1 /* 2 * Copyright © 2012-2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eugeni Dodonov <eugeni.dodonov@intel.com> 25 * Daniel Vetter <daniel.vetter@ffwll.ch> 26 * 27 */ 28 29 #include <linux/pm_runtime.h> 30 #include <linux/vgaarb.h> 31 32 #include "i915_drv.h" 33 #include "intel_drv.h" 34 35 /** 36 * DOC: runtime pm 37 * 38 * The i915 driver supports dynamic enabling and disabling of entire hardware 39 * blocks at runtime. This is especially important on the display side where 40 * software is supposed to control many power gates manually on recent hardware, 41 * since on the GT side a lot of the power management is done by the hardware. 42 * But even there some manual control at the device level is required. 43 * 44 * Since i915 supports a diverse set of platforms with a unified codebase and 45 * hardware engineers just love to shuffle functionality around between power 46 * domains there's a sizeable amount of indirection required. This file provides 47 * generic functions to the driver for grabbing and releasing references for 48 * abstract power domains. It then maps those to the actual power wells 49 * present for a given platform. 50 */ 51 52 #define GEN9_ENABLE_DC5(dev) 0 53 #define SKL_ENABLE_DC6(dev) IS_SKYLAKE(dev) 54 55 #define for_each_power_well(i, power_well, domain_mask, power_domains) \ 56 for (i = 0; \ 57 i < (power_domains)->power_well_count && \ 58 ((power_well) = &(power_domains)->power_wells[i]); \ 59 i++) \ 60 if ((power_well)->domains & (domain_mask)) 61 62 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \ 63 for (i = (power_domains)->power_well_count - 1; \ 64 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\ 65 i--) \ 66 if ((power_well)->domains & (domain_mask)) 67 68 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, 69 int power_well_id); 70 71 static void intel_power_well_enable(struct drm_i915_private *dev_priv, 72 struct i915_power_well *power_well) 73 { 74 DRM_DEBUG_KMS("enabling %s\n", power_well->name); 75 power_well->ops->enable(dev_priv, power_well); 76 power_well->hw_enabled = true; 77 } 78 79 static void intel_power_well_disable(struct drm_i915_private *dev_priv, 80 struct i915_power_well *power_well) 81 { 82 DRM_DEBUG_KMS("disabling %s\n", power_well->name); 83 power_well->hw_enabled = false; 84 power_well->ops->disable(dev_priv, power_well); 85 } 86 87 /* 88 * We should only use the power well if we explicitly asked the hardware to 89 * enable it, so check if it's enabled and also check if we've requested it to 90 * be enabled. 91 */ 92 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv, 93 struct i915_power_well *power_well) 94 { 95 return I915_READ(HSW_PWR_WELL_DRIVER) == 96 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED); 97 } 98 99 /** 100 * __intel_display_power_is_enabled - unlocked check for a power domain 101 * @dev_priv: i915 device instance 102 * @domain: power domain to check 103 * 104 * This is the unlocked version of intel_display_power_is_enabled() and should 105 * only be used from error capture and recovery code where deadlocks are 106 * possible. 107 * 108 * Returns: 109 * True when the power domain is enabled, false otherwise. 110 */ 111 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 112 enum intel_display_power_domain domain) 113 { 114 struct i915_power_domains *power_domains; 115 struct i915_power_well *power_well; 116 bool is_enabled; 117 int i; 118 119 if (dev_priv->pm.suspended) 120 return false; 121 122 power_domains = &dev_priv->power_domains; 123 124 is_enabled = true; 125 126 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { 127 if (power_well->always_on) 128 continue; 129 130 if (!power_well->hw_enabled) { 131 is_enabled = false; 132 break; 133 } 134 } 135 136 return is_enabled; 137 } 138 139 /** 140 * intel_display_power_is_enabled - check for a power domain 141 * @dev_priv: i915 device instance 142 * @domain: power domain to check 143 * 144 * This function can be used to check the hw power domain state. It is mostly 145 * used in hardware state readout functions. Everywhere else code should rely 146 * upon explicit power domain reference counting to ensure that the hardware 147 * block is powered up before accessing it. 148 * 149 * Callers must hold the relevant modesetting locks to ensure that concurrent 150 * threads can't disable the power well while the caller tries to read a few 151 * registers. 152 * 153 * Returns: 154 * True when the power domain is enabled, false otherwise. 155 */ 156 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 157 enum intel_display_power_domain domain) 158 { 159 struct i915_power_domains *power_domains; 160 bool ret; 161 162 power_domains = &dev_priv->power_domains; 163 164 mutex_lock(&power_domains->lock); 165 ret = __intel_display_power_is_enabled(dev_priv, domain); 166 mutex_unlock(&power_domains->lock); 167 168 return ret; 169 } 170 171 /** 172 * intel_display_set_init_power - set the initial power domain state 173 * @dev_priv: i915 device instance 174 * @enable: whether to enable or disable the initial power domain state 175 * 176 * For simplicity our driver load/unload and system suspend/resume code assumes 177 * that all power domains are always enabled. This functions controls the state 178 * of this little hack. While the initial power domain state is enabled runtime 179 * pm is effectively disabled. 180 */ 181 void intel_display_set_init_power(struct drm_i915_private *dev_priv, 182 bool enable) 183 { 184 if (dev_priv->power_domains.init_power_on == enable) 185 return; 186 187 if (enable) 188 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 189 else 190 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT); 191 192 dev_priv->power_domains.init_power_on = enable; 193 } 194 195 /* 196 * Starting with Haswell, we have a "Power Down Well" that can be turned off 197 * when not needed anymore. We have 4 registers that can request the power well 198 * to be enabled, and it will only be disabled if none of the registers is 199 * requesting it to be enabled. 200 */ 201 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv) 202 { 203 struct drm_device *dev = dev_priv->dev; 204 205 /* 206 * After we re-enable the power well, if we touch VGA register 0x3d5 207 * we'll get unclaimed register interrupts. This stops after we write 208 * anything to the VGA MSR register. The vgacon module uses this 209 * register all the time, so if we unbind our driver and, as a 210 * consequence, bind vgacon, we'll get stuck in an infinite loop at 211 * console_unlock(). So make here we touch the VGA MSR register, making 212 * sure vgacon can keep working normally without triggering interrupts 213 * and error messages. 214 */ 215 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 216 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); 217 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 218 219 if (IS_BROADWELL(dev)) 220 gen8_irq_power_well_post_enable(dev_priv, 221 1 << PIPE_C | 1 << PIPE_B); 222 } 223 224 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv, 225 struct i915_power_well *power_well) 226 { 227 struct drm_device *dev = dev_priv->dev; 228 229 /* 230 * After we re-enable the power well, if we touch VGA register 0x3d5 231 * we'll get unclaimed register interrupts. This stops after we write 232 * anything to the VGA MSR register. The vgacon module uses this 233 * register all the time, so if we unbind our driver and, as a 234 * consequence, bind vgacon, we'll get stuck in an infinite loop at 235 * console_unlock(). So make here we touch the VGA MSR register, making 236 * sure vgacon can keep working normally without triggering interrupts 237 * and error messages. 