1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define GEN9_ENABLE_DC5(dev) 0
53 #define SKL_ENABLE_DC6(dev) IS_SKYLAKE(dev)
54 
55 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
56 	for (i = 0;							\
57 	     i < (power_domains)->power_well_count &&			\
58 		 ((power_well) = &(power_domains)->power_wells[i]);	\
59 	     i++)							\
60 		if ((power_well)->domains & (domain_mask))
61 
62 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
63 	for (i = (power_domains)->power_well_count - 1;			 \
64 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
65 	     i--)							 \
66 		if ((power_well)->domains & (domain_mask))
67 
68 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
69 				    int power_well_id);
70 
71 /*
72  * We should only use the power well if we explicitly asked the hardware to
73  * enable it, so check if it's enabled and also check if we've requested it to
74  * be enabled.
75  */
76 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
77 				   struct i915_power_well *power_well)
78 {
79 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
80 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
81 }
82 
83 /**
84  * __intel_display_power_is_enabled - unlocked check for a power domain
85  * @dev_priv: i915 device instance
86  * @domain: power domain to check
87  *
88  * This is the unlocked version of intel_display_power_is_enabled() and should
89  * only be used from error capture and recovery code where deadlocks are
90  * possible.
91  *
92  * Returns:
93  * True when the power domain is enabled, false otherwise.
94  */
95 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
96 				      enum intel_display_power_domain domain)
97 {
98 	struct i915_power_domains *power_domains;
99 	struct i915_power_well *power_well;
100 	bool is_enabled;
101 	int i;
102 
103 	if (dev_priv->pm.suspended)
104 		return false;
105 
106 	power_domains = &dev_priv->power_domains;
107 
108 	is_enabled = true;
109 
110 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
111 		if (power_well->always_on)
112 			continue;
113 
114 		if (!power_well->hw_enabled) {
115 			is_enabled = false;
116 			break;
117 		}
118 	}
119 
120 	return is_enabled;
121 }
122 
123 /**
124  * intel_display_power_is_enabled - check for a power domain
125  * @dev_priv: i915 device instance
126  * @domain: power domain to check
127  *
128  * This function can be used to check the hw power domain state. It is mostly
129  * used in hardware state readout functions. Everywhere else code should rely
130  * upon explicit power domain reference counting to ensure that the hardware
131  * block is powered up before accessing it.
132  *
133  * Callers must hold the relevant modesetting locks to ensure that concurrent
134  * threads can't disable the power well while the caller tries to read a few
135  * registers.
136  *
137  * Returns:
138  * True when the power domain is enabled, false otherwise.
139  */
140 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
141 				    enum intel_display_power_domain domain)
142 {
143 	struct i915_power_domains *power_domains;
144 	bool ret;
145 
146 	power_domains = &dev_priv->power_domains;
147 
148 	mutex_lock(&power_domains->lock);
149 	ret = __intel_display_power_is_enabled(dev_priv, domain);
150 	mutex_unlock(&power_domains->lock);
151 
152 	return ret;
153 }
154 
155 /**
156  * intel_display_set_init_power - set the initial power domain state
157  * @dev_priv: i915 device instance
158  * @enable: whether to enable or disable the initial power domain state
159  *
160  * For simplicity our driver load/unload and system suspend/resume code assumes
161  * that all power domains are always enabled. This functions controls the state
162  * of this little hack. While the initial power domain state is enabled runtime
163  * pm is effectively disabled.
164  */
165 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
166 				  bool enable)
167 {
168 	if (dev_priv->power_domains.init_power_on == enable)
169 		return;
170 
171 	if (enable)
172 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
173 	else
174 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
175 
176 	dev_priv->power_domains.init_power_on = enable;
177 }
178 
179 /*
180  * Starting with Haswell, we have a "Power Down Well" that can be turned off
181  * when not needed anymore. We have 4 registers that can request the power well
182  * to be enabled, and it will only be disabled if none of the registers is
183  * requesting it to be enabled.
184  */
185 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
186 {
187 	struct drm_device *dev = dev_priv->dev;
188 
189 	/*
190 	 * After we re-enable the power well, if we touch VGA register 0x3d5
191 	 * we'll get unclaimed register interrupts. This stops after we write
192 	 * anything to the VGA MSR register. The vgacon module uses this
193 	 * register all the time, so if we unbind our driver and, as a
194 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
195 	 * console_unlock(). So make here we touch the VGA MSR register, making
196 	 * sure vgacon can keep working normally without triggering interrupts
197 	 * and error messages.
