) != -ETIME) {
127 		pr_err("request wait succeeded (expected timeout!)\n");
128 		goto out_request;
129 	}
130 
131 	if (i915_request_wait(request, 0, T) == -ETIME) {
132 		pr_err("request wait timed out!\n");
133 		goto out_request;
134 	}
135 
136 	if (!i915_request_completed(request)) {
137 		pr_err("request not complete after waiting!\n");
138 		goto out_request;
139 	}
140 
141 	if (i915_request_wait(request, 0, T) == -ETIME) {
142 		pr_err("request wait timed out when already complete!\n");
143 		goto out_request;
144 	}
145 
146 	err = 0;
147 out_request:
148 	i915_request_put(request);
149 	mock_device_flush(i915);
150 	return err;
151 }
152 
153 static int igt_fence_wait(void *arg)
154 {
155 	const long T = HZ / 4;
156 	struct drm_i915_private *i915 = arg;
157 	struct i915_request *request;
158 	int err = -EINVAL;
159 
160 	/* Submit a request, treat it as a fence and wait upon it */
161 
162 	request = mock_request(rcs0(i915)->kernel_context, T);
163 	if (!request)
164 		return -ENOMEM;
165 
166 	if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
167 		pr_err("fence wait success before submit (expected timeout)!\n");
168 		goto out;
169 	}
170 
171 	i915_request_add(request);
172 
173 	if (dma_fence_is_signaled(&request->fence)) {
174 		pr_err("fence signaled immediately!\n");
175 		goto out;
176 	}
177 
178 	if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
179 		pr_err("fence wait success after submit (expected timeout)!\n");
180 		goto out;
181 	}
182 
183 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
184 		pr_err("fence wait timed out (expected success)!\n");
185 		goto out;
186 	}
187 
188 	if (!dma_fence_is_signaled(&request->fence)) {
189 		pr_err("fence unsignaled after waiting!\n");
190 		goto out;
191 	}
192 
193 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
194 		pr_err("fence wait timed out when complete (expected success)!\n");
195 		goto out;
196 	}
197 
198 	err = 0;
199 out:
200 	mock_device_flush(i915);
201 	return err;
202 }
203 
204 static int igt_request_rewind(void *arg)
205 {
206 	struct drm_i915_private *i915 = arg;
207 	struct i915_request *request, *vip;
208 	struct i915_gem_context *ctx[2];
209 	struct intel_context *ce;
210 	int err = -EINVAL;
211 
212 	ctx[0] = mock_context(i915, "A");
213 	if (!ctx[0]) {
214 		err = -ENOMEM;
215 		goto err_ctx_0;
216 	}
217 
218 	ce = i915_gem_context_get_engine(ctx[0], RCS0);
219 	GEM_BUG_ON(IS_ERR(ce));
220 	request = mock_request(ce, 2 * HZ);
221 	intel_context_put(ce);
222 	if (!request) {
223 		err = -ENOMEM;
224 		goto err_context_0;
225 	}
226 
227 	i915_request_get(request);
228 	i915_request_add(request);
229 
230 	ctx[1] = mock_context(i915, "B");
231 	if (!ctx[1]) {
232 		err = -ENOMEM;
233 		goto err_ctx_1;
234 	}
235 
236 	ce = i915_gem_context_get_engine(ctx[1], RCS0);
237 	GEM_BUG_ON(IS_ERR(ce));
238 	vip = mock_request(ce, 0);
239 	intel_context_put(ce);
240 	if (!vip) {
241 		err = -ENOMEM;
242 		goto err_context_1;
243 	}
244 
245 	/* Simulate preemption by manual reordering */
246 	if (!mock_cancel_request(request)) {
247 		pr_err("failed to cancel request (already executed)!\n");
248 		i915_request_add(vip);
249 		goto err_context_1;
250 	}
251 	i915_request_get(vip);
252 	i915_request_add(vip);
253 	rcu_read_lock();
254 	request->engine->submit_request(request);
255 	rcu_read_unlock();
256 
257 
258 	if (i915_request_wait(vip, 0, HZ) == -ETIME) {
259 		pr_err("timed out waiting for high priority request\n");
260 		goto err;
261 	}
262 
263 	if (i915_request_completed(request)) {
264 		pr_err("low priority request already completed\n");
265 		goto err;
266 	}
267 
268 	err = 0;
269 err:
270 	i915_request_put(vip);
271 err_context_1:
272 	mock_context_close(ctx[1]);
273 err_ctx_1:
274 	i915_request_put(request);
275 err_context_0:
276 	mock_context_close(ctx[0]);
277 err_ctx_0:
278 	mock_device_flush(i915);
279 	return err;
280 }
281 
282 struct smoketest {
283 	struct intel_engine_cs *engine;
284 	struct i915_gem_context **contexts;
285 	atomic_long_t num_waits, num_fences;
286 	int ncontexts, max_batch;
287 	struct i915_request *(*request_alloc)(struct intel_context *ce);
288 };
289 
290 static struct i915_request *
291 __mock_request_alloc(struct intel_context *ce)
292 {
293 	return mock_request(ce, 0);
294 }
295 
296 static struct i915_request *
297 __live_request_alloc(struct intel_context *ce)
298 {
299 	return intel_context_create_request(ce);
300 }
301 
302 struct smoke_thread {
303 	struct kthread_worker *worker;
304 	struct kthread_work work;
305 	struct smoketest *t;
306 	bool stop;
307 	int result;
308 };
309 
310 static void __igt_breadcrumbs_smoketest(struct kthread_work *work)
311 {
312 	struct smoke_thread *thread = container_of(work, typeof(*thread), work);
313 	struct smoketest *t = thread->t;
314 	const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
315 	const unsigned int total = 4 * t->ncontexts + 1;
316 	unsigned int num_waits = 0, num_fences = 0;
317 	struct i915_request **requests;
318 	I915_RND_STATE(prng);
319 	unsigned int *order;
320 	int err = 0;
321 
322 	/*
323 	 * A very simple test to catch the most egregious of list handling bugs.
324 	 *
325 	 * At its heart, we simply create oodles of requests running across
326 	 * multiple kthreads and enable signaling on them, for the sole purpose
327 	 * of stressing our breadcrumb handling. The only inspection we do is
328 	 * that the fences were marked as signaled.
329 	 */
330 
331 	requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
332 	if (!requests) {
333 		thread->result = -ENOMEM;
334 		return;
335 	}
336 
337 	order = i915_random_order(total, &prng);
338 	if (!order) {
339 		err = -ENOMEM;
340 		goto out_requests;
341 	}
342 
343 	while (!READ_ONCE(thread->stop)) {
344 		struct i915_sw_fence *submit, *wait;
345 		unsigned int n, count;
346 
347 		submit = heap_fence_create(GFP_KERNEL);
348 		if (!submit) {
349 			err = -ENOMEM;
350 			break;
351 		}
352 
353 		wait = heap_fence_create(GFP_KERNEL);
354 		if (!wait) {
355 			i915_sw_fence_commit(submit);
356 			heap_fence_put(submit);
357 			err = -ENOMEM;
358 			break;
359 		}
360 
361 		i915_random_reorder(order, total, &prng);
362 		count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
363 
364 		for (n = 0; n < count; n++) {
365 			struct i915_gem_context *ctx =
366 				t->contexts[order[n] % t->ncontexts];
367 			struct i915_request *rq;
368 			struct intel_context *ce;
369 
370 			ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
371 			GEM_BUG_ON(IS_ERR(ce));
372 			rq = t->request_alloc(ce);
373 			intel_context_put(ce);
374 			if (IS_ERR(rq)) {
375 				err = PTR_ERR(rq);
376 				count = n;
377 				break;
378 			}
379 
380 			err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
381 							       submit,
382 							       GFP_KERNEL);
383 
384 			requests[n] = i915_request_get(rq);
385 			i915_request_add(rq);
386 
387 			if (err >= 0)
388 				err = i915_sw_fence_await_dma_fence(wait,
389 								    &rq->fence,
390 								    0,
391 								    GFP_KERNEL);
392 
393 			if (err < 0) {
394 				i915_request_put(rq);
395 				count = n;
396 				break;
397 			}
398 		}
399 
400 		i915_sw_fence_commit(submit);
401 		i915_sw_fence_commit(wait);
402 
403 		if (!wait_event_timeout(wait->wait,
404 					i915_sw_fence_done(wait),
405 					5 * HZ)) {
406 			struct i915_request *rq = requests[count - 1];
407 
408 			pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
409 			       atomic_read(&wait->pending), count,
410 			       rq->fence.context, rq->fence.seqno,
411 			       t->engine->name);
412 			GEM_TRACE_DUMP();
413 
414 			intel_gt_set_wedged(t->engine->gt);
415 			GEM_BUG_ON(!i915_request_completed(rq));
416 			i915_sw_fence_wait(wait);
417 			err = -EIO;
418 		}
419 
420 		for (n = 0; n < count; n++) {
421 			struct i915_request *rq = requests[n];
422 
423 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
424 				      &rq->fence.flags)) {
425 				pr_err("%llu:%llu was not signaled!\n",
426 				       rq->fence.context, rq->fence.seqno);
427 				err = -EINVAL;
428 			}
429 
430 			i915_request_put(rq);
431 		}
432 
433 		heap_fence_put(wait);
434 		heap_fence_put(submit);
435 
436 		if (err < 0)
437 			break;
438 
439 		num_fences += count;
440 		num_waits++;
441 
442 		cond_resched();
443 	}
444 
445 	atomic_long_add(num_fences, &t->num_fences);
446 	atomic_long_add(num_waits, &t->num_waits);
447 
448 	kfree(order);
449 out_requests:
450 	kfree(requests);
451 	thread->result = err;
452 }
453 
454 static int mock_breadcrumbs_smoketest(void *arg)
455 {
456 	struct drm_i915_private *i915 = arg;
457 	struct smoketest t = {
458 		.engine = rcs0(i915),
459 		.ncontexts = 1024,
460 		.max_batch = 1024,
461 		.request_alloc = __mock_request_alloc
462 	};
463 	unsigned int ncpus = num_online_cpus();
464 	struct smoke_thread *threads;
465 	unsigned int n;
466 	int ret = 0;
467 
468 	/*
469 	 * Smoketest our breadcrumb/signal handling for requests across multiple
470 	 * threads. A very simple test to only catch the most egregious of bugs.
471 	 * See __igt_breadcrumbs_smoketest();
472 	 */
473 
474 	threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
475 	if (!threads)
476 		return -ENOMEM;
477 
478 	t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
479 	if (!t.contexts) {
480 		ret = -ENOMEM;
481 		goto out_threads;
482 	}
483 
484 	for (n = 0; n < t.ncontexts; n++) {
485 		t.contexts[n] = mock_context(t.engine->i915, "mock");
486 		if (!t.contexts[n]) {
487 			ret = -ENOMEM;
488 			goto out_contexts;
489 		}
490 	}
491 
492 	for (n = 0; n < ncpus; n++) {
493 		struct kthread_worker *worker;
494 
495 		worker = kthread_create_worker(0, "igt/%d", n);
496 		if (IS_ERR(worker)) {
497 			ret = PTR_ERR(worker);
498 			ncpus = n;
499 			break;
500 		}
501 
502 		threads[n].worker = worker;
503 		threads[n].t = &t;
504 		threads[n].stop = false;
505 		threads[n].result = 0;
506 
507 		kthread_init_work(&threads[n].work,
508 				  __igt_breadcrumbs_smoketest);
509 		kthread_queue_work(worker, &threads[n].work);
510 	}
511 
512 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
513 
514 	for (n = 0; n < ncpus; n++) {
515 		int err;
516 
517 		WRITE_ONCE(threads[n].stop, true);
518 		kthread_flush_work(&threads[n].work);
519 		err = READ_ONCE(threads[n].result);
520 		if (err < 0 && !ret)
521 			ret = err;
522 
523 		kthread_destroy_worker(threads[n].worker);
524 	}
525 	pr_info("Completed %lu waits for %lu fence across %d cpus\n",
526 		atomic_long_read(&t.num_waits),
527 		atomic_long_read(&t.num_fences),
528 		ncpus);
529 
530 out_contexts:
531 	for (n = 0; n < t.ncontexts; n++) {
532 		if (!t.contexts[n])
533 			break;
534 		mock_context_close(t.contexts[n]);
535 	}
536 	kfree(t.contexts);
537 out_threads:
538 	kfree(threads);
539 	return ret;
540 }
541 
542 int i915_request_mock_selftests(void)
543 {
544 	static const struct i915_subtest tests[] = {
545 		SUBTEST(igt_add_request),
546 		SUBTEST(igt_wait_request),
547 		SUBTEST(igt_fence_wait),
548 		SUBTEST(igt_request_rewind),
549 		SUBTEST(mock_breadcrumbs_smoketest),
550 	};
551 	struct drm_i915_private *i915;
552 	intel_wakeref_t wakeref;
553 	int err = 0;
554 
555 	i915 = mock_gem_device();
556 	if (!i915)
557 		return -ENOMEM;
558 
559 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
560 		err = i915_subtests(tests, i915);
561 
562 	mock_destroy_device(i915);
563 
564 	return err;
565 }
566 
567 static int live_nop_request(void *arg)
568 {
569 	struct drm_i915_private *i915 = arg;
570 	struct intel_engine_cs *engine;
571 	struct igt_live_test t;
572 	int err = -ENODEV;
573 
574 	/*
575 	 * Submit various sized batches of empty requests, to each engine
576 	 * (individually), and wait for the batch to complete. We can check
577 	 * the overhead of submitting requests to the hardware.
