xref: /openbmc/linux/drivers/gpu/drm/i915/intel_step.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020,2021 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "intel_step.h"
8 
9 /*
10  * Some platforms have unusual ways of mapping PCI revision ID to GT/display
11  * steppings.  E.g., in some cases a higher PCI revision may translate to a
12  * lower stepping of the GT and/or display IP.  This file provides lookup
13  * tables to map the PCI revision into a standard set of stepping values that
14  * can be compared numerically.
15  *
16  * Also note that some revisions/steppings may have been set aside as
17  * placeholders but never materialized in real hardware; in those cases there
18  * may be jumps in the revision IDs or stepping values in the tables below.
19  */
20 
21 /*
22  * Some platforms always have the same stepping value for GT and display;
23  * use a macro to define these to make it easier to identify the platforms
24  * where the two steppings can deviate.
25  */
26 #define COMMON_STEP(x)  .graphics_step = STEP_##x, .display_step = STEP_##x, .media_step = STEP_##x
27 #define COMMON_GT_MEDIA_STEP(x)  .graphics_step = STEP_##x, .media_step = STEP_##x
28 
29 static const struct intel_step_info skl_revids[] = {
30 	[0x6] = { COMMON_STEP(G0) },
31 	[0x7] = { COMMON_STEP(H0) },
32 	[0x9] = { COMMON_STEP(J0) },
33 	[0xA] = { COMMON_STEP(I1) },
34 };
35 
36 static const struct intel_step_info kbl_revids[] = {
37 	[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
38 	[2] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B0 },
39 	[3] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_B0 },
40 	[4] = { COMMON_GT_MEDIA_STEP(F0), .display_step = STEP_C0 },
41 	[5] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B1 },
42 	[6] = { COMMON_GT_MEDIA_STEP(D1), .display_step = STEP_B1 },
43 	[7] = { COMMON_GT_MEDIA_STEP(G0), .display_step = STEP_C0 },
44 };
45 
46 static const struct intel_step_info bxt_revids[] = {
47 	[0xA] = { COMMON_STEP(C0) },
48 	[0xB] = { COMMON_STEP(C0) },
49 	[0xC] = { COMMON_STEP(D0) },
50 	[0xD] = { COMMON_STEP(E0) },
51 };
52 
53 static const struct intel_step_info glk_revids[] = {
54 	[3] = { COMMON_STEP(B0) },
55 };
56 
57 static const struct intel_step_info icl_revids[] = {
58 	[7] = { COMMON_STEP(D0) },
59 };
60 
61 static const struct intel_step_info jsl_ehl_revids[] = {
62 	[0] = { COMMON_STEP(A0) },
63 	[1] = { COMMON_STEP(B0) },
64 };
65 
66 static const struct intel_step_info tgl_uy_revids[] = {
67 	[0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
68 	[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_C0 },
69 	[2] = { COMMON_GT_MEDIA_STEP(B1), .display_step = STEP_C0 },
70 	[3] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_D0 },
71 };
72 
73 /* Same GT stepping between tgl_uy_revids and tgl_revids don't mean the same HW */
74 static const struct intel_step_info tgl_revids[] = {
75 	[0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_B0 },
76 	[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_D0 },
77 };
78 
79 static const struct intel_step_info rkl_revids[] = {
80 	[0] = { COMMON_STEP(A0) },
81 	[1] = { COMMON_STEP(B0) },
82 	[4] = { COMMON_STEP(C0) },
83 };
84 
85 static const struct intel_step_info dg1_revids[] = {
86 	[0] = { COMMON_STEP(A0) },
87 	[1] = { COMMON_STEP(B0) },
88 };
89 
90 static const struct intel_step_info adls_revids[] = {
91 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
92 	[0x1] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A2 },
93 	[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
94 	[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B0 },
95 	[0xC] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_C0 },
96 };
97 
98 static const struct intel_step_info adlp_revids[] = {
99 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
100 	[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
101 	[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_C0 },
102 	[0xC] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_D0 },
103 };
104 
105 static const struct intel_step_info xehpsdv_revids[] = {
106 	[0x0] = { COMMON_GT_MEDIA_STEP(A0) },
107 	[0x1] = { COMMON_GT_MEDIA_STEP(A1) },
108 	[0x4] = { COMMON_GT_MEDIA_STEP(B0) },
109 	[0x8] = { COMMON_GT_MEDIA_STEP(C0) },
110 };
111 
112 static const struct intel_step_info dg2_g10_revid_step_tbl[] = {
113 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
114 	[0x1] = { COMMON_GT_MEDIA_STEP(A1), .display_step = STEP_A0 },
115 	[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
116 	[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_C0 },
117 };
118 