198 	 */
199 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
200 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
201 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
202 
203 	if (IS_BROADWELL(dev))
204 		gen8_irq_power_well_post_enable(dev_priv,
205 						1 << PIPE_C | 1 << PIPE_B);
206 }
207 
208 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
209 				       struct i915_power_well *power_well)
210 {
211 	struct drm_device *dev = dev_priv->dev;
212 
213 	/*
214 	 * After we re-enable the power well, if we touch VGA register 0x3d5
215 	 * we'll get unclaimed register interrupts. This stops after we write
216 	 * anything to the VGA MSR register. The vgacon module uses this
217 	 * register all the time, so if we unbind our driver and, as a
218 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
219 	 * console_unlock(). So make here we touch the VGA MSR register, making
220 	 * sure vgacon can keep working normally without triggering interrupts
221 	 * and error messages.
222 	 */
223 	if (power_well->data == SKL_DISP_PW_2) {
224 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
225 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
226 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
227 
228 		gen8_irq_power_well_post_enable(dev_priv,
229 						1 << PIPE_C | 1 << PIPE_B);
230 	}
231 
232 	if (power_well->data == SKL_DISP_PW_1) {
233 		intel_prepare_ddi(dev);
234 		gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A);
235 	}
236 }
237 
238 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
239 			       struct i915_power_well *power_well, bool enable)
240 {
241 	bool is_enabled, enable_requested;
242 	uint32_t tmp;
243 
244 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
245 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
246 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
247 
248 	if (enable) {
249 		if (!enable_requested)
250 			I915_WRITE(HSW_PWR_WELL_DRIVER,
251 				   HSW_PWR_WELL_ENABLE_REQUEST);
252 
253 		if (!is_enabled) {
254 			DRM_DEBUG_KMS("Enabling power well\n");
255 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
256 				      HSW_PWR_WELL_STATE_ENABLED), 20))
257 				DRM_ERROR("Timeout enabling power well\n");
258 			hsw_power_well_post_enable(dev_priv);
259 		}
260 
261 	} else {
262 		if (enable_requested) {
263 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
264 			POSTING_READ(HSW_PWR_WELL_DRIVER);
265 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
266 		}
267 	}
268 }
269 
270 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
271 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
272 	BIT(POWER_DOMAIN_PIPE_B) |			\
273 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
274 	BIT(POWER_DOMAIN_PIPE_C) |			\
275 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
276 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
277 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
278 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
279 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
280 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
281 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
282 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
283 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
284 	BIT(POWER_DOMAIN_AUX_B) |                       \
285 	BIT(POWER_DOMAIN_AUX_C) |			\
286 	BIT(POWER_DOMAIN_AUX_D) |			\
287 	BIT(POWER_DOMAIN_AUDIO) |			\
288 	BIT(POWER_DOMAIN_VGA) |				\
289 	BIT(POWER_DOMAIN_INIT))
290 #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
291 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
292 	BIT(POWER_DOMAIN_PLLS) |			\
293 	BIT(POWER_DOMAIN_PIPE_A) |			\
294 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
295 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
296 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
297 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
298 	BIT(POWER_DOMAIN_AUX_A) |			\
299 	BIT(POWER_DOMAIN_INIT))
300 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
301 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
302 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
303 	BIT(POWER_DOMAIN_INIT))
304 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
305 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
306 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
307 	BIT(POWER_DOMAIN_INIT))
308 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
309 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
310 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
311 	BIT(POWER_DOMAIN_INIT))
312 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
313 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
314 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
315 	BIT(POWER_DOMAIN_INIT))
316 #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS (		\
317 	SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS |		\
318 	BIT(POWER_DOMAIN_PLLS) |			\
319 	BIT(POWER_DOMAIN_INIT))
320 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
321 	(POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
322 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
323 	SKL_DISPLAY_DDI_A_E_POWER_DOMAINS |		\