238 */ 239 if (power_well->data == SKL_DISP_PW_2) { 240 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 241 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); 242 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 243 244 gen8_irq_power_well_post_enable(dev_priv, 245 1 << PIPE_C | 1 << PIPE_B); 246 } 247 248 if (power_well->data == SKL_DISP_PW_1) { 249 intel_prepare_ddi(dev); 250 gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A); 251 } 252 } 253 254 static void hsw_set_power_well(struct drm_i915_private *dev_priv, 255 struct i915_power_well *power_well, bool enable) 256 { 257 bool is_enabled, enable_requested; 258 uint32_t tmp; 259 260 tmp = I915_READ(HSW_PWR_WELL_DRIVER); 261 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED; 262 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST; 263 264 if (enable) { 265 if (!enable_requested) 266 I915_WRITE(HSW_PWR_WELL_DRIVER, 267 HSW_PWR_WELL_ENABLE_REQUEST); 268 269 if (!is_enabled) { 270 DRM_DEBUG_KMS("Enabling power well\n"); 271 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & 272 HSW_PWR_WELL_STATE_ENABLED), 20)) 273 DRM_ERROR("Timeout enabling power well\n"); 274 hsw_power_well_post_enable(dev_priv); 275 } 276 277 } else { 278 if (enable_requested) { 279 I915_WRITE(HSW_PWR_WELL_DRIVER, 0); 280 POSTING_READ(HSW_PWR_WELL_DRIVER); 281 DRM_DEBUG_KMS("Requesting to disable the power well\n"); 282 } 283 } 284 } 285 286 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ 287 BIT(POWER_DOMAIN_TRANSCODER_A) | \ 288 BIT(POWER_DOMAIN_PIPE_B) | \ 289 BIT(POWER_DOMAIN_TRANSCODER_B) | \ 290 BIT(POWER_DOMAIN_PIPE_C) | \ 291 BIT(POWER_DOMAIN_TRANSCODER_C) | \ 292 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ 293 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ 294 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 295 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 296 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 297 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 298 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 299 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 300 BIT(POWER_DOMAIN_AUX_B) | \ 301 BIT(POWER_DOMAIN_AUX_C) | \ 302 BIT(POWER_DOMAIN_AUX_D) | \ 303 BIT(POWER_DOMAIN_AUDIO) | \ 304 BIT(POWER_DOMAIN_VGA) | \ 305 BIT(POWER_DOMAIN_INIT)) 306 #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ 307 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 308 BIT(POWER_DOMAIN_PLLS) | \ 309 BIT(POWER_DOMAIN_PIPE_A) | \ 310 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 311 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ 312 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 313 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 314 BIT(POWER_DOMAIN_AUX_A) | \ 315 BIT(POWER_DOMAIN_INIT)) 316 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \ 317 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 318 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 319 BIT(POWER_DOMAIN_INIT)) 320 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \ 321 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 322 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 323 BIT(POWER_DOMAIN_INIT)) 324 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \ 325 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 326 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 327 BIT(POWER_DOMAIN_INIT)) 328 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \ 329 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 330 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 331 BIT(POWER_DOMAIN_INIT)) 332 #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \ 333 SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 334 BIT(POWER_DOMAIN_PLLS) | \ 335 BIT(POWER_DOMAIN_INIT)) 336 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ 337 (POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 338 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 339 SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \ 340 SKL_DISPLAY_DDI_B_POWER_DOMAINS | \ 341 SKL_DISPLAY_DDI_C_POWER_DOMAINS | \ 342 SKL_DISPLAY_DDI_D_POWER_DOMAINS | \ 343 SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \ 344 BIT(POWER_DOMAIN_INIT)) 345 346 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ 347 BIT(POWER_DOMAIN_TRANSCODER_A) | \ 348 BIT(POWER_DOMAIN_PIPE_B) | \ 349 BIT(POWER_DOMAIN_TRANSCODER_B) | \ 350 BIT(POWER_DOMAIN_PIPE_C) | \ 351 BIT(POWER_DOMAIN_TRANSCODER_C) | \ 352 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ 353 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ 354 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 355 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 356 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 357 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 358 BIT(POWER_DOMAIN_AUX_B) | \ 359 BIT(POWER_DOMAIN_AUX_C) | \ 360 BIT(POWER_DOMAIN_AUDIO) | \ 361 BIT(POWER_DOMAIN_VGA) | \ 362 BIT(POWER_DOMAIN_INIT)) 363 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ 364 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 365 BIT(POWER_DOMAIN_PIPE_A) | \ 366 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 367 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ 368 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 369 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 370 BIT(POWER_DOMAIN_AUX_A) | \ 371 BIT(POWER_DOMAIN_PLLS) | \ 372 BIT(POWER_DOMAIN_INIT)) 373 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ 374 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 375 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \ 376 BIT(POWER_DOMAIN_INIT)) 377 378 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv) 379 { 380 struct drm_device *dev = dev_priv->dev; 381 382 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n"); 383 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), 384 "DC9 already programmed to be enabled.\n"); 385 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, 386 "DC5 still not disabled to enable DC9.\n"); 387 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n"); 388 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); 389 390 /* 391 * TODO: check for the following to verify the conditions to enter DC9 392 * state are satisfied: 393 * 1] Check relevant display engine registers to verify if mode set 394 * disable sequence was followed. 395 * 2] Check if display uninitialize sequence is initialized. 396 */ 397 } 398 399 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv) 400 { 401 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); 402 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), 403 "DC9 already programmed to be disabled.\n"); 404 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, 405 "DC5 still not disabled.\n"); 406 407 /* 408 * TODO: check for the following to verify DC9 state was indeed 409 * entered before programming to disable it: 410 * 1] Check relevant display engine registers to verify if mode 411 * set disable sequence was followed. 412 * 2] Check if display uninitialize sequence is initialized. 