578 	 */
579 
580 	for_each_uabi_engine(engine, i915) {
581 		unsigned long n, prime;
582 		IGT_TIMEOUT(end_time);
583 		ktime_t times[2] = {};
584 
585 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
586 		if (err)
587 			return err;
588 
589 		intel_engine_pm_get(engine);
590 		for_each_prime_number_from(prime, 1, 8192) {
591 			struct i915_request *request = NULL;
592 
593 			times[1] = ktime_get_raw();
594 
595 			for (n = 0; n < prime; n++) {
596 				i915_request_put(request);
597 				request = i915_request_create(engine->kernel_context);
598 				if (IS_ERR(request))
599 					return PTR_ERR(request);
600 
601 				/*
602 				 * This space is left intentionally blank.
603 				 *
604 				 * We do not actually want to perform any
605 				 * action with this request, we just want
606 				 * to measure the latency in allocation
607 				 * and submission of our breadcrumbs -
608 				 * ensuring that the bare request is sufficient
609 				 * for the system to work (i.e. proper HEAD
610 				 * tracking of the rings, interrupt handling,
611 				 * etc). It also gives us the lowest bounds
612 				 * for latency.
613 				 */
614 
615 				i915_request_get(request);
616 				i915_request_add(request);
617 			}
618 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
619 			i915_request_put(request);
620 
621 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
622 			if (prime == 1)
623 				times[0] = times[1];
624 
625 			if (__igt_timeout(end_time, NULL))
626 				break;
627 		}
628 		intel_engine_pm_put(engine);
629 
630 		err = igt_live_test_end(&t);
631 		if (err)
632 			return err;
633 
634 		pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
635 			engine->name,
636 			ktime_to_ns(times[0]),
637 			prime, div64_u64(ktime_to_ns(times[1]), prime));
638 	}
639 
640 	return err;
641 }
642 
643 static int __cancel_inactive(struct intel_engine_cs *engine)
644 {
645 	struct intel_context *ce;
646 	struct igt_spinner spin;
647 	struct i915_request *rq;
648 	int err = 0;
649 
650 	if (igt_spinner_init(&spin, engine->gt))
651 		return -ENOMEM;
652 
653 	ce = intel_context_create(engine);
654 	if (IS_ERR(ce)) {
655 		err = PTR_ERR(ce);
656 		goto out_spin;
657 	}
658 
659 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
660 	if (IS_ERR(rq)) {
661 		err = PTR_ERR(rq);
662 		goto out_ce;
663 	}
664 
665 	pr_debug("%s: Cancelling inactive request\n", engine->name);
666 	i915_request_cancel(rq, -EINTR);
667 	i915_request_get(rq);
668 	i915_request_add(rq);
669 
670 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
671 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
672 
673 		pr_err("%s: Failed to cancel inactive request\n", engine->name);
674 		intel_engine_dump(engine, &p, "%s\n", engine->name);
675 		err = -ETIME;
676 		goto out_rq;
677 	}
678 
679 	if (rq->fence.error != -EINTR) {
680 		pr_err("%s: fence not cancelled (%u)\n",
681 		       engine->name, rq->fence.error);
682 		err = -EINVAL;
683 	}
684 
685 out_rq:
686 	i915_request_put(rq);
687 out_ce:
688 	intel_context_put(ce);
689 out_spin:
690 	igt_spinner_fini(&spin);
691 	if (err)
692 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
693 	return err;
694 }
695 
696 static int __cancel_active(struct intel_engine_cs *engine)
697 {
698 	struct intel_context *ce;
699 	struct igt_spinner spin;
700 	struct i915_request *rq;
701 	int err = 0;
702 
703 	if (igt_spinner_init(&spin, engine->gt))
704 		return -ENOMEM;
705 
706 	ce = intel_context_create(engine);
707 	if (IS_ERR(ce)) {
708 		err = PTR_ERR(ce);
709 		goto out_spin;
710 	}
711 
712 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
713 	if (IS_ERR(rq)) {
714 		err = PTR_ERR(rq);
715 		goto out_ce;
716 	}
717 
718 	pr_debug("%s: Cancelling active request\n", engine->name);
719 	i915_request_get(rq);
720 	i915_request_add(rq);
721 	if (!igt_wait_for_spinner(&spin, rq)) {
722 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
723 
724 		pr_err("Failed to start spinner on %s\n", engine->name);
725 		intel_engine_dump(engine, &p, "%s\n", engine->name);
726 		err = -ETIME;
727 		goto out_rq;
728 	}
729 	i915_request_cancel(rq, -EINTR);
730 
731 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
732 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
733 
734 		pr_err("%s: Failed to cancel active request\n", engine->name);
735 		intel_engine_dump(engine, &p, "%s\n", engine->name);
736 		err = -ETIME;
737 		goto out_rq;
738 	}
739 
740 	if (rq->fence.error != -EINTR) {
741 		pr_err("%s: fence not cancelled (%u)\n",
742 		       engine->name, rq->fence.error);
743 		err = -EINVAL;
744 	}
745 
746 out_rq:
747 	i915_request_put(rq);
748 out_ce:
749 	intel_context_put(ce);
750 out_spin:
751 	igt_spinner_fini(&spin);
752 	if (err)
753 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
754 	return err;
755 }
756 
757 static int __cancel_completed(struct intel_engine_cs *engine)
758 {
759 	struct intel_context *ce;
760 	struct igt_spinner spin;
761 	struct i915_request *rq;
762 	int err = 0;
763 
764 	if (igt_spinner_init(&spin, engine->gt))
765 		return -ENOMEM;
766 
767 	ce = intel_context_create(engine);
768 	if (IS_ERR(ce)) {
769 		err = PTR_ERR(ce);
770 		goto out_spin;
771 	}
772 
773 	rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
774 	if (IS_ERR(rq)) {
775 		err = PTR_ERR(rq);
776 		goto out_ce;
777 	}
778 	igt_spinner_end(&spin);
779 	i915_request_get(rq);
780 	i915_request_add(rq);
781 
782 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
783 		err = -ETIME;
784 		goto out_rq;
785 	}
786 
787 	pr_debug("%s: Cancelling completed request\n", engine->name);
788 	i915_request_cancel(rq, -EINTR);
789 	if (rq->fence.error) {
790 		pr_err("%s: fence not cancelled (%u)\n",
791 		       engine->name, rq->fence.error);
792 		err = -EINVAL;
793 	}
794 
795 out_rq:
796 	i915_request_put(rq);
797 out_ce:
798 	intel_context_put(ce);
799 out_spin:
800 	igt_spinner_fini(&spin);
801 	if (err)
802 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
803 	return err;
804 }
805 
806 /*
807  * Test to prove a non-preemptable request can be cancelled and a subsequent
808  * request on the same context can successfully complete after cancellation.
809  *
810  * Testing methodology is to create a non-preemptible request and submit it,
811  * wait for spinner to start, create a NOP request and submit it, cancel the
812  * spinner, wait for spinner to complete and verify it failed with an error,
813  * finally wait for NOP request to complete verify it succeeded without an
814  * error. Preemption timeout also reduced / restored so test runs in a timely
815  * maner.
816  */
817 static int __cancel_reset(struct drm_i915_private *i915,
818 			  struct intel_engine_cs *engine)
819 {
820 	struct intel_context *ce;
821 	struct igt_spinner spin;
822 	struct i915_request *rq, *nop;
823 	unsigned long preempt_timeout_ms;
824 	int err = 0;
825 
826 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT ||
827 	    !intel_has_reset_engine(engine->gt))
828 		return 0;
829 
830 	preempt_timeout_ms = engine->props.preempt_timeout_ms;
831 	engine->props.preempt_timeout_ms = 100;
832 
833 	if (igt_spinner_init(&spin, engine->gt))
834 		goto out_restore;
835 
836 	ce = intel_context_create(engine);
837 	if (IS_ERR(ce)) {
838 		err = PTR_ERR(ce);
839 		goto out_spin;
840 	}
841 
842 	rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
843 	if (IS_ERR(rq)) {
844 		err = PTR_ERR(rq);
845 		goto out_ce;
846 	}
847 
848 	pr_debug("%s: Cancelling active non-preemptable request\n",
849 		 engine->name);
850 	i915_request_get(rq);
851 	i915_request_add(rq);
852 	if (!igt_wait_for_spinner(&spin, rq)) {
853 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
854 
855 		pr_err("Failed to start spinner on %s\n", engine->name);
856 		intel_engine_dump(engine, &p, "%s\n", engine->name);
857 		err = -ETIME;
858 		goto out_rq;
859 	}
860 
861 	nop = intel_context_create_request(ce);
862 	if (IS_ERR(nop))
863 		goto out_rq;
864 	i915_request_get(nop);
865 	i915_request_add(nop);
866 
867 	i915_request_cancel(rq, -EINTR);
868 
869 	if (i915_request_wait(rq, 0, HZ) < 0) {
870 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
871 
872 		pr_err("%s: Failed to cancel hung request\n", engine->name);
873 		intel_engine_dump(engine, &p, "%s\n", engine->name);
874 		err = -ETIME;
875 		goto out_nop;
876 	}
877 
878 	if (rq->fence.error != -EINTR) {
879 		pr_err("%s: fence not cancelled (%u)\n",
880 		       engine->name, rq->fence.error);
881 		err = -EINVAL;
882 		goto out_nop;
883 	}
884 
885 	if (i915_request_wait(nop, 0, HZ) < 0) {
886 		struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
887 
888 		pr_err("%s: Failed to complete nop request\n", engine->name);
889 		intel_engine_dump(engine, &p, "%s\n", engine->name);
890 		err = -ETIME;
891 		goto out_nop;
892 	}
893 
894 	if (nop->fence.error != 0) {
895 		pr_err("%s: Nop request errored (%u)\n",
896 		       engine->name, nop->fence.error);
897 		err = -EINVAL;
898 	}
899 
900 out_nop:
901 	i915_request_put(nop);
902 out_rq:
903 	i915_request_put(rq);
904 out_ce:
905 	intel_context_put(ce);
906 out_spin:
907 	igt_spinner_fini(&spin);
908 out_restore:
909 	engine->props.preempt_timeout_ms = preempt_timeout_ms;
910 	if (err)
911 		pr_err("%s: %s error %d\n", __func__, engine->name, err);
912 	return err;
913 }
914 
915 static int live_cancel_request(void *arg)
916 {
917 	struct drm_i915_private *i915 = arg;
918 	struct intel_engine_cs *engine;
919 
920 	/*
921 	 * Check cancellation of requests. We expect to be able to immediately
922 	 * cancel active requests, even if they are currently on the GPU.