324 	SKL_DISPLAY_DDI_B_POWER_DOMAINS |		\
325 	SKL_DISPLAY_DDI_C_POWER_DOMAINS |		\
326 	SKL_DISPLAY_DDI_D_POWER_DOMAINS |		\
327 	SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) |		\
328 	BIT(POWER_DOMAIN_INIT))
329 
330 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
331 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
332 	BIT(POWER_DOMAIN_PIPE_B) |			\
333 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
334 	BIT(POWER_DOMAIN_PIPE_C) |			\
335 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
336 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
337 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
338 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
339 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
340 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
341 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
342 	BIT(POWER_DOMAIN_AUX_B) |			\
343 	BIT(POWER_DOMAIN_AUX_C) |			\
344 	BIT(POWER_DOMAIN_AUDIO) |			\
345 	BIT(POWER_DOMAIN_VGA) |				\
346 	BIT(POWER_DOMAIN_INIT))
347 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
348 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
349 	BIT(POWER_DOMAIN_PIPE_A) |			\
350 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
351 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
352 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
353 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
354 	BIT(POWER_DOMAIN_AUX_A) |			\
355 	BIT(POWER_DOMAIN_PLLS) |			\
356 	BIT(POWER_DOMAIN_INIT))
357 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
358 	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
359 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
360 	BIT(POWER_DOMAIN_INIT))
361 
362 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
363 {
364 	struct drm_device *dev = dev_priv->dev;
365 
366 	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
367 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
368 		"DC9 already programmed to be enabled.\n");
369 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
370 		"DC5 still not disabled to enable DC9.\n");
371 	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
372 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
373 
374 	 /*
375 	  * TODO: check for the following to verify the conditions to enter DC9
376 	  * state are satisfied:
377 	  * 1] Check relevant display engine registers to verify if mode set
378 	  * disable sequence was followed.
379 	  * 2] Check if display uninitialize sequence is initialized.
380 	  */
381 }
382 
383 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
384 {
385 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
386 	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
387 		"DC9 already programmed to be disabled.\n");
388 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
389 		"DC5 still not disabled.\n");
390 
391 	 /*
392 	  * TODO: check for the following to verify DC9 state was indeed
393 	  * entered before programming to disable it:
394 	  * 1] Check relevant display engine registers to verify if mode
395 	  *  set disable sequence was followed.
396 	  * 2] Check if display uninitialize sequence is initialized.
397 	  */
398 }
399 
400 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
401 {
402 	uint32_t val;
403 
404 	assert_can_enable_dc9(dev_priv);
405 
406 	DRM_DEBUG_KMS("Enabling DC9\n");
407 
408 	val = I915_READ(DC_STATE_EN);
409 	val |= DC_STATE_EN_DC9;
410 	I915_WRITE(DC_STATE_EN, val);
411 	POSTING_READ(DC_STATE_EN);
412 }
413 
414 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
415 {
416 	uint32_t val;
417 
418 	assert_can_disable_dc9(dev_priv);
419 
420 	DRM_DEBUG_KMS("Disabling DC9\n");
421 
422 	val = I915_READ(DC_STATE_EN);
423 	val &= ~DC_STATE_EN_DC9;
424 	I915_WRITE(DC_STATE_EN, val);
425 	POSTING_READ(DC_STATE_EN);
426 }
427 
428 static void gen9_set_dc_state_debugmask_memory_up(
429 			struct drm_i915_private *dev_priv)
430 {
431 	uint32_t val;
432 
433 	/* The below bit doesn't need to be cleared ever afterwards */
434 	val = I915_READ(DC_STATE_DEBUG);
435 	if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
436 		val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
437 		I915_WRITE(DC_STATE_DEBUG, val);
438 		POSTING_READ(DC_STATE_DEBUG);
439 	}
440 }
441 
442 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
443 {
444 	struct drm_device *dev = dev_priv->dev;
445 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
446 					SKL_DISP_PW_2);
447 
448 	WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
449 	WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
450 	WARN(pg2_enabled, "PG2 not disabled to enable DC5.\n");
451 
452 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
453 				"DC5 already programmed to be enabled.\n");
454 	WARN(dev_priv->pm.suspended,
455 		"DC5 cannot be enabled, if platform is runtime-suspended.\n");
456 
457 	assert_csr_loaded(dev_priv);
458 }
459 
460 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
461 {
462 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
463 					SKL_DISP_PW_2);
464 	/*
465 	 * During initialization, the firmware may not be loaded yet.