413 */ 414 } 415 416 void bxt_enable_dc9(struct drm_i915_private *dev_priv) 417 { 418 uint32_t val; 419 420 assert_can_enable_dc9(dev_priv); 421 422 DRM_DEBUG_KMS("Enabling DC9\n"); 423 424 val = I915_READ(DC_STATE_EN); 425 val |= DC_STATE_EN_DC9; 426 I915_WRITE(DC_STATE_EN, val); 427 POSTING_READ(DC_STATE_EN); 428 } 429 430 void bxt_disable_dc9(struct drm_i915_private *dev_priv) 431 { 432 uint32_t val; 433 434 assert_can_disable_dc9(dev_priv); 435 436 DRM_DEBUG_KMS("Disabling DC9\n"); 437 438 val = I915_READ(DC_STATE_EN); 439 val &= ~DC_STATE_EN_DC9; 440 I915_WRITE(DC_STATE_EN, val); 441 POSTING_READ(DC_STATE_EN); 442 } 443 444 static void gen9_set_dc_state_debugmask_memory_up( 445 struct drm_i915_private *dev_priv) 446 { 447 uint32_t val; 448 449 /* The below bit doesn't need to be cleared ever afterwards */ 450 val = I915_READ(DC_STATE_DEBUG); 451 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) { 452 val |= DC_STATE_DEBUG_MASK_MEMORY_UP; 453 I915_WRITE(DC_STATE_DEBUG, val); 454 POSTING_READ(DC_STATE_DEBUG); 455 } 456 } 457 458 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv) 459 { 460 struct drm_device *dev = dev_priv->dev; 461 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv, 462 SKL_DISP_PW_2); 463 464 WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n"); 465 WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n"); 466 WARN(pg2_enabled, "PG2 not disabled to enable DC5.\n"); 467 468 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5), 469 "DC5 already programmed to be enabled.\n"); 470 WARN(dev_priv->pm.suspended, 471 "DC5 cannot be enabled, if platform is runtime-suspended.\n"); 472 473 assert_csr_loaded(dev_priv); 474 } 475 476 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv) 477 { 478 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv, 479 SKL_DISP_PW_2); 480 /* 481 * During initialization, the firmware may not be loaded yet. 482 * We still want to make sure that the DC enabling flag is cleared. 483 */ 484 if (dev_priv->power_domains.initializing) 485 return; 486 487 WARN(!pg2_enabled, "PG2 not enabled to disable DC5.\n"); 488 WARN(dev_priv->pm.suspended, 489 "Disabling of DC5 while platform is runtime-suspended should never happen.\n"); 490 } 491 492 static void gen9_enable_dc5(struct drm_i915_private *dev_priv) 493 { 494 uint32_t val; 495 496 assert_can_enable_dc5(dev_priv); 497 498 DRM_DEBUG_KMS("Enabling DC5\n"); 499 500 gen9_set_dc_state_debugmask_memory_up(dev_priv); 501 502 val = I915_READ(DC_STATE_EN); 503 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK; 504 val |= DC_STATE_EN_UPTO_DC5; 505 I915_WRITE(DC_STATE_EN, val); 506 POSTING_READ(DC_STATE_EN); 507 } 508 509 static void gen9_disable_dc5(struct drm_i915_private *dev_priv) 510 { 511 uint32_t val; 512 513 assert_can_disable_dc5(dev_priv); 514 515 DRM_DEBUG_KMS("Disabling DC5\n"); 516 517 val = I915_READ(DC_STATE_EN); 518 val &= ~DC_STATE_EN_UPTO_DC5; 519 I915_WRITE(DC_STATE_EN, val); 520 POSTING_READ(DC_STATE_EN); 521 } 522 523 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv) 524 { 525 struct drm_device *dev = dev_priv->dev; 526 527 WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n"); 528 WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n"); 529 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, 530 "Backlight is not disabled.\n"); 531 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), 532 "DC6 already programmed to be enabled.\n"); 533 534 assert_csr_loaded(dev_priv); 535 } 536 537 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv) 538 { 539 /* 540 * During initialization, the firmware may not be loaded yet. 541 * We still want to make sure that the DC enabling flag is cleared. 542 */ 543 if (dev_priv->power_domains.initializing) 544 return; 545 546 assert_csr_loaded(dev_priv); 547 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), 548 "DC6 already programmed to be disabled.\n"); 549 } 550 551 static void skl_enable_dc6(struct drm_i915_private *dev_priv) 552 { 553 uint32_t val; 554 555 assert_can_enable_dc6(dev_priv); 556 557 DRM_DEBUG_KMS("Enabling DC6\n"); 558 559 gen9_set_dc_state_debugmask_memory_up(dev_priv); 560 561 val = I915_READ(DC_STATE_EN); 562 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK; 563 val |= DC_STATE_EN_UPTO_DC6; 564 I915_WRITE(DC_STATE_EN, val); 565 POSTING_READ(DC_STATE_EN); 566 } 567 568 static void skl_disable_dc6(struct drm_i915_private *dev_priv) 569 { 570 uint32_t val; 571 572 assert_can_disable_dc6(dev_priv); 573 574 DRM_DEBUG_KMS("Disabling DC6\n"); 575 576 val = I915_READ(DC_STATE_EN); 577 val &= ~DC_STATE_EN_UPTO_DC6; 578 I915_WRITE(DC_STATE_EN, val); 579 POSTING_READ(DC_STATE_EN); 580 } 581 582 static void skl_set_power_well(struct drm_i915_private *dev_priv, 583 struct i915_power_well *power_well, bool enable) 584 { 585 struct drm_device *dev = dev_priv->dev; 586 uint32_t tmp, fuse_status; 587 uint32_t req_mask, state_mask; 588 bool is_enabled, enable_requested, check_fuse_status = false; 589 590 tmp = I915_READ(HSW_PWR_WELL_DRIVER); 591 fuse_status = I915_READ(SKL_FUSE_STATUS); 592 593 switch (power_well->data) { 594 case SKL_DISP_PW_1: 595 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 596 SKL_FUSE_PG0_DIST_STATUS), 1)) { 597 DRM_ERROR("PG0 not enabled\n"); 598 return; 599 } 600 break; 601 case SKL_DISP_PW_2: 602 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) { 603 DRM_ERROR("PG1 in disabled state\n"); 604 return; 605 } 606 break; 607 case SKL_DISP_PW_DDI_A_E: 608 case SKL_DISP_PW_DDI_B: 609 case SKL_DISP_PW_DDI_C: 610 case SKL_DISP_PW_DDI_D: 611 case SKL_DISP_PW_MISC_IO: 612 break; 613 default: 614 WARN(1, "Unknown power well %lu\n", power_well->data); 615 return; 616 } 617 618 req_mask = SKL_POWER_WELL_REQ(power_well->data); 619 enable_requested = tmp & req_mask; 620 state_mask = SKL_POWER_WELL_STATE(power_well->data); 621 is_enabled = tmp & state_mask; 622 623 if (enable) { 624 if (!enable_requested) { 625 WARN((tmp & state_mask) && 626 !I915_READ(HSW_PWR_WELL_BIOS), 627 "Invalid for power well status to be enabled, unless done by the BIOS, \ 628 when request is to disable!\n"); 629 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) && 630 power_well->data == SKL_DISP_PW_2) { 631 if (SKL_ENABLE_DC6(dev)) { 632 skl_disable_dc6(dev_priv); 633 /* 634 * DDI buffer programming unnecessary during driver-load/resume 635 * as it's already done during modeset initialization then. 636 * It's also invalid here as encoder list is still uninitialized. 637 */ 638 if (!dev_priv->power_domains.initializing) 639 intel_prepare_ddi(dev); 640 } else { 641 gen9_disable_dc5(dev_priv); 642 } 643 } 644 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask); 645 } 646 647 if (!is_enabled) { 648 DRM_DEBUG_KMS("Enabling %s\n", power_well->name); 649 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & 650 state_mask), 1)) 651 DRM_ERROR("%s enable timeout\n", 652 power_well->name); 653 check_fuse_status = true; 654 } 655 } else { 656 if (enable_requested) { 657 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask); 658 POSTING_READ(HSW_PWR_WELL_DRIVER); 659 DRM_DEBUG_KMS("Disabling %s\n", power_well->name); 660 661 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) && 662 power_well->data == SKL_DISP_PW_2) { 663 enum csr_state state; 664 /* TODO: wait for a completion event or 665 * similar here instead of busy 666 * waiting using wait_for function. 