923 	 */
924 
925 	for_each_uabi_engine(engine, i915) {
926 		struct igt_live_test t;
927 		int err, err2;
928 
929 		if (!intel_engine_has_preemption(engine))
930 			continue;
931 
932 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
933 		if (err)
934 			return err;
935 
936 		err = __cancel_inactive(engine);
937 		if (err == 0)
938 			err = __cancel_active(engine);
939 		if (err == 0)
940 			err = __cancel_completed(engine);
941 
942 		err2 = igt_live_test_end(&t);
943 		if (err)
944 			return err;
945 		if (err2)
946 			return err2;
947 
948 		/* Expects reset so call outside of igt_live_test_* */
949 		err = __cancel_reset(i915, engine);
950 		if (err)
951 			return err;
952 
953 		if (igt_flush_test(i915))
954 			return -EIO;
955 	}
956 
957 	return 0;
958 }
959 
960 static struct i915_vma *empty_batch(struct drm_i915_private *i915)
961 {
962 	struct drm_i915_gem_object *obj;
963 	struct i915_vma *vma;
964 	u32 *cmd;
965 	int err;
966 
967 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
968 	if (IS_ERR(obj))
969 		return ERR_CAST(obj);
970 
971 	cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB);
972 	if (IS_ERR(cmd)) {
973 		err = PTR_ERR(cmd);
974 		goto err;
975 	}
976 
977 	*cmd = MI_BATCH_BUFFER_END;
978 
979 	__i915_gem_object_flush_map(obj, 0, 64);
980 	i915_gem_object_unpin_map(obj);
981 
982 	intel_gt_chipset_flush(to_gt(i915));
983 
984 	vma = i915_vma_instance(obj, &to_gt(i915)->ggtt->vm, NULL);
985 	if (IS_ERR(vma)) {
986 		err = PTR_ERR(vma);
987 		goto err;
988 	}
989 
990 	err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
991 	if (err)
992 		goto err;
993 
994 	/* Force the wait now to avoid including it in the benchmark */
995 	err = i915_vma_sync(vma);
996 	if (err)
997 		goto err_pin;
998 
999 	return vma;
1000 
1001 err_pin:
1002 	i915_vma_unpin(vma);
1003 err:
1004 	i915_gem_object_put(obj);
1005 	return ERR_PTR(err);
1006 }
1007 
1008 static struct i915_request *
1009 empty_request(struct intel_engine_cs *engine,
1010 	      struct i915_vma *batch)
1011 {
1012 	struct i915_request *request;
1013 	int err;
1014 
1015 	request = i915_request_create(engine->kernel_context);
1016 	if (IS_ERR(request))
1017 		return request;
1018 
1019 	err = engine->emit_bb_start(request,
1020 				    batch->node.start,
1021 				    batch->node.size,
1022 				    I915_DISPATCH_SECURE);
1023 	if (err)
1024 		goto out_request;
1025 
1026 	i915_request_get(request);
1027 out_request:
1028 	i915_request_add(request);
1029 	return err ? ERR_PTR(err) : request;
1030 }
1031 
1032 static int live_empty_request(void *arg)
1033 {
1034 	struct drm_i915_private *i915 = arg;
1035 	struct intel_engine_cs *engine;
1036 	struct igt_live_test t;
1037 	struct i915_vma *batch;
1038 	int err = 0;
1039 
1040 	/*
1041 	 * Submit various sized batches of empty requests, to each engine
1042 	 * (individually), and wait for the batch to complete. We can check
1043 	 * the overhead of submitting requests to the hardware.
1044 	 */
1045 
1046 	batch = empty_batch(i915);
1047 	if (IS_ERR(batch))
1048 		return PTR_ERR(batch);
1049 
1050 	for_each_uabi_engine(engine, i915) {
1051 		IGT_TIMEOUT(end_time);
1052 		struct i915_request *request;
1053 		unsigned long n, prime;
1054 		ktime_t times[2] = {};
1055 
1056 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
1057 		if (err)
1058 			goto out_batch;
1059 
1060 		intel_engine_pm_get(engine);
1061 
1062 		/* Warmup / preload */
1063 		request = empty_request(engine, batch);
1064 		if (IS_ERR(request)) {
1065 			err = PTR_ERR(request);
1066 			intel_engine_pm_put(engine);
1067 			goto out_batch;
1068 		}
1069 		i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1070 
1071 		for_each_prime_number_from(prime, 1, 8192) {
1072 			times[1] = ktime_get_raw();
1073 
1074 			for (n = 0; n < prime; n++) {
1075 				i915_request_put(request);
1076 				request = empty_request(engine, batch);
1077 				if (IS_ERR(request)) {
1078 					err = PTR_ERR(request);
1079 					intel_engine_pm_put(engine);
1080 					goto out_batch;
1081 				}
1082 			}
1083 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1084 
1085 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
1086 			if (prime == 1)
1087 				times[0] = times[1];
1088 
1089 			if (__igt_timeout(end_time, NULL))
1090 				break;
1091 		}
1092 		i915_request_put(request);
1093 		intel_engine_pm_put(engine);
1094 
1095 		err = igt_live_test_end(&t);
1096 		if (err)
1097 			goto out_batch;
1098 
1099 		pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
1100 			engine->name,
1101 			ktime_to_ns(times[0]),
1102 			prime, div64_u64(ktime_to_ns(times[1]), prime));
1103 	}
1104 
1105 out_batch:
1106 	i915_vma_unpin(batch);
1107 	i915_vma_put(batch);
1108 	return err;
1109 }
1110 
1111 static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
1112 {
1113 	struct drm_i915_gem_object *obj;
1114 	const int ver = GRAPHICS_VER(i915);
1115 	struct i915_vma *vma;
1116 	u32 *cmd;
1117 	int err;
1118 
1119 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
1120 	if (IS_ERR(obj))
1121 		return ERR_CAST(obj);
1122 
1123 	vma = i915_vma_instance(obj, to_gt(i915)->vm, NULL);
1124 	if (IS_ERR(vma)) {
1125 		err = PTR_ERR(vma);
1126 		goto err;
1127 	}
1128 
1129 	err = i915_vma_pin(vma, 0, 0, PIN_USER);
1130 	if (err)
1131 		goto err;
1132 
1133 	cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
1134 	if (IS_ERR(cmd)) {
1135 		err = PTR_ERR(cmd);
1136 		goto err;
1137 	}
1138 
1139 	if (ver >= 8) {
1140 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
1141 		*cmd++ = lower_32_bits(vma->node.start);
1142 		*cmd++ = upper_32_bits(vma->node.start);
1143 	} else if (ver >= 6) {
1144 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
1145 		*cmd++ = lower_32_bits(vma->node.start);
1146 	} else {
1147 		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1148 		*cmd++ = lower_32_bits(vma->node.start);
1149 	}
1150 	*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
1151 
1152 	__i915_gem_object_flush_map(obj, 0, 64);
1153 	i915_gem_object_unpin_map(obj);
1154 
1155 	intel_gt_chipset_flush(to_gt(i915));
1156 
1157 	return vma;
1158 
1159 err:
1160 	i915_gem_object_put(obj);
1161 	return ERR_PTR(err);
1162 }
1163 
1164 static int recursive_batch_resolve(struct i915_vma *batch)
1165 {
1166 	u32 *cmd;
1167 
1168 	cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
1169 	if (IS_ERR(cmd))
1170 		return PTR_ERR(cmd);
1171 
1172 	*cmd = MI_BATCH_BUFFER_END;
1173 
1174 	__i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
1175 	i915_gem_object_unpin_map(batch->obj);
1176 
1177 	intel_gt_chipset_flush(batch->vm->gt);
1178 
1179 	return 0;
1180 }
1181 
1182 static int live_all_engines(void *arg)
1183 {
1184 	struct drm_i915_private *i915 = arg;
1185 	const unsigned int nengines = num_uabi_engines(i915);
1186 	struct intel_engine_cs *engine;
1187 	struct i915_request **request;
1188 	struct igt_live_test t;
1189 	struct i915_vma *batch;
1190 	unsigned int idx;
1191 	int err;
1192 
1193 	/*
1194 	 * Check we can submit requests to all engines simultaneously. We
1195 	 * send a recursive batch to each engine - checking that we don't
1196 	 * block doing so, and that they don't complete too soon.
1197 	 */
1198 
1199 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1200 	if (!request)
1201 		return -ENOMEM;
1202 
1203 	err = igt_live_test_begin(&t, i915, __func__, "");
1204 	if (err)
1205 		goto out_free;
1206 
1207 	batch = recursive_batch(i915);
1208 	if (IS_ERR(batch)) {
1209 		err = PTR_ERR(batch);
1210 		pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
1211 		goto out_free;
1212 	}
1213 
1214 	i915_vma_lock(batch);
1215 
1216 	idx = 0;
1217 	for_each_uabi_engine(engine, i915) {
1218 		request[idx] = intel_engine_create_kernel_request(engine);
1219 		if (IS_ERR(request[idx])) {
1220 			err = PTR_ERR(request[idx]);
1221 			pr_err("%s: Request allocation failed with err=%d\n",
1222 			       __func__, err);
1223 			goto out_request;
1224 		}
1225 
1226 		err = i915_request_await_object(request[idx], batch->obj, 0);
1227 		if (err == 0)
1228 			err = i915_vma_move_to_active(batch, request[idx], 0);
1229 		GEM_BUG_ON(err);
1230 
1231 		err = engine->emit_bb_start(request[idx],
1232 					    batch->node.start,
1233 					    batch->node.size,
1234 					    0);
1235 		GEM_BUG_ON(err);
1236 		request[idx]->batch = batch;
1237 
1238 		i915_request_get(request[idx]);
1239 		i915_request_add(request[idx]);
1240 		idx++;
1241 	}
1242 
1243 	i915_vma_unlock(batch);
1244 
1245 	idx = 0;
1246 	for_each_uabi_engine(engine, i915) {
1247 		if (i915_request_completed(request[idx])) {
1248 			pr_err("%s(%s): request completed too early!\n",
1249 			       __func__, engine->name);
1250 			err = -EINVAL;
1251 			goto out_request;
1252 		}
1253 		idx++;
1254 	}
1255 
1256 	err = recursive_batch_resolve(batch);
1257 	if (err) {
1258 		pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
1259 		goto out_request;
1260 	}
1261 
1262 	idx = 0;
1263 	for_each_uabi_engine(engine, i915) {
1264 		long timeout;
1265 
1266 		timeout = i915_request_wait(request[idx], 0,
1267 					    MAX_SCHEDULE_TIMEOUT);
1268 		if (timeout < 0) {
1269 			err = timeout;
1270 			pr_err("%s: error waiting for request on %s, err=%d\n",
1271 			       __func__, engine->name, err);
1272 			goto out_request;
1273 		}
1274 
1275 		GEM_BUG_ON(!i915_request_completed(request[idx]));
1276 		i915_request_put(request[idx]);
1277 		request[idx] = NULL;
1278 		idx++;
1279 	}
1280 
1281 	err = igt_live_test_end(&t);
1282 
1283 out_request:
1284 	idx = 0;
1285 	for_each_uabi_engine(engine, i915) {
1286 		if (request[idx])
1287 			i915_request_put(request[idx]);
1288 		idx++;
1289 	}
1290 	i915_vma_unpin(batch);
1291 	i915_vma_put(batch);
1292 out_free:
1293 	kfree(request);
1294 	return err;
1295 }
1296 
1297 static int live_sequential_engines(void *arg)
1298 {
1299 	struct drm_i915_private *i915 = arg;
1300 	const unsigned int nengines = num_uabi_engines(i915);
1301 	struct i915_request **request;
1302 	struct i915_request *prev = NULL;
1303 	struct intel_engine_cs *engine;
1304 	struct igt_live_test t;
1305 	unsigned int idx;
1306 	int err;
1307 
1308 	/*
1309 	 * Check we can submit requests to all engines sequentially, such
1310 	 * that each successive request waits for the earlier ones. This
1311 	 * tests that we don't execute requests out of order, even though
1312 	 * they are running on independent engines.