466 	 * We still want to make sure that the DC enabling flag is cleared.
467 	 */
468 	if (dev_priv->power_domains.initializing)
469 		return;
470 
471 	WARN(!pg2_enabled, "PG2 not enabled to disable DC5.\n");
472 	WARN(dev_priv->pm.suspended,
473 		"Disabling of DC5 while platform is runtime-suspended should never happen.\n");
474 }
475 
476 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
477 {
478 	uint32_t val;
479 
480 	assert_can_enable_dc5(dev_priv);
481 
482 	DRM_DEBUG_KMS("Enabling DC5\n");
483 
484 	gen9_set_dc_state_debugmask_memory_up(dev_priv);
485 
486 	val = I915_READ(DC_STATE_EN);
487 	val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
488 	val |= DC_STATE_EN_UPTO_DC5;
489 	I915_WRITE(DC_STATE_EN, val);
490 	POSTING_READ(DC_STATE_EN);
491 }
492 
493 static void gen9_disable_dc5(struct drm_i915_private *dev_priv)
494 {
495 	uint32_t val;
496 
497 	assert_can_disable_dc5(dev_priv);
498 
499 	DRM_DEBUG_KMS("Disabling DC5\n");
500 
501 	val = I915_READ(DC_STATE_EN);
502 	val &= ~DC_STATE_EN_UPTO_DC5;
503 	I915_WRITE(DC_STATE_EN, val);
504 	POSTING_READ(DC_STATE_EN);
505 }
506 
507 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
508 {
509 	struct drm_device *dev = dev_priv->dev;
510 
511 	WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
512 	WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
513 	WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
514 		"Backlight is not disabled.\n");
515 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
516 		"DC6 already programmed to be enabled.\n");
517 
518 	assert_csr_loaded(dev_priv);
519 }
520 
521 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
522 {
523 	/*
524 	 * During initialization, the firmware may not be loaded yet.
525 	 * We still want to make sure that the DC enabling flag is cleared.
526 	 */
527 	if (dev_priv->power_domains.initializing)
528 		return;
529 
530 	assert_csr_loaded(dev_priv);
531 	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
532 		"DC6 already programmed to be disabled.\n");
533 }
534 
535 static void skl_enable_dc6(struct drm_i915_private *dev_priv)
536 {
537 	uint32_t val;
538 
539 	assert_can_enable_dc6(dev_priv);
540 
541 	DRM_DEBUG_KMS("Enabling DC6\n");
542 
543 	gen9_set_dc_state_debugmask_memory_up(dev_priv);
544 
545 	val = I915_READ(DC_STATE_EN);
546 	val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
547 	val |= DC_STATE_EN_UPTO_DC6;
548 	I915_WRITE(DC_STATE_EN, val);
549 	POSTING_READ(DC_STATE_EN);
550 }
551 
552 static void skl_disable_dc6(struct drm_i915_private *dev_priv)
553 {
554 	uint32_t val;
555 
556 	assert_can_disable_dc6(dev_priv);
557 
558 	DRM_DEBUG_KMS("Disabling DC6\n");
559 
560 	val = I915_READ(DC_STATE_EN);
561 	val &= ~DC_STATE_EN_UPTO_DC6;
562 	I915_WRITE(DC_STATE_EN, val);
563 	POSTING_READ(DC_STATE_EN);
564 }
565 
566 static void skl_set_power_well(struct drm_i915_private *dev_priv,
567 			struct i915_power_well *power_well, bool enable)
568 {
569 	struct drm_device *dev = dev_priv->dev;
570 	uint32_t tmp, fuse_status;
571 	uint32_t req_mask, state_mask;
572 	bool is_enabled, enable_requested, check_fuse_status = false;
573 
574 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
575 	fuse_status = I915_READ(SKL_FUSE_STATUS);
576 
577 	switch (power_well->data) {
578 	case SKL_DISP_PW_1:
579 		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
580 			SKL_FUSE_PG0_DIST_STATUS), 1)) {
581 			DRM_ERROR("PG0 not enabled\n");
582 			return;
583 		}
584 		break;
585 	case SKL_DISP_PW_2:
586 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
587 			DRM_ERROR("PG1 in disabled state\n");
588 			return;
589 		}
590 		break;
591 	case SKL_DISP_PW_DDI_A_E:
592 	case SKL_DISP_PW_DDI_B:
593 	case SKL_DISP_PW_DDI_C:
594 	case SKL_DISP_PW_DDI_D:
595 	case SKL_DISP_PW_MISC_IO:
596 		break;
597 	default:
598 		WARN(1, "Unknown power well %lu\n", power_well->data);
599 		return;
600 	}
601 
602 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
603 	enable_requested = tmp & req_mask;
604 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
605 	is_enabled = tmp & state_mask;
606 
607 	if (enable) {
608 		if (!enable_requested) {
609 			WARN((tmp & state_mask) &&
610 				!I915_READ(HSW_PWR_WELL_BIOS),
611 				"Invalid for power well status to be enabled, unless done by the BIOS, \
612 				when request is to disable!\n");
613 			if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
614 				power_well->data == SKL_DISP_PW_2) {
615 				if (SKL_ENABLE_DC6(dev)) {
616 					skl_disable_dc6(dev_priv);
617 					/*
618 					 * DDI buffer programming unnecessary during driver-load/resume
619 					 * as it's already done during modeset initialization then.