667 */ 668 wait_for((state = intel_csr_load_status_get(dev_priv)) != 669 FW_UNINITIALIZED, 1000); 670 if (state != FW_LOADED) 671 DRM_ERROR("CSR firmware not ready (%d)\n", 672 state); 673 else 674 if (SKL_ENABLE_DC6(dev)) 675 skl_enable_dc6(dev_priv); 676 else 677 gen9_enable_dc5(dev_priv); 678 } 679 } 680 } 681 682 if (check_fuse_status) { 683 if (power_well->data == SKL_DISP_PW_1) { 684 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 685 SKL_FUSE_PG1_DIST_STATUS), 1)) 686 DRM_ERROR("PG1 distributing status timeout\n"); 687 } else if (power_well->data == SKL_DISP_PW_2) { 688 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 689 SKL_FUSE_PG2_DIST_STATUS), 1)) 690 DRM_ERROR("PG2 distributing status timeout\n"); 691 } 692 } 693 694 if (enable && !is_enabled) 695 skl_power_well_post_enable(dev_priv, power_well); 696 } 697 698 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv, 699 struct i915_power_well *power_well) 700 { 701 hsw_set_power_well(dev_priv, power_well, power_well->count > 0); 702 703 /* 704 * We're taking over the BIOS, so clear any requests made by it since 705 * the driver is in charge now. 706 */ 707 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST) 708 I915_WRITE(HSW_PWR_WELL_BIOS, 0); 709 } 710 711 static void hsw_power_well_enable(struct drm_i915_private *dev_priv, 712 struct i915_power_well *power_well) 713 { 714 hsw_set_power_well(dev_priv, power_well, true); 715 } 716 717 static void hsw_power_well_disable(struct drm_i915_private *dev_priv, 718 struct i915_power_well *power_well) 719 { 720 hsw_set_power_well(dev_priv, power_well, false); 721 } 722 723 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv, 724 struct i915_power_well *power_well) 725 { 726 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) | 727 SKL_POWER_WELL_STATE(power_well->data); 728 729 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask; 730 } 731 732 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv, 733 struct i915_power_well *power_well) 734 { 735 skl_set_power_well(dev_priv, power_well, power_well->count > 0); 736 737 /* Clear any request made by BIOS as driver is taking over */ 738 I915_WRITE(HSW_PWR_WELL_BIOS, 0); 739 } 740 741 static void skl_power_well_enable(struct drm_i915_private *dev_priv, 742 struct i915_power_well *power_well) 743 { 744 skl_set_power_well(dev_priv, power_well, true); 745 } 746 747 static void skl_power_well_disable(struct drm_i915_private *dev_priv, 748 struct i915_power_well *power_well) 749 { 750 skl_set_power_well(dev_priv, power_well, false); 751 } 752 753 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv, 754 struct i915_power_well *power_well) 755 { 756 } 757 758 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv, 759 struct i915_power_well *power_well) 760 { 761 return true; 762 } 763 764 static void vlv_set_power_well(struct drm_i915_private *dev_priv, 765 struct i915_power_well *power_well, bool enable) 766 { 767 enum punit_power_well power_well_id = power_well->data; 768 u32 mask; 769 u32 state; 770 u32 ctrl; 771 772 mask = PUNIT_PWRGT_MASK(power_well_id); 773 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) : 774 PUNIT_PWRGT_PWR_GATE(power_well_id); 775 776 mutex_lock(&dev_priv->rps.hw_lock); 777 778 #define COND \ 779 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state) 780 781 if (COND) 782 goto out; 783 784 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL); 785 ctrl &= ~mask; 786 ctrl |= state; 787 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl); 788 789 if (wait_for(COND, 100)) 790 DRM_ERROR("timeout setting power well state %08x (%08x)\n", 791 state, 792 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL)); 793 794 #undef COND 795 796 out: 797 mutex_unlock(&dev_priv->rps.hw_lock); 798 } 799 800 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv, 801 struct i915_power_well *power_well) 802 { 803 vlv_set_power_well(dev_priv, power_well, power_well->count > 0); 804 } 805 806 static void vlv_power_well_enable(struct drm_i915_private *dev_priv, 807 struct i915_power_well *power_well) 808 { 809 vlv_set_power_well(dev_priv, power_well, true); 810 } 811 812 static void vlv_power_well_disable(struct drm_i915_private *dev_priv, 813 struct i915_power_well *power_well) 814 { 815 vlv_set_power_well(dev_priv, power_well, false); 816 } 817 818 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv, 819 struct i915_power_well *power_well) 820 { 821 int power_well_id = power_well->data; 822 bool enabled = false; 823 u32 mask; 824 u32 state; 825 u32 ctrl; 826 827 mask = PUNIT_PWRGT_MASK(power_well_id); 828 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id); 829 830 mutex_lock(&dev_priv->rps.hw_lock); 831 832 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask; 833 /* 834 * We only ever set the power-on and power-gate states, anything 835 * else is unexpected. 836 */ 837 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) && 838 state != PUNIT_PWRGT_PWR_GATE(power_well_id)); 839 if (state == ctrl) 840 enabled = true; 841 842 /* 843 * A transient state at this point would mean some unexpected party 844 * is poking at the power controls too. 845 */ 846 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask; 847 WARN_ON(ctrl != state); 848 849 mutex_unlock(&dev_priv->rps.hw_lock); 850 851 return enabled; 852 } 853 854 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv) 855 { 856 857 spin_lock_irq(&dev_priv->irq_lock); 858 valleyview_enable_display_irqs(dev_priv); 859 spin_unlock_irq(&dev_priv->irq_lock); 860 861 /* 862 * During driver initialization/resume we can avoid restoring the 863 * part of the HW/SW state that will be inited anyway explicitly. 864 */ 865 if (dev_priv->power_domains.initializing) 866 return; 867 868 intel_hpd_init(dev_priv); 869 870 i915_redisable_vga_power_on(dev_priv->dev); 871 } 872 873 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv) 874 { 875 spin_lock_irq(&dev_priv->irq_lock); 876 valleyview_disable_display_irqs(dev_priv); 877 spin_unlock_irq(&dev_priv->irq_lock); 878 879 vlv_power_sequencer_reset(dev_priv); 880 } 881 882 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv, 883 struct i915_power_well *power_well) 884 { 885 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); 886 887 vlv_set_power_well(dev_priv, power_well, true); 888 889 vlv_display_power_well_init(dev_priv); 890 } 891 892 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv, 893 struct i915_power_well *power_well) 894 { 895 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); 896 897 vlv_display_power_well_deinit(dev_priv); 898 899 vlv_set_power_well(dev_priv, power_well, false); 900 } 901 902 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, 903 struct i915_power_well *power_well) 904 { 905 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); 906 907 /* 908 * Enable the CRI clock source so we can get at the 909 * display and the reference clock for VGA 910 * hotplug / manual detection. 911 */ 912 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 913 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 914 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ 915 916 vlv_set_power_well(dev_priv, power_well, true); 917 918 /* 919 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx - 920 * 6. De-assert cmn_reset/side_reset. Same as VLV X0. 921 * a. GUnit 0x2110 bit[0] set to 1 (def 0) 922 * b. The other bits such as sfr settings / modesel may all 923 * be set to 0. 924 * 925 * This should only be done on init and resume from S3 with 926 * both PLLs disabled, or we risk losing DPIO and PLL 927 * synchronization. 