119 static const struct intel_step_info dg2_g11_revid_step_tbl[] = {
120 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_B0 },
121 	[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_C0 },
122 	[0x5] = { COMMON_GT_MEDIA_STEP(B1), .display_step = STEP_C0 },
123 };
124 
125 static const struct intel_step_info dg2_g12_revid_step_tbl[] = {
126 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_C0 },
127 };
128 
129 static const struct intel_step_info adls_rpls_revids[] = {
130 	[0x4] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_D0 },
131 	[0xC] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_C0 },
132 };
133 
134 static const struct intel_step_info adlp_rplp_revids[] = {
135 	[0x4] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_E0 },
136 };
137 
138 static const struct intel_step_info adlp_n_revids[] = {
139 	[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_D0 },
140 };
141 
142 static u8 gmd_to_intel_step(struct drm_i915_private *i915,
143 			    struct intel_ip_version *gmd)
144 {
145 	u8 step = gmd->step + STEP_A0;
146 
147 	if (step >= STEP_FUTURE) {
148 		drm_dbg(&i915->drm, "Using future steppings\n");
149 		return STEP_FUTURE;
150 	}
151 
152 	return step;
153 }
154 
155 static void pvc_step_init(struct drm_i915_private *i915, int pci_revid);
156 
157 void intel_step_init(struct drm_i915_private *i915)
158 {
159 	const struct intel_step_info *revids = NULL;
160 	int size = 0;
161 	int revid = INTEL_REVID(i915);
162 	struct intel_step_info step = {};
163 
164 	if (HAS_GMD_ID(i915)) {
165 		step.graphics_step = gmd_to_intel_step(i915,
166 						       &RUNTIME_INFO(i915)->graphics.ip);
167 		step.media_step = gmd_to_intel_step(i915,
168 						    &RUNTIME_INFO(i915)->media.ip);
169 		step.display_step = STEP_A0 + DISPLAY_RUNTIME_INFO(i915)->ip.step;
170 		if (step.display_step >= STEP_FUTURE) {
171 			drm_dbg(&i915->drm, "Using future display steppings\n");
172 			step.display_step = STEP_FUTURE;
173 		}
174 
175 		RUNTIME_INFO(i915)->step = step;
176 
177 		return;
178 	}
179 
180 	if (IS_PONTEVECCHIO(i915)) {
181 		pvc_step_init(i915, revid);
182 		return;
183 	} else if (IS_DG2_G10(i915)) {
184 		revids = dg2_g10_revid_step_tbl;
185 		size = ARRAY_SIZE(dg2_g10_revid_step_tbl);
186 	} else if (IS_DG2_G11(i915)) {
187 		revids = dg2_g11_revid_step_tbl;
188 		size = ARRAY_SIZE(dg2_g11_revid_step_tbl);
189 	} else if (IS_DG2_G12(i915)) {
190 		revids = dg2_g12_revid_step_tbl;
191 		size = ARRAY_SIZE(dg2_g12_revid_step_tbl);
192 	} else if (IS_XEHPSDV(i915)) {
193 		revids = xehpsdv_revids;
194 		size = ARRAY_SIZE(xehpsdv_revids);
195 	} else if (IS_ALDERLAKE_P_N(i915)) {
196 		revids = adlp_n_revids;
197 		size = ARRAY_SIZE(adlp_n_revids);
198 	} else if (IS_RAPTORLAKE_P(i915)) {
199 		revids = adlp_rplp_revids;
200 		size = ARRAY_SIZE(adlp_rplp_revids);
201 	} else if (IS_ALDERLAKE_P(i915)) {
202 		revids = adlp_revids;
203 		size = ARRAY_SIZE(adlp_revids);
204 	} else if (IS_RAPTORLAKE_S(i915)) {
205 		revids = adls_rpls_revids;
206 		size = ARRAY_SIZE(adls_rpls_revids);
207 	} else if (IS_ALDERLAKE_S(i915)) {
208 		revids = adls_revids;
209 		size = ARRAY_SIZE(adls_revids);
210 	} else if (IS_DG1(i915)) {
211 		revids = dg1_revids;
212 		size = ARRAY_SIZE(dg1_revids);
213 	} else if (IS_ROCKETLAKE(i915)) {
214 		revids = rkl_revids;
215 		size = ARRAY_SIZE(rkl_revids);
216 	} else if (IS_TIGERLAKE_UY(i915)) {
217 		revids = tgl_uy_revids;
218 		size = ARRAY_SIZE(tgl_uy_revids);
219 	} else if (IS_TIGERLAKE(i915)) {
220 		revids = tgl_revids;
221 		size = ARRAY_SIZE(tgl_revids);
222 	} else if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) {
223 		revids = jsl_ehl_revids;
224 		size = ARRAY_SIZE(jsl_ehl_revids);
225 	} else if (IS_ICELAKE(i915)) {
226 		revids = icl_revids;
227 		size = ARRAY_SIZE(icl_revids);
228 	} else if (IS_GEMINILAKE(i915)) {
229 		revids = glk_revids;
230 		size = ARRAY_SIZE(glk_revids);
231 	} else if (IS_BROXTON(i915)) {
232 		revids = bxt_revids;
233 		size = ARRAY_SIZE(bxt_revids);
234 	} else if (IS_KABYLAKE(i915)) {
235 		revids = kbl_revids;
236 		size = ARRAY_SIZE(kbl_revids);
237 	} else if (IS_SKYLAKE(i915)) {
238 		revids = skl_revids;
239 		size = ARRAY_SIZE(skl_revids);
240 	}
241 
242 	/* Not using the stepping scheme for the platform yet. */
243 	if (!revids)
244 		return;
245 
246 	if (revid < size && revids[revid].graphics_step != STEP_NONE) {
247 		step = revids[revid];
248 	} else {
249 		drm_warn(&i915->drm, "Unknown revid 0x%02x\n", revid);
250 
251 		/*
252 		 * If we hit a gap in the revid array, use the information for
253 		 * the next revid.