1313 	 */
1314 
1315 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1316 	if (!request)
1317 		return -ENOMEM;
1318 
1319 	err = igt_live_test_begin(&t, i915, __func__, "");
1320 	if (err)
1321 		goto out_free;
1322 
1323 	idx = 0;
1324 	for_each_uabi_engine(engine, i915) {
1325 		struct i915_vma *batch;
1326 
1327 		batch = recursive_batch(i915);
1328 		if (IS_ERR(batch)) {
1329 			err = PTR_ERR(batch);
1330 			pr_err("%s: Unable to create batch for %s, err=%d\n",
1331 			       __func__, engine->name, err);
1332 			goto out_free;
1333 		}
1334 
1335 		i915_vma_lock(batch);
1336 		request[idx] = intel_engine_create_kernel_request(engine);
1337 		if (IS_ERR(request[idx])) {
1338 			err = PTR_ERR(request[idx]);
1339 			pr_err("%s: Request allocation failed for %s with err=%d\n",
1340 			       __func__, engine->name, err);
1341 			goto out_unlock;
1342 		}
1343 
1344 		if (prev) {
1345 			err = i915_request_await_dma_fence(request[idx],
1346 							   &prev->fence);
1347 			if (err) {
1348 				i915_request_add(request[idx]);
1349 				pr_err("%s: Request await failed for %s with err=%d\n",
1350 				       __func__, engine->name, err);
1351 				goto out_unlock;
1352 			}
1353 		}
1354 
1355 		err = i915_request_await_object(request[idx],
1356 						batch->obj, false);
1357 		if (err == 0)
1358 			err = i915_vma_move_to_active(batch, request[idx], 0);
1359 		GEM_BUG_ON(err);
1360 
1361 		err = engine->emit_bb_start(request[idx],
1362 					    batch->node.start,
1363 					    batch->node.size,
1364 					    0);
1365 		GEM_BUG_ON(err);
1366 		request[idx]->batch = batch;
1367 
1368 		i915_request_get(request[idx]);
1369 		i915_request_add(request[idx]);
1370 
1371 		prev = request[idx];
1372 		idx++;
1373 
1374 out_unlock:
1375 		i915_vma_unlock(batch);
1376 		if (err)
1377 			goto out_request;
1378 	}
1379 
1380 	idx = 0;
1381 	for_each_uabi_engine(engine, i915) {
1382 		long timeout;
1383 
1384 		if (i915_request_completed(request[idx])) {
1385 			pr_err("%s(%s): request completed too early!\n",
1386 			       __func__, engine->name);
1387 			err = -EINVAL;
1388 			goto out_request;
1389 		}
1390 
1391 		err = recursive_batch_resolve(request[idx]->batch);
1392 		if (err) {
1393 			pr_err("%s: failed to resolve batch, err=%d\n",
1394 			       __func__, err);
1395 			goto out_request;
1396 		}
1397 
1398 		timeout = i915_request_wait(request[idx], 0,
1399 					    MAX_SCHEDULE_TIMEOUT);
1400 		if (timeout < 0) {
1401 			err = timeout;
1402 			pr_err("%s: error waiting for request on %s, err=%d\n",
1403 			       __func__, engine->name, err);
1404 			goto out_request;
1405 		}
1406 
1407 		GEM_BUG_ON(!i915_request_completed(request[idx]));
1408 		idx++;
1409 	}
1410 
1411 	err = igt_live_test_end(&t);
1412 
1413 out_request:
1414 	idx = 0;
1415 	for_each_uabi_engine(engine, i915) {
1416 		u32 *cmd;
1417 
1418 		if (!request[idx])
1419 			break;
1420 
1421 		cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
1422 						       I915_MAP_WC);
1423 		if (!IS_ERR(cmd)) {
1424 			*cmd = MI_BATCH_BUFFER_END;
1425 
1426 			__i915_gem_object_flush_map(request[idx]->batch->obj,
1427 						    0, sizeof(*cmd));
1428 			i915_gem_object_unpin_map(request[idx]->batch->obj);
1429 
1430 			intel_gt_chipset_flush(engine->gt);
1431 		}
1432 
1433 		i915_vma_put(request[idx]->batch);
1434 		i915_request_put(request[idx]);
1435 		idx++;
1436 	}
1437 out_free:
1438 	kfree(request);
1439 	return err;
1440 }
1441 
1442 struct parallel_thread {
1443 	struct kthread_worker *worker;
1444 	struct kthread_work work;
1445 	struct intel_engine_cs *engine;
1446 	int result;
1447 };
1448 
1449 static void __live_parallel_engine1(struct kthread_work *work)
1450 {
1451 	struct parallel_thread *thread =
1452 		container_of(work, typeof(*thread), work);
1453 	struct intel_engine_cs *engine = thread->engine;
1454 	IGT_TIMEOUT(end_time);
1455 	unsigned long count;
1456 	int err = 0;
1457 
1458 	count = 0;
1459 	intel_engine_pm_get(engine);
1460 	do {
1461 		struct i915_request *rq;
1462 
1463 		rq = i915_request_create(engine->kernel_context);
1464 		if (IS_ERR(rq)) {
1465 			err = PTR_ERR(rq);
1466 			break;
1467 		}
1468 
1469 		i915_request_get(rq);
1470 		i915_request_add(rq);
1471 
1472 		err = 0;
1473 		if (i915_request_wait(rq, 0, HZ) < 0)
1474 			err = -ETIME;
1475 		i915_request_put(rq);
1476 		if (err)
1477 			break;
1478 
1479 		count++;
1480 	} while (!__igt_timeout(end_time, NULL));
1481 	intel_engine_pm_put(engine);
1482 
1483 	pr_info("%s: %lu request + sync\n", engine->name, count);
1484 	thread->result = err;
1485 }
1486 
1487 static void __live_parallel_engineN(struct kthread_work *work)
1488 {
1489 	struct parallel_thread *thread =
1490 		container_of(work, typeof(*thread), work);
1491 	struct intel_engine_cs *engine = thread->engine;
1492 	IGT_TIMEOUT(end_time);
1493 	unsigned long count;
1494 	int err = 0;
1495 
1496 	count = 0;
1497 	intel_engine_pm_get(engine);
1498 	do {
1499 		struct i915_request *rq;
1500 
1501 		rq = i915_request_create(engine->kernel_context);
1502 		if (IS_ERR(rq)) {
1503 			err = PTR_ERR(rq);
1504 			break;
1505 		}
1506 
1507 		i915_request_add(rq);
1508 		count++;
1509 	} while (!__igt_timeout(end_time, NULL));
1510 	intel_engine_pm_put(engine);
1511 
1512 	pr_info("%s: %lu requests\n", engine->name, count);
1513 	thread->result = err;
1514 }
1515 
1516 static bool wake_all(struct drm_i915_private *i915)
1517 {
1518 	if (atomic_dec_and_test(&i915->selftest.counter)) {
1519 		wake_up_var(&i915->selftest.counter);
1520 		return true;
1521 	}
1522 
1523 	return false;
1524 }
1525 
1526 static int wait_for_all(struct drm_i915_private *i915)
1527 {
1528 	if (wake_all(i915))
1529 		return 0;
1530 
1531 	if (wait_var_event_timeout(&i915->selftest.counter,
1532 				   !atomic_read(&i915->selftest.counter),
1533 				   i915_selftest.timeout_jiffies))
1534 		return 0;
1535 
1536 	return -ETIME;
1537 }
1538 
1539 static void __live_parallel_spin(struct kthread_work *work)
1540 {
1541 	struct parallel_thread *thread =
1542 		container_of(work, typeof(*thread), work);
1543 	struct intel_engine_cs *engine = thread->engine;
1544 	struct igt_spinner spin;
1545 	struct i915_request *rq;
1546 	int err = 0;
1547 
1548 	/*
1549 	 * Create a spinner running for eternity on each engine. If a second
1550 	 * spinner is incorrectly placed on the same engine, it will not be
1551 	 * able to start in time.
1552 	 */
1553 
1554 	if (igt_spinner_init(&spin, engine->gt)) {
1555 		wake_all(engine->i915);
1556 		thread->result = -ENOMEM;
1557 		return;
1558 	}
1559 
1560 	intel_engine_pm_get(engine);
1561 	rq = igt_spinner_create_request(&spin,
1562 					engine->kernel_context,
1563 					MI_NOOP); /* no preemption */
1564 	intel_engine_pm_put(engine);
1565 	if (IS_ERR(rq)) {
1566 		err = PTR_ERR(rq);
1567 		if (err == -ENODEV)
1568 			err = 0;
1569 		wake_all(engine->i915);
1570 		goto out_spin;
1571 	}
1572 
1573 	i915_request_get(rq);
1574 	i915_request_add(rq);
1575 	if (igt_wait_for_spinner(&spin, rq)) {
1576 		/* Occupy this engine for the whole test */
1577 		err = wait_for_all(engine->i915);
1578 	} else {
1579 		pr_err("Failed to start spinner on %s\n", engine->name);
1580 		err = -EINVAL;
1581 	}
1582 	igt_spinner_end(&spin);
1583 
1584 	if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
1585 		err = -EIO;
1586 	i915_request_put(rq);
1587 
1588 out_spin:
1589 	igt_spinner_fini(&spin);
1590 	thread->result = err;
1591 }
1592 
1593 static int live_parallel_engines(void *arg)
1594 {
1595 	struct drm_i915_private *i915 = arg;
1596 	static void (* const func[])(struct kthread_work *) = {
1597 		__live_parallel_engine1,
1598 		__live_parallel_engineN,
1599 		__live_parallel_spin,
1600 		NULL,
1601 	};
1602 	const unsigned int nengines = num_uabi_engines(i915);
1603 	struct parallel_thread *threads;
1604 	struct intel_engine_cs *engine;
1605 	void (* const *fn)(struct kthread_work *);
1606 	int err = 0;
1607 
1608 	/*
1609 	 * Check we can submit requests to all engines concurrently. This
1610 	 * tests that we load up the system maximally.
1611 	 */
1612 
1613 	threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL);
1614 	if (!threads)
1615 		return -ENOMEM;
1616 
1617 	for (fn = func; !err && *fn; fn++) {
1618 		char name[KSYM_NAME_LEN];
1619 		struct igt_live_test t;
1620 		unsigned int idx;
1621 
1622 		snprintf(name, sizeof(name), "%ps", *fn);
1623 		err = igt_live_test_begin(&t, i915, __func__, name);
1624 		if (err)
1625 			break;
1626 
1627 		atomic_set(&i915->selftest.counter, nengines);
1628 
1629 		idx = 0;
1630 		for_each_uabi_engine(engine, i915) {
1631 			struct kthread_worker *worker;
1632 
1633 			worker = kthread_create_worker(0, "igt/parallel:%s",
1634 						       engine->name);
1635 			if (IS_ERR(worker)) {
1636 				err = PTR_ERR(worker);
1637 				break;
1638 			}
1639 
1640 			threads[idx].worker = worker;
1641 			threads[idx].result = 0;
1642 			threads[idx].engine = engine;
1643 
1644 			kthread_init_work(&threads[idx].work, *fn);
1645 			kthread_queue_work(worker, &threads[idx].work);
1646 			idx++;
1647 		}
1648 
1649 		idx = 0;
1650 		for_each_uabi_engine(engine, i915) {
1651 			int status;
1652 
1653 			if (!threads[idx].worker)
1654 				break;
1655 
1656 			kthread_flush_work(&threads[idx].work);
1657 			status = READ_ONCE(threads[idx].result);
1658 			if (status && !err)
1659 				err = status;
1660 
1661 			kthread_destroy_worker(threads[idx++].worker);
1662 		}
1663 
1664 		if (igt_live_test_end(&t))
1665 			err = -EIO;
1666 	}
1667 
1668 	kfree(threads);
1669 	return err;
1670 }
1671 
1672 static int
1673 max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
1674 {
1675 	struct i915_request *rq;
1676 	int ret;
1677 
1678 	/*
1679 	 * Before execlists, all contexts share the same ringbuffer. With
1680 	 * execlists, each context/engine has a separate ringbuffer and
1681 	 * for the purposes of this test, inexhaustible.
1682 	 *
1683 	 * For the global ringbuffer though, we have to be very careful
1684 	 * that we do not wrap while preventing the execution of requests
1685 	 * with a unsignaled fence.
1686 	 */
1687 	if (HAS_EXECLISTS(ctx->i915))
1688 		return INT_MAX;
1689 
1690 	rq = igt_request_alloc(ctx, engine);
1691 	if (IS_ERR(rq)) {
1692 		ret = PTR_ERR(rq);
1693 	} else {
1694 		int sz;
1695 
1696 		ret = rq->ring->size - rq->reserved_space;
1697 		i915_request_add(rq);
1698 
1699 		sz = rq->ring->emit - rq->head;
1700 		if (sz < 0)
1701 			sz += rq->ring->size;
1702 		ret /= sz;
1703 		ret /= 2; /* leave half spare, in case of emergency! */
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 static int live_breadcrumbs_smoketest(void *arg)
1710 {
1711 	struct drm_i915_private *i915 = arg;
1712 	const unsigned int nengines = num_uabi_engines(i915);
1713 	const unsigned int ncpus = num_online_cpus();
1714 	unsigned long num_waits, num_fences;
1715 	struct intel_engine_cs *engine;
1716 	struct smoke_thread *threads;
1717 	struct igt_live_test live;
1718 	intel_wakeref_t wakeref;
1719 	struct smoketest *smoke;
1720 	unsigned int n, idx;
1721 	struct file *file;
1722 	int ret = 0;
1723 
1724 	/*
1725 	 * Smoketest our breadcrumb/signal handling for requests across multiple
1726 	 * threads. A very simple test to only catch the most egregious of bugs.