928 */ 929 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST); 930 } 931 932 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, 933 struct i915_power_well *power_well) 934 { 935 enum pipe pipe; 936 937 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); 938 939 for_each_pipe(dev_priv, pipe) 940 assert_pll_disabled(dev_priv, pipe); 941 942 /* Assert common reset */ 943 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST); 944 945 vlv_set_power_well(dev_priv, power_well, false); 946 } 947 948 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, 949 struct i915_power_well *power_well) 950 { 951 enum dpio_phy phy; 952 953 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && 954 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); 955 956 /* 957 * Enable the CRI clock source so we can get at the 958 * display and the reference clock for VGA 959 * hotplug / manual detection. 960 */ 961 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { 962 phy = DPIO_PHY0; 963 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 964 DPLL_REF_CLK_ENABLE_VLV); 965 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 966 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 967 } else { 968 phy = DPIO_PHY1; 969 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) | DPLL_VGA_MODE_DIS | 970 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 971 } 972 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ 973 vlv_set_power_well(dev_priv, power_well, true); 974 975 /* Poll for phypwrgood signal */ 976 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1)) 977 DRM_ERROR("Display PHY %d is not power up\n", phy); 978 979 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy); 980 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); 981 } 982 983 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, 984 struct i915_power_well *power_well) 985 { 986 enum dpio_phy phy; 987 988 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && 989 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); 990 991 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { 992 phy = DPIO_PHY0; 993 assert_pll_disabled(dev_priv, PIPE_A); 994 assert_pll_disabled(dev_priv, PIPE_B); 995 } else { 996 phy = DPIO_PHY1; 997 assert_pll_disabled(dev_priv, PIPE_C); 998 } 999 1000 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy); 1001 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); 1002 1003 vlv_set_power_well(dev_priv, power_well, false); 1004 } 1005 1006 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv, 1007 struct i915_power_well *power_well) 1008 { 1009 enum pipe pipe = power_well->data; 1010 bool enabled; 1011 u32 state, ctrl; 1012 1013 mutex_lock(&dev_priv->rps.hw_lock); 1014 1015 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe); 1016 /* 1017 * We only ever set the power-on and power-gate states, anything 1018 * else is unexpected. 1019 */ 1020 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe)); 1021 enabled = state == DP_SSS_PWR_ON(pipe); 1022 1023 /* 1024 * A transient state at this point would mean some unexpected party 1025 * is poking at the power controls too. 1026 */ 1027 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe); 1028 WARN_ON(ctrl << 16 != state); 1029 1030 mutex_unlock(&dev_priv->rps.hw_lock); 1031 1032 return enabled; 1033 } 1034 1035 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv, 1036 struct i915_power_well *power_well, 1037 bool enable) 1038 { 1039 enum pipe pipe = power_well->data; 1040 u32 state; 1041 u32 ctrl; 1042 1043 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe); 1044 1045 mutex_lock(&dev_priv->rps.hw_lock); 1046 1047 #define COND \ 1048 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state) 1049 1050 if (COND) 1051 goto out; 1052 1053 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); 1054 ctrl &= ~DP_SSC_MASK(pipe); 1055 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe); 1056 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl); 1057 1058 if (wait_for(COND, 100)) 1059 DRM_ERROR("timeout setting power well state %08x (%08x)\n", 1060 state, 1061 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ)); 1062 1063 #undef COND 1064 1065 out: 1066 mutex_unlock(&dev_priv->rps.hw_lock); 1067 } 1068 1069 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv, 1070 struct i915_power_well *power_well) 1071 { 1072 WARN_ON_ONCE(power_well->data != PIPE_A); 1073 1074 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0); 1075 } 1076 1077 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv, 1078 struct i915_power_well *power_well) 1079 { 1080 WARN_ON_ONCE(power_well->data != PIPE_A); 1081 1082 chv_set_pipe_power_well(dev_priv, power_well, true); 1083 1084 vlv_display_power_well_init(dev_priv); 1085 } 1086 1087 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv, 1088 struct i915_power_well *power_well) 1089 { 1090 WARN_ON_ONCE(power_well->data != PIPE_A); 1091 1092 vlv_display_power_well_deinit(dev_priv); 1093 1094 chv_set_pipe_power_well(dev_priv, power_well, false); 1095 } 1096 1097 /** 1098 * intel_display_power_get - grab a power domain reference 1099 * @dev_priv: i915 device instance 1100 * @domain: power domain to reference 1101 * 1102 * This function grabs a power domain reference for @domain and ensures that the 1103 * power domain and all its parents are powered up. Therefore users should only 1104 * grab a reference to the innermost power domain they need. 1105 * 1106 * Any power domain reference obtained by this function must have a symmetric 1107 * call to intel_display_power_put() to release the reference again. 1108 */ 1109 void intel_display_power_get(struct drm_i915_private *dev_priv, 1110 enum intel_display_power_domain domain) 1111 { 1112 struct i915_power_domains *power_domains; 1113 struct i915_power_well *power_well; 1114 int i; 1115 1116 intel_runtime_pm_get(dev_priv); 1117 1118 power_domains = &dev_priv->power_domains; 1119 1120 mutex_lock(&power_domains->lock); 1121 1122 for_each_power_well(i, power_well, BIT(domain), power_domains) { 1123 if (!power_well->count++) 1124 intel_power_well_enable(dev_priv, power_well); 1125 } 1126 1127 power_domains->domain_use_count[domain]++; 1128 1129 mutex_unlock(&power_domains->lock); 1130 } 1131 1132 /** 1133 * intel_display_power_put - release a power domain reference 1134 * @dev_priv: i915 device instance 1135 * @domain: power domain to reference 1136 * 1137 * This function drops the power domain reference obtained by 1138 * intel_display_power_get() and might power down the corresponding hardware 1139 * block right away if this is the last reference. 1140 */ 1141 void intel_display_power_put(struct drm_i915_private *dev_priv, 1142 enum intel_display_power_domain domain) 1143 { 1144 struct i915_power_domains *power_domains; 1145 struct i915_power_well *power_well; 1146 int i; 1147 1148 power_domains = &dev_priv->power_domains; 1149 1150 mutex_lock(&power_domains->lock); 1151 1152 WARN_ON(!power_domains->domain_use_count[domain]); 1153 power_domains->domain_use_count[domain]--; 1154 1155 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { 1156 WARN_ON(!power_well->count); 1157 1158 if (!