254 		 *
255 		 * This may be wrong in all sorts of ways, especially if the
256 		 * steppings in the array are not monotonically increasing, but
257 		 * it's better than defaulting to 0.
258 		 */
259 		while (revid < size && revids[revid].graphics_step == STEP_NONE)
260 			revid++;
261 
262 		if (revid < size) {
263 			drm_dbg(&i915->drm, "Using steppings for revid 0x%02x\n",
264 				revid);
265 			step = revids[revid];
266 		} else {
267 			drm_dbg(&i915->drm, "Using future steppings\n");
268 			step.graphics_step = STEP_FUTURE;
269 			step.display_step = STEP_FUTURE;
270 		}
271 	}
272 
273 	if (drm_WARN_ON(&i915->drm, step.graphics_step == STEP_NONE))
274 		return;
275 
276 	RUNTIME_INFO(i915)->step = step;
277 }
278 
279 #define PVC_BD_REVID	GENMASK(5, 3)
280 #define PVC_CT_REVID	GENMASK(2, 0)
281 
282 static const int pvc_bd_subids[] = {
283 	[0x0] = STEP_A0,
284 	[0x3] = STEP_B0,
285 	[0x4] = STEP_B1,
286 	[0x5] = STEP_B3,
287 };
288 
289 static const int pvc_ct_subids[] = {
290 	[0x3] = STEP_A0,
291 	[0x5] = STEP_B0,
292 	[0x6] = STEP_B1,
293 	[0x7] = STEP_C0,
294 };
295 
296 static int
297 pvc_step_lookup(struct drm_i915_private *i915, const char *type,
298 		const int *table, int size, int subid)
299 {
300 	if (subid < size && table[subid] != STEP_NONE)
301 		return table[subid];
302 
303 	drm_warn(&i915->drm, "Unknown %s id 0x%02x\n", type, subid);
304 
305 	/*
306 	 * As on other platforms, try to use the next higher ID if we land on a
307 	 * gap in the table.
308 	 */
309 	while (subid < size && table[subid] == STEP_NONE)
310 		subid++;
311 
312 	if (subid < size) {
313 		drm_dbg(&i915->drm, "Using steppings for %s id 0x%02x\n",
314 			type, subid);
315 		return table[subid];
316 	}
317 
318 	drm_dbg(&i915->drm, "Using future steppings\n");
319 	return STEP_FUTURE;
320 }
321 
322 /*
323  * PVC needs special handling since we don't lookup the
324  * revid in a table, but rather specific bitfields within
325  * the revid for various components.
326  */
327 static void pvc_step_init(struct drm_i915_private *i915, int pci_revid)
328 {
329 	int ct_subid, bd_subid;
330 
331 	bd_subid = FIELD_GET(PVC_BD_REVID, pci_revid);
332 	ct_subid = FIELD_GET(PVC_CT_REVID, pci_revid);
333 
334 	RUNTIME_INFO(i915)->step.basedie_step =
335 		pvc_step_lookup(i915, "Base Die", pvc_bd_subids,
336 				ARRAY_SIZE(pvc_bd_subids), bd_subid);
337 	RUNTIME_INFO(i915)->step.graphics_step =
338 		pvc_step_lookup(i915, "Compute Tile", pvc_ct_subids,
339 				ARRAY_SIZE(pvc_ct_subids), ct_subid);
340 }
341 
342 #define STEP_NAME_CASE(name)	\
343 	case STEP_##name:	\
344 		return #name;
345 
346 const char *intel_step_name(enum intel_step step)
347 {
348 	switch (step) {
349 	STEP_NAME_LIST(STEP_NAME_CASE);
350 
351 	default:
352 		return "**";
353 	}
354 }
355