1727 	 * See __igt_breadcrumbs_smoketest();
1728 	 *
1729 	 * On real hardware this time.
1730 	 */
1731 
1732 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1733 
1734 	file = mock_file(i915);
1735 	if (IS_ERR(file)) {
1736 		ret = PTR_ERR(file);
1737 		goto out_rpm;
1738 	}
1739 
1740 	smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
1741 	if (!smoke) {
1742 		ret = -ENOMEM;
1743 		goto out_file;
1744 	}
1745 
1746 	threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
1747 	if (!threads) {
1748 		ret = -ENOMEM;
1749 		goto out_smoke;
1750 	}
1751 
1752 	smoke[0].request_alloc = __live_request_alloc;
1753 	smoke[0].ncontexts = 64;
1754 	smoke[0].contexts = kcalloc(smoke[0].ncontexts,
1755 				    sizeof(*smoke[0].contexts),
1756 				    GFP_KERNEL);
1757 	if (!smoke[0].contexts) {
1758 		ret = -ENOMEM;
1759 		goto out_threads;
1760 	}
1761 
1762 	for (n = 0; n < smoke[0].ncontexts; n++) {
1763 		smoke[0].contexts[n] = live_context(i915, file);
1764 		if (IS_ERR(smoke[0].contexts[n])) {
1765 			ret = PTR_ERR(smoke[0].contexts[n]);
1766 			goto out_contexts;
1767 		}
1768 	}
1769 
1770 	ret = igt_live_test_begin(&live, i915, __func__, "");
1771 	if (ret)
1772 		goto out_contexts;
1773 
1774 	idx = 0;
1775 	for_each_uabi_engine(engine, i915) {
1776 		smoke[idx] = smoke[0];
1777 		smoke[idx].engine = engine;
1778 		smoke[idx].max_batch =
1779 			max_batches(smoke[0].contexts[0], engine);
1780 		if (smoke[idx].max_batch < 0) {
1781 			ret = smoke[idx].max_batch;
1782 			goto out_flush;
1783 		}
1784 		/* One ring interleaved between requests from all cpus */
1785 		smoke[idx].max_batch /= num_online_cpus() + 1;
1786 		pr_debug("Limiting batches to %d requests on %s\n",
1787 			 smoke[idx].max_batch, engine->name);
1788 
1789 		for (n = 0; n < ncpus; n++) {
1790 			unsigned int i = idx * ncpus + n;
1791 			struct kthread_worker *worker;
1792 
1793 			worker = kthread_create_worker(0, "igt/%d.%d", idx, n);
1794 			if (IS_ERR(worker)) {
1795 				ret = PTR_ERR(worker);
1796 				goto out_flush;
1797 			}
1798 
1799 			threads[i].worker = worker;
1800 			threads[i].t = &smoke[idx];
1801 
1802 			kthread_init_work(&threads[i].work,
1803 					  __igt_breadcrumbs_smoketest);
1804 			kthread_queue_work(worker, &threads[i].work);
1805 		}
1806 
1807 		idx++;
1808 	}
1809 
1810 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
1811 
1812 out_flush:
1813 	idx = 0;
1814 	num_waits = 0;
1815 	num_fences = 0;
1816 	for_each_uabi_engine(engine, i915) {
1817 		for (n = 0; n < ncpus; n++) {
1818 			unsigned int i = idx * ncpus + n;
1819 			int err;
1820 
1821 			if (!threads[i].worker)
1822 				continue;
1823 
1824 			WRITE_ONCE(threads[i].stop, true);
1825 			kthread_flush_work(&threads[i].work);
1826 			err = READ_ONCE(threads[i].result);
1827 			if (err < 0 && !ret)
1828 				ret = err;
1829 
1830 			kthread_destroy_worker(threads[i].worker);
1831 		}
1832 
1833 		num_waits += atomic_long_read(&smoke[idx].num_waits);
1834 		num_fences += atomic_long_read(&smoke[idx].num_fences);
1835 		idx++;
1836 	}
1837 	pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
1838 		num_waits, num_fences, idx, ncpus);
1839 
1840 	ret = igt_live_test_end(&live) ?: ret;
1841 out_contexts:
1842 	kfree(smoke[0].contexts);
1843 out_threads:
1844 	kfree(threads);
1845 out_smoke:
1846 	kfree(smoke);
1847 out_file:
1848 	fput(file);
1849 out_rpm:
1850 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1851 
1852 	return ret;
1853 }
1854 
1855 int i915_request_live_selftests(struct drm_i915_private *i915)
1856 {
1857 	static const struct i915_subtest tests[] = {
1858 		SUBTEST(live_nop_request),
1859 		SUBTEST(live_all_engines),
1860 		SUBTEST(live_sequential_engines),
1861 		SUBTEST(live_parallel_engines),
1862 		SUBTEST(live_empty_request),
1863 		SUBTEST(live_cancel_request),
1864 		SUBTEST(live_breadcrumbs_smoketest),
1865 	};
1866 
1867 	if (intel_gt_is_wedged(to_gt(i915)))
1868 		return 0;
1869 
1870 	return i915_live_subtests(tests, i915);
1871 }
1872 
1873 static int switch_to_kernel_sync(struct intel_context *ce, int err)
1874 {
1875 	struct i915_request *rq;
1876 	struct dma_fence *fence;
1877 
1878 	rq = intel_engine_create_kernel_request(ce->engine);
1879 	if (IS_ERR(rq))
1880 		return PTR_ERR(rq);
1881 
1882 	fence = i915_active_fence_get(&ce->timeline->last_request);
1883 	if (fence) {
1884 		i915_request_await_dma_fence(rq, fence);
1885 		dma_fence_put(fence);
1886 	}
1887 
1888 	rq = i915_request_get(rq);
1889 	i915_request_add(rq);
1890 	if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
1891 		err = -ETIME;
1892 	i915_request_put(rq);
1893 
1894 	while (!err && !intel_engine_is_idle(ce->engine))
1895 		intel_engine_flush_submission(ce->engine);
1896 
1897 	return err;
1898 }
1899 
1900 struct perf_stats {
1901 	struct intel_engine_cs *engine;
1902 	unsigned long count;
1903 	ktime_t time;
1904 	ktime_t busy;
1905 	u64 runtime;
1906 };
1907 
1908 struct perf_series {
1909 	struct drm_i915_private *i915;
1910 	unsigned int nengines;
1911 	struct intel_context *ce[];
1912 };
1913 
1914 static int cmp_u32(const void *A, const void *B)
1915 {
1916 	const u32 *a = A, *b = B;
1917 
1918 	return *a - *b;
1919 }
1920 
1921 static u32 trifilter(u32 *a)
1922 {
1923 	u64 sum;
1924 
1925 #define TF_COUNT 5
1926 	sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
1927 
1928 	sum = mul_u32_u32(a[2], 2);
1929 	sum += a[1];
1930 	sum += a[3];
1931 
1932 	GEM_BUG_ON(sum > U32_MAX);
1933 	return sum;
1934 #define TF_BIAS 2
1935 }
1936 
1937 static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
1938 {
1939 	u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
1940 
1941 	return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
1942 }
1943 
1944 static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
1945 {
1946 	*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
1947 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
1948 	*cs++ = offset;
1949 	*cs++ = 0;
1950 
1951 	return cs;
1952 }
1953 
1954 static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
1955 {
1956 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1957 	*cs++ = offset;
1958 	*cs++ = 0;
1959 	*cs++ = value;
1960 
1961 	return cs;
1962 }
1963 
1964 static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
1965 {
1966 	*cs++ = MI_SEMAPHORE_WAIT |
1967 		MI_SEMAPHORE_GLOBAL_GTT |
1968 		MI_SEMAPHORE_POLL |
1969 		mode;
1970 	*cs++ = value;
1971 	*cs++ = offset;
1972 	*cs++ = 0;
1973 
1974 	return cs;
1975 }
1976 
1977 static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
1978 {
1979 	return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
1980 }
1981 
1982 static void semaphore_set(u32 *sema, u32 value)
1983 {
1984 	WRITE_ONCE(*sema, value);
1985 	wmb(); /* flush the update to the cache, and beyond */
1986 }
1987 
1988 static u32 *hwsp_scratch(const struct intel_context *ce)
1989 {
1990 	return memset32(ce->engine->status_page.addr + 1000, 0, 21);
1991 }
1992 
1993 static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
1994 {
1995 	return (i915_ggtt_offset(ce->engine->status_page.vma) +
1996 		offset_in_page(dw));
1997 }
1998 
1999 static int measure_semaphore_response(struct intel_context *ce)
2000 {
2001 	u32 *sema = hwsp_scratch(ce);
2002 	const u32 offset = hwsp_offset(ce, sema);
2003 	u32 elapsed[TF_COUNT], cycles;
2004 	struct i915_request *rq;
2005 	u32 *cs;
2006 	int err;
2007 	int i;
2008 
2009 	/*
2010 	 * Measure how many cycles it takes for the HW to detect the change
2011 	 * in a semaphore value.
2012 	 *
2013 	 *    A: read CS_TIMESTAMP from CPU
2014 	 *    poke semaphore
2015 	 *    B: read CS_TIMESTAMP on GPU
2016 	 *
2017 	 * Semaphore latency: B - A
2018 	 */
2019 
2020 	semaphore_set(sema, -1);
2021 
2022 	rq = i915_request_create(ce);
2023 	if (IS_ERR(rq))
2024 		return PTR_ERR(rq);
2025 
2026 	cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
2027 	if (IS_ERR(cs)) {
2028 		i915_request_add(rq);
2029 		err = PTR_ERR(cs);
2030 		goto err;
2031 	}
2032 
2033 	cs = emit_store_dw(cs, offset, 0);
2034 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2035 		cs = emit_semaphore_poll_until(cs, offset, i);
2036 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2037 		cs = emit_store_dw(cs, offset, 0);
2038 	}
2039 
2040 	intel_ring_advance(rq, cs);
2041 	i915_request_add(rq);
2042 
2043 	if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2044 		err = -EIO;
2045 		goto err;
2046 	}
2047 
2048 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2049 		preempt_disable();
2050 		cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2051 		semaphore_set(sema, i);
2052 		preempt_enable();
2053 
2054 		if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2055 			err = -EIO;
2056 			goto err;
2057 		}
2058 
2059 		elapsed[i - 1] = sema[i] - cycles;
2060 	}
2061 
2062 	cycles = trifilter(elapsed);
2063 	pr_info("%s: semaphore response %d cycles, %lluns\n",
2064 		ce->engine->name, cycles >> TF_BIAS,
2065 		cycles_to_ns(ce->engine, cycles));
2066 
2067 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2068 
2069 err:
2070 	intel_gt_set_wedged(ce->engine->gt);
2071 	return err;
2072 }
2073 
2074 static int measure_idle_dispatch(struct intel_context *ce)
2075 {
2076 	u32 *sema = hwsp_scratch(ce);
2077 	const u32 offset = hwsp_offset(ce, sema);
2078 	u32 elapsed[TF_COUNT], cycles;
2079 	u32 *cs;
2080 	int err;
2081 	int i;
2082 
2083 	/*
2084 	 * Measure how long it takes for us to submit a request while the
2085 	 * engine is idle, but is resting in our context.