--power_well->count && i915.disable_power_well) 1159 intel_power_well_disable(dev_priv, power_well); 1160 } 1161 1162 mutex_unlock(&power_domains->lock); 1163 1164 intel_runtime_pm_put(dev_priv); 1165 } 1166 1167 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1) 1168 1169 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \ 1170 BIT(POWER_DOMAIN_PIPE_A) | \ 1171 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 1172 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 1173 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 1174 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1175 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1176 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1177 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1178 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 1179 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 1180 BIT(POWER_DOMAIN_PORT_CRT) | \ 1181 BIT(POWER_DOMAIN_PLLS) | \ 1182 BIT(POWER_DOMAIN_AUX_A) | \ 1183 BIT(POWER_DOMAIN_AUX_B) | \ 1184 BIT(POWER_DOMAIN_AUX_C) | \ 1185 BIT(POWER_DOMAIN_AUX_D) | \ 1186 BIT(POWER_DOMAIN_INIT)) 1187 #define HSW_DISPLAY_POWER_DOMAINS ( \ 1188 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \ 1189 BIT(POWER_DOMAIN_INIT)) 1190 1191 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \ 1192 HSW_ALWAYS_ON_POWER_DOMAINS | \ 1193 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER)) 1194 #define BDW_DISPLAY_POWER_DOMAINS ( \ 1195 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \ 1196 BIT(POWER_DOMAIN_INIT)) 1197 1198 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT) 1199 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK 1200 1201 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \ 1202 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1203 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1204 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1205 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1206 BIT(POWER_DOMAIN_PORT_CRT) | \ 1207 BIT(POWER_DOMAIN_AUX_B) | \ 1208 BIT(POWER_DOMAIN_AUX_C) | \ 1209 BIT(POWER_DOMAIN_INIT)) 1210 1211 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \ 1212 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1213 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1214 BIT(POWER_DOMAIN_AUX_B) | \ 1215 BIT(POWER_DOMAIN_INIT)) 1216 1217 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \ 1218 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1219 BIT(POWER_DOMAIN_AUX_B) | \ 1220 BIT(POWER_DOMAIN_INIT)) 1221 1222 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \ 1223 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1224 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1225 BIT(POWER_DOMAIN_AUX_C) | \ 1226 BIT(POWER_DOMAIN_INIT)) 1227 1228 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \ 1229 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1230 BIT(POWER_DOMAIN_AUX_C) | \ 1231 BIT(POWER_DOMAIN_INIT)) 1232 1233 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \ 1234 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1235 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1236 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1237 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1238 BIT(POWER_DOMAIN_AUX_B) | \ 1239 BIT(POWER_DOMAIN_AUX_C) | \ 1240 BIT(POWER_DOMAIN_INIT)) 1241 1242 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \ 1243 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 1244 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 1245 BIT(POWER_DOMAIN_AUX_D) | \ 1246 BIT(POWER_DOMAIN_INIT)) 1247 1248 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = { 1249 .sync_hw = i9xx_always_on_power_well_noop, 1250 .enable = i9xx_always_on_power_well_noop, 1251 .disable = i9xx_always_on_power_well_noop, 1252 .is_enabled = i9xx_always_on_power_well_enabled, 1253 }; 1254 1255 static const struct i915_power_well_ops chv_pipe_power_well_ops = { 1256 .sync_hw = chv_pipe_power_well_sync_hw, 1257 .enable = chv_pipe_power_well_enable, 1258 .disable = chv_pipe_power_well_disable, 1259 .is_enabled = chv_pipe_power_well_enabled, 1260 }; 1261 1262 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = { 1263 .sync_hw = vlv_power_well_sync_hw, 1264 .enable = chv_dpio_cmn_power_well_enable, 1265 .disable = chv_dpio_cmn_power_well_disable, 1266 .is_enabled = vlv_power_well_enabled, 1267 }; 1268 1269 static struct i915_power_well i9xx_always_on_power_well[] = { 1270 { 1271 .name = "always-on", 1272 .always_on = 1, 1273 .domains = POWER_DOMAIN_MASK, 1274 .ops = &i9xx_always_on_power_well_ops, 1275 }, 1276 }; 1277 1278 static const struct i915_power_well_ops hsw_power_well_ops = { 1279 .sync_hw = hsw_power_well_sync_hw, 1280 .enable = hsw_power_well_enable, 1281 .disable = hsw_power_well_disable, 1282 .is_enabled = hsw_power_well_enabled, 1283 }; 1284 1285 static const struct i915_power_well_ops skl_power_well_ops = { 1286 .sync_hw = skl_power_well_sync_hw, 1287 .enable = skl_power_well_enable, 1288 .disable = skl_power_well_disable, 1289 .is_enabled = skl_power_well_enabled, 1290 }; 1291 1292 static struct i915_power_well hsw_power_wells[] = { 1293 { 1294 .name = "always-on", 1295 .always_on = 1, 1296 .domains = HSW_ALWAYS_ON_POWER_DOMAINS, 1297 .ops = &i9xx_always_on_power_well_ops, 1298 }, 1299 { 1300 .name = "display", 1301 .domains = HSW_DISPLAY_POWER_DOMAINS, 1302 .ops = &hsw_power_well_ops, 1303 }, 1304 }; 1305 1306 static struct i915_power_well bdw_power_wells[] = { 1307 { 1308 .name = "always-on", 1309 .always_on = 1, 1310 .domains = BDW_ALWAYS_ON_POWER_DOMAINS, 1311 .ops = &i9xx_always_on_power_well_ops, 1312 }, 1313 { 1314 .name = "display", 1315 .domains = BDW_DISPLAY_POWER_DOMAINS, 1316 .ops = &hsw_power_well_ops, 1317 }, 1318 }; 1319 1320 static const struct i915_power_well_ops vlv_display_power_well_ops = { 1321 .sync_hw = vlv_power_well_sync_hw, 1322 .enable = vlv_display_power_well_enable, 1323 .disable = vlv_display_power_well_disable, 1324 .is_enabled = vlv_power_well_enabled, 1325 }; 1326 1327 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = { 1328 .sync_hw = vlv_power_well_sync_hw, 1329 .enable = vlv_dpio_cmn_power_well_enable, 1330 .disable = vlv_dpio_cmn_power_well_disable, 1331 .is_enabled = vlv_power_well_enabled, 1332 }; 1333 1334 static const struct i915_power_well_ops vlv_dpio_power_well_ops = { 1335 .sync_hw = vlv_power_well_sync_hw, 1336 .enable = vlv_power_well_enable, 1337 .disable = vlv_power_well_disable, 1338 .is_enabled = vlv_power_well_enabled, 1339 }; 1340 1341 static struct i915_power_well vlv_power_wells[] = { 1342 { 1343 .name = "always-on", 1344 .always_on = 1, 1345 .domains = VLV_ALWAYS_ON_POWER_DOMAINS, 1346 .ops = &i9xx_always_on_power_well_ops, 1347 }, 1348 { 1349 .name = "display", 1350 .domains = VLV_DISPLAY_POWER_DOMAINS, 1351 .data = PUNIT_POWER_WELL_DISP2D, 1352 .ops = &vlv_display_power_well_ops, 1353 }, 1354 { 1355 .name = "dpio-tx-b-01", 1356 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1357 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1358 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1359 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1360 .ops = &vlv_dpio_power_well_ops, 1361 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01, 1362 }, 1363 { 1364 .name = "dpio-tx-b-23", 1365 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1366 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1367 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1368 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1369 .ops = &vlv_dpio_power_well_ops, 1370 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23, 1371 }, 1372 { 1373 .name = "dpio-tx-c-01", 1374 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1375 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1376 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1377 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1378 .ops = &vlv_dpio_power_well_ops, 1379 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01, 1380 }, 1381 { 1382 .name = "dpio-tx-c-23", 1383 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1384 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1385 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1386 