2086 	 *
2087 	 *    A: read CS_TIMESTAMP from CPU
2088 	 *    submit request
2089 	 *    B: read CS_TIMESTAMP on GPU
2090 	 *
2091 	 * Submission latency: B - A
2092 	 */
2093 
2094 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2095 		struct i915_request *rq;
2096 
2097 		err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2098 		if (err)
2099 			return err;
2100 
2101 		rq = i915_request_create(ce);
2102 		if (IS_ERR(rq)) {
2103 			err = PTR_ERR(rq);
2104 			goto err;
2105 		}
2106 
2107 		cs = intel_ring_begin(rq, 4);
2108 		if (IS_ERR(cs)) {
2109 			i915_request_add(rq);
2110 			err = PTR_ERR(cs);
2111 			goto err;
2112 		}
2113 
2114 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2115 
2116 		intel_ring_advance(rq, cs);
2117 
2118 		preempt_disable();
2119 		local_bh_disable();
2120 		elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2121 		i915_request_add(rq);
2122 		local_bh_enable();
2123 		preempt_enable();
2124 	}
2125 
2126 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2127 	if (err)
2128 		goto err;
2129 
2130 	for (i = 0; i < ARRAY_SIZE(elapsed); i++)
2131 		elapsed[i] = sema[i] - elapsed[i];
2132 
2133 	cycles = trifilter(elapsed);
2134 	pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
2135 		ce->engine->name, cycles >> TF_BIAS,
2136 		cycles_to_ns(ce->engine, cycles));
2137 
2138 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2139 
2140 err:
2141 	intel_gt_set_wedged(ce->engine->gt);
2142 	return err;
2143 }
2144 
2145 static int measure_busy_dispatch(struct intel_context *ce)
2146 {
2147 	u32 *sema = hwsp_scratch(ce);
2148 	const u32 offset = hwsp_offset(ce, sema);
2149 	u32 elapsed[TF_COUNT + 1], cycles;
2150 	u32 *cs;
2151 	int err;
2152 	int i;
2153 
2154 	/*
2155 	 * Measure how long it takes for us to submit a request while the
2156 	 * engine is busy, polling on a semaphore in our context. With
2157 	 * direct submission, this will include the cost of a lite restore.
2158 	 *
2159 	 *    A: read CS_TIMESTAMP from CPU
2160 	 *    submit request
2161 	 *    B: read CS_TIMESTAMP on GPU
2162 	 *
2163 	 * Submission latency: B - A
2164 	 */
2165 
2166 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2167 		struct i915_request *rq;
2168 
2169 		rq = i915_request_create(ce);
2170 		if (IS_ERR(rq)) {
2171 			err = PTR_ERR(rq);
2172 			goto err;
2173 		}
2174 
2175 		cs = intel_ring_begin(rq, 12);
2176 		if (IS_ERR(cs)) {
2177 			i915_request_add(rq);
2178 			err = PTR_ERR(cs);
2179 			goto err;
2180 		}
2181 
2182 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2183 		cs = emit_semaphore_poll_until(cs, offset, i);
2184 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2185 
2186 		intel_ring_advance(rq, cs);
2187 
2188 		if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
2189 			err = -EIO;
2190 			goto err;
2191 		}
2192 
2193 		preempt_disable();
2194 		local_bh_disable();
2195 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2196 		i915_request_add(rq);
2197 		local_bh_enable();
2198 		semaphore_set(sema, i - 1);
2199 		preempt_enable();
2200 	}
2201 
2202 	wait_for(READ_ONCE(sema[i - 1]), 500);
2203 	semaphore_set(sema, i - 1);
2204 
2205 	for (i = 1; i <= TF_COUNT; i++) {
2206 		GEM_BUG_ON(sema[i] == -1);
2207 		elapsed[i - 1] = sema[i] - elapsed[i];
2208 	}
2209 
2210 	cycles = trifilter(elapsed);
2211 	pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
2212 		ce->engine->name, cycles >> TF_BIAS,
2213 		cycles_to_ns(ce->engine, cycles));
2214 
2215 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2216 
2217 err:
2218 	intel_gt_set_wedged(ce->engine->gt);
2219 	return err;
2220 }
2221 
2222 static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
2223 {
2224 	const u32 offset =
2225 		i915_ggtt_offset(engine->status_page.vma) +
2226 		offset_in_page(sema);
2227 	struct i915_request *rq;
2228 	u32 *cs;
2229 
2230 	rq = i915_request_create(engine->kernel_context);
2231 	if (IS_ERR(rq))
2232 		return PTR_ERR(rq);
2233 
2234 	cs = intel_ring_begin(rq, 4);
2235 	if (IS_ERR(cs)) {
2236 		i915_request_add(rq);
2237 		return PTR_ERR(cs);
2238 	}
2239 
2240 	cs = emit_semaphore_poll(cs, mode, value, offset);
2241 
2242 	intel_ring_advance(rq, cs);
2243 	i915_request_add(rq);
2244 
2245 	return 0;
2246 }
2247 
2248 static int measure_inter_request(struct intel_context *ce)
2249 {
2250 	u32 *sema = hwsp_scratch(ce);
2251 	const u32 offset = hwsp_offset(ce, sema);
2252 	u32 elapsed[TF_COUNT + 1], cycles;
2253 	struct i915_sw_fence *submit;
2254 	int i, err;
2255 
2256 	/*
2257 	 * Measure how long it takes to advance from one request into the
2258 	 * next. Between each request we flush the GPU caches to memory,
2259 	 * update the breadcrumbs, and then invalidate those caches.
2260 	 * We queue up all the requests to be submitted in one batch so
2261 	 * it should be one set of contiguous measurements.
2262 	 *
2263 	 *    A: read CS_TIMESTAMP on GPU
2264 	 *    advance request
2265 	 *    B: read CS_TIMESTAMP on GPU
2266 	 *
2267 	 * Request latency: B - A
2268 	 */
2269 
2270 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2271 	if (err)
2272 		return err;
2273 
2274 	submit = heap_fence_create(GFP_KERNEL);
2275 	if (!submit) {
2276 		semaphore_set(sema, 1);
2277 		return -ENOMEM;
2278 	}
2279 
2280 	intel_engine_flush_submission(ce->engine);
2281 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2282 		struct i915_request *rq;
2283 		u32 *cs;
2284 
2285 		rq = i915_request_create(ce);
2286 		if (IS_ERR(rq)) {
2287 			err = PTR_ERR(rq);
2288 			goto err_submit;
2289 		}
2290 
2291 		err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
2292 						       submit,
2293 						       GFP_KERNEL);
2294 		if (err < 0) {
2295 			i915_request_add(rq);
2296 			goto err_submit;
2297 		}
2298 
2299 		cs = intel_ring_begin(rq, 4);
2300 		if (IS_ERR(cs)) {
2301 			i915_request_add(rq);
2302 			err = PTR_ERR(cs);
2303 			goto err_submit;
2304 		}
2305 
2306 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2307 
2308 		intel_ring_advance(rq, cs);
2309 		i915_request_add(rq);
2310 	}
2311 	i915_sw_fence_commit(submit);
2312 	intel_engine_flush_submission(ce->engine);
2313 	heap_fence_put(submit);
2314 
2315 	semaphore_set(sema, 1);
2316 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2317 	if (err)
2318 		goto err;
2319 
2320 	for (i = 1; i <= TF_COUNT; i++)
2321 		elapsed[i - 1] = sema[i + 1] - sema[i];
2322 
2323 	cycles = trifilter(elapsed);
2324 	pr_info("%s: inter-request latency %d cycles, %lluns\n",
2325 		ce->engine->name, cycles >> TF_BIAS,
2326 		cycles_to_ns(ce->engine, cycles));
2327 
2328 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2329 
2330 err_submit:
2331 	i915_sw_fence_commit(submit);
2332 	heap_fence_put(submit);
2333 	semaphore_set(sema, 1);
2334 err:
2335 	intel_gt_set_wedged(ce->engine->gt);
2336 	return err;
2337 }
2338 
2339 static int measure_context_switch(struct intel_context *ce)
2340 {
2341 	u32 *sema = hwsp_scratch(ce);
2342 	const u32 offset = hwsp_offset(ce, sema);
2343 	struct i915_request *fence = NULL;
2344 	u32 elapsed[TF_COUNT + 1], cycles;
2345 	int i, j, err;
2346 	u32 *cs;
2347 
2348 	/*
2349 	 * Measure how long it takes to advance from one request in one
2350 	 * context to a request in another context. This allows us to
2351 	 * measure how long the context save/restore take, along with all
2352 	 * the inter-context setup we require.
2353 	 *
2354 	 *    A: read CS_TIMESTAMP on GPU
2355 	 *    switch context
2356 	 *    B: read CS_TIMESTAMP on GPU
2357 	 *
2358 	 * Context switch latency: B - A
2359 	 */
2360 
2361 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2362 	if (err)
2363 		return err;
2364 
2365 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2366 		struct intel_context *arr[] = {
2367 			ce, ce->engine->kernel_context
2368 		};
2369 		u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
2370 
2371 		for (j = 0; j < ARRAY_SIZE(arr); j++) {
2372 			struct i915_request *rq;
2373 
2374 			rq = i915_request_create(arr[j]);
2375 			if (IS_ERR(rq)) {
2376 				err = PTR_ERR(rq);
2377 				goto err_fence;
2378 			}
2379 
2380 			if (fence) {
2381 				err = i915_request_await_dma_fence(rq,
2382 								   &fence->fence);
2383 				if (err) {
2384 					i915_request_add(rq);
2385 					goto err_fence;
2386 				}
2387 			}
2388 
2389 			cs = intel_ring_begin(rq, 4);
2390 			if (IS_ERR(cs)) {
2391 				i915_request_add(rq);
2392 				err = PTR_ERR(cs);
2393 				goto err_fence;
2394 			}
2395 
2396 			cs = emit_timestamp_store(cs, ce, addr);
2397 			addr += sizeof(u32);
2398 
2399 			intel_ring_advance(rq, cs);
2400 
2401 			i915_request_put(fence);
2402 			fence = i915_request_get(rq);
2403 
2404 			i915_request_add(rq);
2405 		}
2406 	}
2407 	i915_request_put(fence);
2408 	intel_engine_flush_submission(ce->engine);
2409 
2410 	semaphore_set(sema, 1);
2411 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2412 	if (err)
2413 		goto err;
2414 
2415 	for (i = 1; i <= TF_COUNT; i++)
2416 		elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
2417 
2418 	cycles = trifilter(elapsed);
2419 	pr_info("%s: context switch latency %d cycles, %lluns\n",
2420 		ce->engine->name, cycles >> TF_BIAS,
2421 		cycles_to_ns(ce->engine, cycles));
2422 
2423 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2424 
2425 err_fence:
2426 	i915_request_put(fence);
2427 	semaphore_set(sema, 1);
2428 err:
2429 	intel_gt_set_wedged(ce->engine->gt);
2430 	return err;
2431 }
2432 
2433 static int measure_preemption(struct intel_context *ce)
2434 {
2435 	u32 *sema = hwsp_scratch(ce);
2436 	const u32 offset = hwsp_offset(ce, sema);
2437 	u32 elapsed[TF_COUNT], cycles;
2438 	u32 *cs;
2439 	int err;
2440 	int i;
2441 
2442 	/*
2443 	 * We measure two latencies while triggering preemption. The first
2444 	 * latency is how long it takes for us to submit a preempting request.
2445 	 * The second latency is how it takes for us to return from the
2446 	 * preemption back to the original context.
2447 	 *
2448 	 *    A: read CS_TIMESTAMP from CPU
2449 	 *    submit preemption
2450 	 *    B: read CS_TIMESTAMP on GPU (in preempting context)
2451 	 *    context switch
2452 	 *    C: read CS_TIMESTAMP on GPU (in original context)
2453 	 *
2454 	 * Preemption dispatch latency: B - A
2455 	 * Preemption switch latency: C - B
2456 	 */
2457 
2458 	if (!intel_engine_has_preemption(ce->engine))
2459 		return 0;
2460 
2461 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2462 		u32 addr = offset + 2 * i * sizeof(u32);
2463 		struct i915_request *rq;
2464 
2465 		rq = i915_request_create(ce);
2466 		if (IS_ERR(rq)) {
2467 			err = PTR_ERR(rq);
2468 			goto err;
2469 		}
2470 
2471 		cs = intel_ring_begin(rq, 12);
2472 		if (IS_ERR(cs)) {
2473 			i915_request_add(rq);
2474 			err = PTR_ERR(cs);
2475 			goto err;
2476 		}
2477 
2478 		cs = emit_store_dw(cs, addr, -1);
2479 		cs = emit_semaphore_poll_until(cs, offset, i);
2480 		cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
2481 
2482 		intel_ring_advance(rq, cs);
2483 		i915_request_add(rq);
2484 
2485 		if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
2486 			err = -EIO;
2487 			goto err;
2488 		}
2489 
2490 		rq = i915_request_create(ce->engine->kernel_context);
2491 		if (IS_ERR(rq)) {
2492 			err = PTR_ERR(rq);
2493 			goto err;
2494 		}
2495 
2496 		cs = intel_ring_begin(rq, 8);
2497 		if (IS_ERR(cs)) {
2498 			i915_request_add(rq);
2499 			err = PTR_ERR(cs);
2500 			goto err;
2501 		}
2502 
2503 		cs = emit_timestamp_store(cs, ce, addr);
2504 		cs = emit_store_dw(cs, offset, i);
2505 
2506 		intel_ring_advance(rq, cs);
2507 		rq->sched.attr.priority = I915_PRIORITY_BARRIER;
2508 
2509 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2510 		i915_request_add(rq);
2511 	}
2512 
2513 	if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
2514 		err = -EIO;
2515 		goto err;
2516 	}
2517 
2518 	for (i = 1; i <= TF_COUNT; i++)
2519 		elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
2520 
2521 	cycles = trifilter(elapsed);
2522 	pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
2523 		ce->engine->name, cycles >> TF_BIAS,
2524 		cycles_to_ns(ce->engine, cycles));
2525 
2526 	for (i = 1; i <= TF_COUNT; i++)
2527 		elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
2528 
2529 	cycles = trifilter(elapsed);
2530 	pr_info("%s: preemption switch latency %d cycles, %lluns\n",
2531 		ce->engine->name, cycles >> TF_BIAS,
2532 		cycles_to_ns(ce->engine, cycles));
2533 
2534 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2535 
2536 err:
2537 	intel_gt_set_wedged(ce->engine->gt);
2538 	return err;
2539 }
2540 
2541 struct signal_cb {
2542 	struct dma_fence_cb base;
2543 	bool seen;
2544 };
2545 
2546 static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2547 {
2548 	struct signal_cb *s = container_of(cb, typeof(*s), base);
2549 
2550 	smp_store_mb(s->seen, true); /* be safe, be strong */
2551 }
2552 
2553 static int measure_completion(struct intel_context *ce)
2554 {
2555 	u32 *sema = hwsp_scratch(ce);
2556 	const u32 offset = hwsp_offset(ce, sema);
2557 	u32 elapsed[TF_COUNT], cycles;
2558 	u32 *cs;
2559 	int err;
2560 	int i;
2561 
2562 	/*
2563 	 * Measure how long it takes for the signal (interrupt) to be
2564 	 * sent from the GPU to be processed by the CPU.
2565 	 *
2566 	 *    A: read CS_TIMESTAMP on GPU
2567 	 *    signal
2568 	 *    B: read CS_TIMESTAMP from CPU
2569 	 *
2570 	 * Completion latency: B - A
2571 	 */
2572 
2573 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2574 		struct signal_cb cb = { .seen = false };
2575 		struct i915_request *rq;
2576 
2577 		rq = i915_request_create(ce);
2578 		if (IS_ERR(rq)) {
2579 			err = PTR_ERR(rq);
2580 			goto err;
2581 		}
2582 
2583 		cs = intel_ring_begin(rq, 12);
2584 		if (IS_ERR(cs)) {
2585 			i915_request_add(rq);
2586 			err = PTR_ERR(cs);
2587 			goto err;
2588 		}
2589 
2590 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2591 		cs = emit_semaphore_poll_until(cs, offset, i);
2592 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2593 
2594 		intel_ring_advance(rq, cs);
2595 
2596 		dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
2597 		i915_request_add(rq);
2598 
2599 		intel_engine_flush_submission(ce->engine);
2600 		if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
2601 			err = -EIO;
2602 			goto err;
2603 		}
2604 
2605 		preempt_disable();
2606 		semaphore_set(sema, i);
2607 		while (!READ_ONCE(cb.seen))
2608 			cpu_relax();
2609 
2610 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2611 		preempt_enable();
2612 	}
2613 
2614 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2615 	if (err)
2616 		goto err;
2617 
2618 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2619 		GEM_BUG_ON(sema[i + 1] == -1);
2620 		elapsed[i] = elapsed[i] - sema[i + 1];
2621 	}
2622 
2623 	cycles = trifilter(elapsed);
2624 	pr_info("%s: completion latency %d cycles, %lluns\n",
2625 		ce->engine->name, cycles >> TF_BIAS,
2626 		cycles_to_ns(ce->engine, cycles));
2627 
2628 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2629 
2630 err:
2631 	intel_gt_set_wedged(ce->engine->gt);
2632 	return err;
2633 }
2634 
2635 static void rps_pin(struct intel_gt *gt)
2636 {
2637 	/* Pin the frequency to max */
2638 	atomic_inc(&gt->rps.num_waiters);
2639 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
2640 
2641 	mutex_lock(&gt->rps.lock);
2642 	intel_rps_set(&gt->rps, gt->rps.max_freq);
2643 	mutex_unlock(&gt->rps.lock);
2644 }
2645 
2646 static void rps_unpin(struct intel_gt *gt)
2647 {
2648 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
2649 	atomic_dec(&gt->rps.num_waiters);
2650 }
2651 
2652 static int perf_request_latency(void *arg)
2653 {
2654 	struct drm_i915_private *i915 = arg;
2655 	struct intel_engine_cs *engine;
2656 	struct pm_qos_request qos;
2657 	int err = 0;
2658 
2659 	if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
2660 		return 0;
2661 
2662 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2663 
2664 	for_each_uabi_engine(engine, i915) {
2665 		struct intel_context *ce;
2666 
2667 		ce = intel_context_create(engine);
2668 		if (IS_ERR(ce)) {
2669 			err = PTR_ERR(ce);
2670 			goto out;
2671 		}
2672 
2673 		err = intel_context_pin(ce);
2674 		if (err) {
2675 			intel_context_put(ce);
2676 			goto out;
2677 		}
2678 
2679 		st_engine_heartbeat_disable(engine);
2680 		rps_pin(engine->gt);
2681 
2682 		if (err == 0)
2683 			err = measure_semaphore_response(ce);
2684 		if (err == 0)
2685 			err = measure_idle_dispatch(ce);
2686 		if (err == 0)
2687 			err = measure_busy_dispatch(ce);
2688 		if (err == 0)
2689 			err = measure_inter_request(ce);
2690 		if (err == 0)
2691 			err = measure_context_switch(ce);
2692 		if (err == 0)
2693 			err = measure_preemption(ce);
2694 		if (err == 0)
2695 			err = measure_completion(ce);
2696 
2697 		rps_unpin(engine->gt);
2698 		st_engine_heartbeat_enable(engine);
2699 
2700 		intel_context_unpin(ce);
2701 		intel_context_put(ce);
2702 		if (err)
2703 			goto out;
2704 	}
2705 
2706 out:
2707 	if (igt_flush_test(i915))
2708 		err = -EIO;
2709 
2710 	cpu_latency_qos_remove_request(&qos);
2711 	return err;
2712 }
2713 
2714 static int s_sync0(void *arg)
2715 {
2716 	struct perf_series *ps = arg;
2717 	IGT_TIMEOUT(end_time);
2718 	unsigned int idx = 0;
2719 	int err = 0;
2720 
2721 	GEM_BUG_ON(!ps->nengines);
2722 	do {
2723 		struct i915_request *rq;
2724 
2725 		rq = i915_request_create(ps->ce[idx]);
2726 		if (IS_ERR(rq)) {
2727 			err = PTR_ERR(rq);
2728 			break;
2729 		}
2730 
2731 		i915_request_get(rq);
2732 		i915_request_add(rq);
2733 
2734 		if (i915_request_wait(rq, 0, HZ / 5) < 0)
2735 			err = -ETIME;
2736 		i915_request_put(rq);
2737 		if (err)
2738 			break;
2739 
2740 		if (++idx == ps->nengines)
2741 			idx = 0;
2742 	} while (!__igt_timeout(end_time, NULL));
2743 
2744 	return err;
2745 }
2746 
2747 static int s_sync1(void *arg)
2748 {
2749 	struct perf_series *ps = arg;
2750 	struct i915_request *prev = NULL;
2751 	IGT_TIMEOUT(end_time);
2752 	unsigned int idx = 0;
2753 	int err = 0;
2754 
2755 	GEM_BUG_ON(!ps->nengines);
2756 	do {
2757 		struct i915_request *rq;
2758 
2759 		rq = i915_request_create(ps->ce[idx]);
2760 		if (IS_ERR(rq)) {
2761 			err = PTR_ERR(rq);
2762 			break;
2763 		}
2764 
2765 		i915_request_get(rq);
2766 		i915_request_add(rq);
2767 
2768 		if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2769 			err = -ETIME;
2770 		i915_request_put(prev);
2771 		prev = rq;
2772 		if (err)
2773 			break;
2774 
2775 		if (++idx == ps->nengines)
2776 			idx = 0;
2777 	} while (!__igt_timeout(end_time, NULL));
2778 	i915_request_put(prev);
2779 
2780 	return err;
2781 }
2782 
2783 static int s_many(void *arg)
2784 {
2785 	struct perf_series *ps = arg;
2786 	IGT_TIMEOUT(end_time);
2787 	unsigned int idx = 0;
2788 
2789 	GEM_BUG_ON(!ps->nengines);
2790 	do {
2791 		struct i915_request *rq;
2792 
2793 		rq = i915_request_create(ps->ce[idx]);
2794 		if (IS_ERR(rq))
2795 			return PTR_ERR(rq);
2796 
2797 		i915_request_add(rq);
2798 
2799 		if (++idx == ps->nengines)
2800 			idx = 0;
2801 	} while (!__igt_timeout(end_time, NULL));
2802 
2803 	return 0;
2804 }
2805 
2806 static int perf_series_engines(void *arg)
2807 {
2808 	struct drm_i915_private *i915 = arg;
2809 	static int (* const func[])(void *arg) = {
2810 		s_sync0,
2811 		s_sync1,
2812 		s_many,
2813 		NULL,
2814 	};
2815 	const unsigned int nengines = num_uabi_engines(i915);
2816 	struct intel_engine_cs *engine;
2817 	int (* const *fn)(void *arg);
2818 	struct pm_qos_request qos;
2819 	struct perf_stats *stats;
2820 	struct perf_series *ps;
2821 	unsigned int idx;
2822 	int err = 0;
2823 
2824 	stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
2825 	if (!stats)
2826 		return -ENOMEM;
2827 
2828 	ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
2829 	if (!ps) {
2830 		kfree(stats);
2831 		return -ENOMEM;
2832 	}
2833 
2834 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2835 
2836 	ps->i915 = i915;
2837 	ps->nengines = nengines;
2838 
2839 	idx = 0;
2840 	for_each_uabi_engine(engine, i915) {
2841 		struct intel_context *ce;
2842 
2843 		ce = intel_context_create(engine);
2844 		if (IS_ERR(ce)) {
2845 			err = PTR_ERR(ce);
2846 			goto out;
2847 		}
2848 
2849 		err = intel_context_pin(ce);
2850 		if (err) {
2851 			intel_context_put(ce);
2852 			goto out;
2853 		}
2854 
2855 		ps->ce[idx++] = ce;
2856 	}
2857 	GEM_BUG_ON(idx != ps->nengines);
2858 
2859 	for (fn = func; *fn && !err; fn++) {
2860 		char name[KSYM_NAME_LEN];
2861 		struct igt_live_test t;
2862 
2863 		snprintf(name, sizeof(name), "%ps", *fn);
2864 		err = igt_live_test_begin(&t, i915, __func__, name);
2865 		if (err)
2866 			break;
2867 
2868 		for (idx = 0; idx < nengines; idx++) {
2869 			struct perf_stats *p =
2870 				memset(&stats[idx], 0, sizeof(stats[idx]));