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1387 .ops = &vlv_dpio_power_well_ops, 1388 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23, 1389 }, 1390 { 1391 .name = "dpio-common", 1392 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS, 1393 .data = PUNIT_POWER_WELL_DPIO_CMN_BC, 1394 .ops = &vlv_dpio_cmn_power_well_ops, 1395 }, 1396 }; 1397 1398 static struct i915_power_well chv_power_wells[] = { 1399 { 1400 .name = "always-on", 1401 .always_on = 1, 1402 .domains = VLV_ALWAYS_ON_POWER_DOMAINS, 1403 .ops = &i9xx_always_on_power_well_ops, 1404 }, 1405 { 1406 .name = "display", 1407 /* 1408 * Pipe A power well is the new disp2d well. Pipe B and C 1409 * power wells don't actually exist. Pipe A power well is 1410 * required for any pipe to work. 1411 */ 1412 .domains = VLV_DISPLAY_POWER_DOMAINS, 1413 .data = PIPE_A, 1414 .ops = &chv_pipe_power_well_ops, 1415 }, 1416 { 1417 .name = "dpio-common-bc", 1418 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS, 1419 .data = PUNIT_POWER_WELL_DPIO_CMN_BC, 1420 .ops = &chv_dpio_cmn_power_well_ops, 1421 }, 1422 { 1423 .name = "dpio-common-d", 1424 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS, 1425 .data = PUNIT_POWER_WELL_DPIO_CMN_D, 1426 .ops = &chv_dpio_cmn_power_well_ops, 1427 }, 1428 }; 1429 1430 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv, 1431 int power_well_id) 1432 { 1433 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1434 struct i915_power_well *power_well; 1435 int i; 1436 1437 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { 1438 if (power_well->data == power_well_id) 1439 return power_well; 1440 } 1441 1442 return NULL; 1443 } 1444 1445 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, 1446 int power_well_id) 1447 { 1448 struct i915_power_well *power_well; 1449 bool ret; 1450 1451 power_well = lookup_power_well(dev_priv, power_well_id); 1452 ret = power_well->ops->is_enabled(dev_priv, power_well); 1453 1454 return ret; 1455 } 1456 1457 static struct i915_power_well skl_power_wells[] = { 1458 { 1459 .name = "always-on", 1460 .always_on = 1, 1461 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS, 1462 .ops = &i9xx_always_on_power_well_ops, 1463 }, 1464 { 1465 .name = "power well 1", 1466 .domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS, 1467 .ops = &skl_power_well_ops, 1468 .data = SKL_DISP_PW_1, 1469 }, 1470 { 1471 .name = "MISC IO power well", 1472 .domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS, 1473 .ops = &skl_power_well_ops, 1474 .data = SKL_DISP_PW_MISC_IO, 1475 }, 1476 { 1477 .name = "power well 2", 1478 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS, 1479 .ops = &skl_power_well_ops, 1480 .data = SKL_DISP_PW_2, 1481 }, 1482 { 1483 .name = "DDI A/E power well", 1484 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS, 1485 .ops = &skl_power_well_ops, 1486 .data = SKL_DISP_PW_DDI_A_E, 1487 }, 1488 { 1489 .name = "DDI B power well", 1490 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS, 1491 .ops = &skl_power_well_ops, 1492 .data = SKL_DISP_PW_DDI_B, 1493 }, 1494 { 1495 .name = "DDI C power well", 1496 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS, 1497 .ops = &skl_power_well_ops, 1498 .data = SKL_DISP_PW_DDI_C, 1499 }, 1500 { 1501 .name = "DDI D power well", 1502 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS, 1503 .ops = &skl_power_well_ops, 1504 .data = SKL_DISP_PW_DDI_D, 1505 }, 1506 }; 1507 1508 static struct i915_power_well bxt_power_wells[] = { 1509 { 1510 .name = "always-on", 1511 .always_on = 1, 1512 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS, 1513 .ops = &i9xx_always_on_power_well_ops, 1514 }, 1515 { 1516 .name = "power well 1", 1517 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS, 1518 .ops = &skl_power_well_ops, 1519 .data = SKL_DISP_PW_1, 1520 }, 1521 { 1522 .name = "power well 2", 1523 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS, 1524 .ops = &skl_power_well_ops, 1525 .data = SKL_DISP_PW_2, 1526 } 1527 }; 1528 1529 #define set_power_wells(power_domains, __power_wells) ({ \ 1530 (power_domains)->power_wells = (__power_wells); \ 1531 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \ 1532 }) 1533 1534 /** 1535 * intel_power_domains_init - initializes the power domain structures 1536 * @dev_priv: i915 device instance 1537 * 1538 * Initializes the power domain structures for @dev_priv depending upon the 1539 * supported platform. 1540 */ 1541 int intel_power_domains_init(struct drm_i915_private *dev_priv) 1542 { 1543 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1544 1545 mutex_init(&power_domains->lock); 1546 1547 /* 1548 * The enabling order will be from lower to higher indexed wells, 1549 * the disabling order is reversed. 1550 */ 1551 if (IS_HASWELL(dev_priv->dev)) { 1552 set_power_wells(power_domains, hsw_power_wells); 1553 } else if (IS_BROADWELL(dev_priv->dev)) { 1554 set_power_wells(power_domains, bdw_power_wells); 1555 } else if (IS_SKYLAKE(dev_priv->dev)) { 1556 set_power_wells(power_domains, skl_power_wells); 1557 } else if (IS_BROXTON(dev_priv->dev)) { 1558 set_power_wells(power_domains, bxt_power_wells); 1559 } else if (IS_CHERRYVIEW(dev_priv->dev)) { 1560 set_power_wells(power_domains, chv_power_wells); 1561 } else if (IS_VALLEYVIEW(dev_priv->dev)) { 1562 set_power_wells(power_domains, vlv_power_wells); 1563 } else { 1564 set_power_wells(power_domains, i9xx_always_on_power_well); 1565 } 1566 1567 return 0; 1568 } 1569 1570 static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv) 1571 { 1572 struct drm_device *dev = dev_priv->dev; 1573 struct device *device = &dev->pdev->dev; 1574 1575 if (!HAS_RUNTIME_PM(dev)) 1576 return; 1577 1578 if (!intel_enable_rc6(dev)) 1579 return; 1580 1581 /* Make sure we're not suspended first. */ 1582 pm_runtime_get_sync(device); 1583 pm_runtime_disable(device); 1584 } 1585 1586 /** 1587 * intel_power_domains_fini - finalizes the power domain structures 1588 * @dev_priv: i915 device instance 1589 * 1590 * Finalizes the power domain structures for @dev_priv depending upon the 1591 * supported platform. This function also disables runtime pm and ensures that 1592 * the device stays powered up so that the driver can be reloaded. 1593 */ 1594 void intel_power_domains_fini(struct drm_i915_private *dev_priv) 1595 { 1596 intel_runtime_pm_disable(dev_priv); 1597 1598 /* The i915.ko module is still not prepared to be loaded when 1599 * the power well is not enabled, so just enable it in case 1600 * we're going to unload/reload. */ 1601 intel_display_set_init_power(dev_priv, true); 1602 } 1603 1604 static void intel_power_domains_resume(struct drm_i915_private *dev_priv) 1605 { 1606 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1607 struct i915_power_well *power_well; 1608 int i; 1609 1610 mutex_lock(&power_domains->lock); 1611 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { 1612 power_well->ops->sync_hw(dev_priv, power_well); 1613 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv, 1614 power_well); 1615 } 1616 mutex_unlock(&power_domains->lock); 1617 } 1618 1619 static void chv_phy_control_init(struct drm_i915_private *dev_priv) 1620 { 1621 struct i915_power_well *cmn_bc = 1622 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC); 1623 struct i915_power_well *cmn_d = 1624 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D); 1625 1626 /* 1627 * DISPLAY_PHY_CONTROL can get corrupted if read. As a 1628 * workaround never ever read DISPLAY_PHY_CONTROL, and 1629 * instead maintain a shadow copy ourselves. Use the actual 1630 * power well state to reconstruct the expected initial 1631 * value. 