2871 			struct intel_context *ce = ps->ce[idx];
2872 
2873 			p->engine = ps->ce[idx]->engine;
2874 			intel_engine_pm_get(p->engine);
2875 
2876 			if (intel_engine_supports_stats(p->engine))
2877 				p->busy = intel_engine_get_busy_time(p->engine,
2878 								     &p->time) + 1;
2879 			else
2880 				p->time = ktime_get();
2881 			p->runtime = -intel_context_get_total_runtime_ns(ce);
2882 		}
2883 
2884 		err = (*fn)(ps);
2885 		if (igt_live_test_end(&t))
2886 			err = -EIO;
2887 
2888 		for (idx = 0; idx < nengines; idx++) {
2889 			struct perf_stats *p = &stats[idx];
2890 			struct intel_context *ce = ps->ce[idx];
2891 			int integer, decimal;
2892 			u64 busy, dt, now;
2893 
2894 			if (p->busy)
2895 				p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
2896 									       &now),
2897 						    p->busy - 1);
2898 			else
2899 				now = ktime_get();
2900 			p->time = ktime_sub(now, p->time);
2901 
2902 			err = switch_to_kernel_sync(ce, err);
2903 			p->runtime += intel_context_get_total_runtime_ns(ce);
2904 			intel_engine_pm_put(p->engine);
2905 
2906 			busy = 100 * ktime_to_ns(p->busy);
2907 			dt = ktime_to_ns(p->time);
2908 			if (dt) {
2909 				integer = div64_u64(busy, dt);
2910 				busy -= integer * dt;
2911 				decimal = div64_u64(100 * busy, dt);
2912 			} else {
2913 				integer = 0;
2914 				decimal = 0;
2915 			}
2916 
2917 			pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2918 				name, p->engine->name, ce->timeline->seqno,
2919 				integer, decimal,
2920 				div_u64(p->runtime, 1000 * 1000),
2921 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
2922 		}
2923 	}
2924 
2925 out:
2926 	for (idx = 0; idx < nengines; idx++) {
2927 		if (IS_ERR_OR_NULL(ps->ce[idx]))
2928 			break;
2929 
2930 		intel_context_unpin(ps->ce[idx]);
2931 		intel_context_put(ps->ce[idx]);
2932 	}
2933 	kfree(ps);
2934 
2935 	cpu_latency_qos_remove_request(&qos);
2936 	kfree(stats);
2937 	return err;
2938 }
2939 
2940 struct p_thread {
2941 	struct perf_stats p;
2942 	struct kthread_worker *worker;
2943 	struct kthread_work work;
2944 	struct intel_engine_cs *engine;
2945 	int result;
2946 };
2947 
2948 static void p_sync0(struct kthread_work *work)
2949 {
2950 	struct p_thread *thread = container_of(work, typeof(*thread), work);
2951 	struct perf_stats *p = &thread->p;
2952 	struct intel_engine_cs *engine = p->engine;
2953 	struct intel_context *ce;
2954 	IGT_TIMEOUT(end_time);
2955 	unsigned long count;
2956 	bool busy;
2957 	int err = 0;
2958 
2959 	ce = intel_context_create(engine);
2960 	if (IS_ERR(ce)) {
2961 		thread->result = PTR_ERR(ce);
2962 		return;
2963 	}
2964 
2965 	err = intel_context_pin(ce);
2966 	if (err) {
2967 		intel_context_put(ce);
2968 		thread->result = err;
2969 		return;
2970 	}
2971 
2972 	if (intel_engine_supports_stats(engine)) {
2973 		p->busy = intel_engine_get_busy_time(engine, &p->time);
2974 		busy = true;
2975 	} else {
2976 		p->time = ktime_get();
2977 		busy = false;
2978 	}
2979 
2980 	count = 0;
2981 	do {
2982 		struct i915_request *rq;
2983 
2984 		rq = i915_request_create(ce);
2985 		if (IS_ERR(rq)) {
2986 			err = PTR_ERR(rq);
2987 			break;
2988 		}
2989 
2990 		i915_request_get(rq);
2991 		i915_request_add(rq);
2992 
2993 		err = 0;
2994 		if (i915_request_wait(rq, 0, HZ) < 0)
2995 			err = -ETIME;
2996 		i915_request_put(rq);
2997 		if (err)
2998 			break;
2999 
3000 		count++;
3001 	} while (!__igt_timeout(end_time, NULL));
3002 
3003 	if (busy) {
3004 		ktime_t now;
3005 
3006 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3007 				    p->busy);
3008 		p->time = ktime_sub(now, p->time);
3009 	} else {
3010 		p->time = ktime_sub(ktime_get(), p->time);
3011 	}
3012 
3013 	err = switch_to_kernel_sync(ce, err);
3014 	p->runtime = intel_context_get_total_runtime_ns(ce);
3015 	p->count = count;
3016 
3017 	intel_context_unpin(ce);
3018 	intel_context_put(ce);
3019 	thread->result = err;
3020 }
3021 
3022 static void p_sync1(struct kthread_work *work)
3023 {
3024 	struct p_thread *thread = container_of(work, typeof(*thread), work);
3025 	struct perf_stats *p = &thread->p;
3026 	struct intel_engine_cs *engine = p->engine;
3027 	struct i915_request *prev = NULL;
3028 	struct intel_context *ce;
3029 	IGT_TIMEOUT(end_time);
3030 	unsigned long count;
3031 	bool busy;
3032 	int err = 0;
3033 
3034 	ce = intel_context_create(engine);
3035 	if (IS_ERR(ce)) {
3036 		thread->result = PTR_ERR(ce);
3037 		return;
3038 	}
3039 
3040 	err = intel_context_pin(ce);
3041 	if (err) {
3042 		intel_context_put(ce);
3043 		thread->result = err;
3044 		return;
3045 	}
3046 
3047 	if (intel_engine_supports_stats(engine)) {
3048 		p->busy = intel_engine_get_busy_time(engine, &p->time);
3049 		busy = true;
3050 	} else {
3051 		p->time = ktime_get();
3052 		busy = false;
3053 	}
3054 
3055 	count = 0;
3056 	do {
3057 		struct i915_request *rq;
3058 
3059 		rq = i915_request_create(ce);
3060 		if (IS_ERR(rq)) {
3061 			err = PTR_ERR(rq);
3062 			break;
3063 		}
3064 
3065 		i915_request_get(rq);
3066 		i915_request_add(rq);
3067 
3068 		err = 0;
3069 		if (prev && i915_request_wait(prev, 0, HZ) < 0)
3070 			err = -ETIME;
3071 		i915_request_put(prev);
3072 		prev = rq;
3073 		if (err)
3074 			break;
3075 
3076 		count++;
3077 	} while (!__igt_timeout(end_time, NULL));
3078 	i915_request_put(prev);
3079 
3080 	if (busy) {
3081 		ktime_t now;
3082 
3083 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3084 				    p->busy);
3085 		p->time = ktime_sub(now, p->time);
3086 	} else {
3087 		p->time = ktime_sub(ktime_get(), p->time);
3088 	}
3089 
3090 	err = switch_to_kernel_sync(ce, err);
3091 	p->runtime = intel_context_get_total_runtime_ns(ce);
3092 	p->count = count;
3093 
3094 	intel_context_unpin(ce);
3095 	intel_context_put(ce);
3096 	thread->result = err;
3097 }
3098 
3099 static void p_many(struct kthread_work *work)
3100 {
3101 	struct p_thread *thread = container_of(work, typeof(*thread), work);
3102 	struct perf_stats *p = &thread->p;
3103 	struct intel_engine_cs *engine = p->engine;
3104 	struct intel_context *ce;
3105 	IGT_TIMEOUT(end_time);
3106 	unsigned long count;
3107 	int err = 0;
3108 	bool busy;
3109 
3110 	ce = intel_context_create(engine);
3111 	if (IS_ERR(ce)) {
3112 		thread->result = PTR_ERR(ce);
3113 		return;
3114 	}
3115 
3116 	err = intel_context_pin(ce);
3117 	if (err) {
3118 		intel_context_put(ce);
3119 		thread->result = err;
3120 		return;
3121 	}
3122 
3123 	if (intel_engine_supports_stats(engine)) {
3124 		p->busy = intel_engine_get_busy_time(engine, &p->time);
3125 		busy = true;
3126 	} else {
3127 		p->time = ktime_get();
3128 		busy = false;
3129 	}
3130 
3131 	count = 0;
3132 	do {
3133 		struct i915_request *rq;
3134 
3135 		rq = i915_request_create(ce);
3136 		if (IS_ERR(rq)) {
3137 			err = PTR_ERR(rq);
3138 			break;
3139 		}
3140 
3141 		i915_request_add(rq);
3142 		count++;
3143 	} while (!__igt_timeout(end_time, NULL));
3144 
3145 	if (busy) {
3146 		ktime_t now;
3147 
3148 		p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3149 				    p->busy);
3150 		p->time = ktime_sub(now, p->time);
3151 	} else {
3152 		p->time = ktime_sub(ktime_get(), p->time);
3153 	}
3154 
3155 	err = switch_to_kernel_sync(ce, err);
3156 	p->runtime = intel_context_get_total_runtime_ns(ce);
3157 	p->count = count;
3158 
3159 	intel_context_unpin(ce);
3160 	intel_context_put(ce);
3161 	thread->result = err;
3162 }
3163 
3164 static int perf_parallel_engines(void *arg)
3165 {
3166 	struct drm_i915_private *i915 = arg;
3167 	static void (* const func[])(struct kthread_work *) = {
3168 		p_sync0,
3169 		p_sync1,
3170 		p_many,
3171 		NULL,
3172 	};
3173 	const unsigned int nengines = num_uabi_engines(i915);
3174 	void (* const *fn)(struct kthread_work *);
3175 	struct intel_engine_cs *engine;
3176 	struct pm_qos_request qos;
3177 	struct p_thread *engines;
3178 	int err = 0;
3179 
3180 	engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
3181 	if (!engines)
3182 		return -ENOMEM;
3183 
3184 	cpu_latency_qos_add_request(&qos, 0);
3185 
3186 	for (fn = func; *fn; fn++) {
3187 		char name[KSYM_NAME_LEN];
3188 		struct igt_live_test t;
3189 		unsigned int idx;
3190 
3191 		snprintf(name, sizeof(name), "%ps", *fn);
3192 		err = igt_live_test_begin(&t, i915, __func__, name);
3193 		if (err)
3194 			break;
3195 
3196 		atomic_set(&i915->selftest.counter, nengines);
3197 
3198 		idx = 0;
3199 		for_each_uabi_engine(engine, i915) {
3200 			struct kthread_worker *worker;
3201 
3202 			intel_engine_pm_get(engine);
3203 
3204 			memset(&engines[idx].p, 0, sizeof(engines[idx].p));
3205 
3206 			worker = kthread_create_worker(0, "igt:%s",
3207 						       engine->name);
3208 			if (IS_ERR(worker)) {
3209 				err = PTR_ERR(worker);
3210 				intel_engine_pm_put(engine);
3211 				break;
3212 			}
3213 			engines[idx].worker = worker;
3214 			engines[idx].result = 0;
3215 			engines[idx].p.engine = engine;
3216 			engines[idx].engine = engine;
3217 
3218 			kthread_init_work(&engines[idx].work, *fn);
3219 			kthread_queue_work(worker, &engines[idx].work);
3220 			idx++;
3221 		}
3222 
3223 		idx = 0;
3224 		for_each_uabi_engine(engine, i915) {
3225 			int status;
3226 
3227 			if (!engines[idx].worker)
3228 				break;
3229 
3230 			kthread_flush_work(&engines[idx].work);
3231 			status = READ_ONCE(engines[idx].result);
3232 			if (status && !err)
3233 				err = status;
3234 
3235 			intel_engine_pm_put(engine);
3236 
3237 			kthread_destroy_worker(engines[idx].worker);
3238 			idx++;
3239 		}
3240 
3241 		if (igt_live_test_end(&t))
3242 			err = -EIO;
3243 		if (err)
3244 			break;
3245 
3246 		idx = 0;
3247 		for_each_uabi_engine(engine, i915) {
3248 			struct perf_stats *p = &engines[idx].p;
3249 			u64 busy = 100 * ktime_to_ns(p->busy);
3250 			u64 dt = ktime_to_ns(p->time);
3251 			int integer, decimal;
3252 
3253 			if (dt) {
3254 				integer = div64_u64(busy, dt);
3255 				busy -= integer * dt;
3256 				decimal = div64_u64(100 * busy, dt);
3257 			} else {
3258 				integer = 0;
3259 				decimal = 0;
3260 			}
3261 
3262 			GEM_BUG_ON(engine != p->engine);
3263 			pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
3264 				name, engine->name, p->count, integer, decimal,
3265 				div_u64(p->runtime, 1000 * 1000),
3266 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
3267 			idx++;
3268 		}
3269 	}
3270 
3271 	cpu_latency_qos_remove_request(&qos);
3272 	kfree(engines);
3273 	return err;
3274 }
3275 
3276 int i915_request_perf_selftests(struct drm_i915_private *i915)
3277 {
3278 	static const struct i915_subtest tests[] = {
3279 		SUBTEST(perf_request_latency),
3280 		SUBTEST(perf_series_engines),
3281 		SUBTEST(perf_parallel_engines),
3282 	};
3283 
3284 	if (intel_gt_is_wedged(to_gt(i915)))
3285 		return 0;
3286 
3287 	return i915_subtests(tests, i915);
3288 }
3289