1632 */ 1633 dev_priv->chv_phy_control = 1634 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | 1635 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | 1636 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH0) | 1637 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH1) | 1638 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY1, DPIO_CH0); 1639 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) 1640 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); 1641 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) 1642 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); 1643 } 1644 1645 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) 1646 { 1647 struct i915_power_well *cmn = 1648 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC); 1649 struct i915_power_well *disp2d = 1650 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D); 1651 1652 /* If the display might be already active skip this */ 1653 if (cmn->ops->is_enabled(dev_priv, cmn) && 1654 disp2d->ops->is_enabled(dev_priv, disp2d) && 1655 I915_READ(DPIO_CTL) & DPIO_CMNRST) 1656 return; 1657 1658 DRM_DEBUG_KMS("toggling display PHY side reset\n"); 1659 1660 /* cmnlane needs DPLL registers */ 1661 disp2d->ops->enable(dev_priv, disp2d); 1662 1663 /* 1664 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: 1665 * Need to assert and de-assert PHY SB reset by gating the 1666 * common lane power, then un-gating it. 1667 * Simply ungating isn't enough to reset the PHY enough to get 1668 * ports and lanes running. 1669 */ 1670 cmn->ops->disable(dev_priv, cmn); 1671 } 1672 1673 /** 1674 * intel_power_domains_init_hw - initialize hardware power domain state 1675 * @dev_priv: i915 device instance 1676 * 1677 * This function initializes the hardware power domain state and enables all 1678 * power domains using intel_display_set_init_power(). 1679 */ 1680 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv) 1681 { 1682 struct drm_device *dev = dev_priv->dev; 1683 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1684 1685 power_domains->initializing = true; 1686 1687 if (IS_CHERRYVIEW(dev)) { 1688 chv_phy_control_init(dev_priv); 1689 } else if (IS_VALLEYVIEW(dev)) { 1690 mutex_lock(&power_domains->lock); 1691 vlv_cmnlane_wa(dev_priv); 1692 mutex_unlock(&power_domains->lock); 1693 } 1694 1695 /* For now, we need the power well to be always enabled. */ 1696 intel_display_set_init_power(dev_priv, true); 1697 intel_power_domains_resume(dev_priv); 1698 power_domains->initializing = false; 1699 } 1700 1701 /** 1702 * intel_aux_display_runtime_get - grab an auxiliary power domain reference 1703 * @dev_priv: i915 device instance 1704 * 1705 * This function grabs a power domain reference for the auxiliary power domain 1706 * (for access to the GMBUS and DP AUX blocks) and ensures that it and all its 1707 * parents are powered up. Therefore users should only grab a reference to the 1708 * innermost power domain they need. 1709 * 1710 * Any power domain reference obtained by this function must have a symmetric 1711 * call to intel_aux_display_runtime_put() to release the reference again. 1712 */ 1713 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv) 1714 { 1715 intel_runtime_pm_get(dev_priv); 1716 } 1717 1718 /** 1719 * intel_aux_display_runtime_put - release an auxiliary power domain reference 1720 * @dev_priv: i915 device instance 1721 * 1722 * This function drops the auxiliary power domain reference obtained by 1723 * intel_aux_display_runtime_get() and might power down the corresponding 1724 * hardware block right away if this is the last reference. 1725 */ 1726 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv) 1727 { 1728 intel_runtime_pm_put(dev_priv); 1729 } 1730 1731 /** 1732 * intel_runtime_pm_get - grab a runtime pm reference 1733 * @dev_priv: i915 device instance 1734 * 1735 * This function grabs a device-level runtime pm reference (mostly used for GEM 1736 * code to ensure the GTT or GT is on) and ensures that it is powered up. 1737 * 1738 * Any runtime pm reference obtained by this function must have a symmetric 1739 * call to intel_runtime_pm_put() to release the reference again. 1740 */ 1741 void intel_runtime_pm_get(struct drm_i915_private *dev_priv) 1742 { 1743 struct drm_device *dev = dev_priv->dev; 1744 struct device *device = &dev->pdev->dev; 1745 1746 if (!HAS_RUNTIME_PM(dev)) 1747 return; 1748 1749 pm_runtime_get_sync(device); 1750 WARN(dev_priv->pm.suspended, "Device still suspended.\n"); 1751 } 1752 1753 /** 1754 * intel_runtime_pm_get_noresume - grab a runtime pm reference 1755 * @dev_priv: i915 device instance 1756 * 1757 * This function grabs a device-level runtime pm reference (mostly used for GEM 1758 * code to ensure the GTT or GT is on). 1759 * 1760 * It will _not_ power up the device but instead only check that it's powered 1761 * on. Therefore it is only valid to call this functions from contexts where 1762 * the device is known to be powered up and where trying to power it up would 1763 * result in hilarity and deadlocks. That pretty much means only the system 1764 * suspend/resume code where this is used to grab runtime pm references for 1765 * delayed setup down in work items. 1766 * 1767 * Any runtime pm reference obtained by this function must have a symmetric 1768 * call to intel_runtime_pm_put() to release the reference again. 1769 */ 1770 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv) 1771 { 1772 struct drm_device *dev = dev_priv->dev; 1773 struct device *device = &dev->pdev->dev; 1774 1775 if (!HAS_RUNTIME_PM(dev)) 1776 return; 1777 1778 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n"); 1779 pm_runtime_get_noresume(device); 1780 } 1781 1782 /** 1783 * intel_runtime_pm_put - release a runtime pm reference 1784 * @dev_priv: i915 device instance 1785 * 1786 * This function drops the device-level runtime pm reference obtained by 1787 * intel_runtime_pm_get() and might power down the corresponding 1788 * hardware block right away if this is the last reference. 1789 */ 1790 void intel_runtime_pm_put(struct drm_i915_private *dev_priv) 1791 { 1792 struct drm_device *dev = dev_priv->dev; 1793 struct device *device = &dev->pdev->dev; 1794 1795 if (!HAS_RUNTIME_PM(dev)) 1796 return; 1797 1798 pm_runtime_mark_last_busy(device); 1799 pm_runtime_put_autosuspend(device); 1800 } 1801 1802 /** 1803 * intel_runtime_pm_enable - enable runtime pm 1804 * @dev_priv: i915 device instance 1805 * 1806 * This function enables runtime pm at the end of the driver load sequence. 1807 * 1808 * Note that this function does currently not enable runtime pm for the 1809 * subordinate display power domains. That is only done on the first modeset 1810 * using intel_display_set_init_power(). 1811 */ 1812 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv) 1813 { 1814 struct drm_device *dev = dev_priv->dev; 1815 struct device *device = &dev->pdev->dev; 1816 1817 if (!HAS_RUNTIME_PM(dev)) 1818 return; 1819 1820 pm_runtime_set_active(device); 1821 1822 /* 1823 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a 1824 * requirement. 1825 */ 1826 if (!intel_enable_rc6(dev)) { 1827 DRM_INFO("RC6 disabled, disabling runtime PM support\n"); 1828 return; 1829 } 1830 1831 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */ 1832 pm_runtime_mark_last_busy(device); 1833 pm_runtime_use_autosuspend(device); 1834 1835 pm_runtime_put_autosuspend(device); 1836 } 1837 1838