620 					 * It's also invalid here as encoder list is still uninitialized.
621 					 */
622 					if (!dev_priv->power_domains.initializing)
623 						intel_prepare_ddi(dev);
624 				} else {
625 					gen9_disable_dc5(dev_priv);
626 				}
627 			}
628 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
629 		}
630 
631 		if (!is_enabled) {
632 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
633 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
634 				state_mask), 1))
635 				DRM_ERROR("%s enable timeout\n",
636 					power_well->name);
637 			check_fuse_status = true;
638 		}
639 	} else {
640 		if (enable_requested) {
641 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
642 			POSTING_READ(HSW_PWR_WELL_DRIVER);
643 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
644 
645 			if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
646 				power_well->data == SKL_DISP_PW_2) {
647 				enum csr_state state;
648 				/* TODO: wait for a completion event or
649 				 * similar here instead of busy
650 				 * waiting using wait_for function.
651 				 */
652 				wait_for((state = intel_csr_load_status_get(dev_priv)) !=
653 						FW_UNINITIALIZED, 1000);
654 				if (state != FW_LOADED)
655 					DRM_ERROR("CSR firmware not ready (%d)\n",
656 							state);
657 				else
658 					if (SKL_ENABLE_DC6(dev))
659 						skl_enable_dc6(dev_priv);
660 					else
661 						gen9_enable_dc5(dev_priv);
662 			}
663 		}
664 	}
665 
666 	if (check_fuse_status) {
667 		if (power_well->data == SKL_DISP_PW_1) {
668 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
669 				SKL_FUSE_PG1_DIST_STATUS), 1))
670 				DRM_ERROR("PG1 distributing status timeout\n");
671 		} else if (power_well->data == SKL_DISP_PW_2) {
672 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
673 				SKL_FUSE_PG2_DIST_STATUS), 1))
674 				DRM_ERROR("PG2 distributing status timeout\n");
675 		}
676 	}
677 
678 	if (enable && !is_enabled)
679 		skl_power_well_post_enable(dev_priv, power_well);
680 }
681 
682 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
683 				   struct i915_power_well *power_well)
684 {
685 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
686 
687 	/*
688 	 * We're taking over the BIOS, so clear any requests made by it since
689 	 * the driver is in charge now.
690 	 */
691 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
692 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
693 }
694 
695 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
696 				  struct i915_power_well *power_well)
697 {
698 	hsw_set_power_well(dev_priv, power_well, true);
699 }
700 
701 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
702 				   struct i915_power_well *power_well)
703 {
704 	hsw_set_power_well(dev_priv, power_well, false);
705 }
706 
707 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
708 					struct i915_power_well *power_well)
709 {
710 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
711 		SKL_POWER_WELL_STATE(power_well->data);
712 
713 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
714 }
715 
716 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
717 				struct i915_power_well *power_well)
718 {
719 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
720 
721 	/* Clear any request made by BIOS as driver is taking over */
722 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
723 }
724 
725 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
726 				struct i915_power_well *power_well)
727 {
728 	skl_set_power_well(dev_priv, power_well, true);
729 }
730 
731 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
732 				struct i915_power_well *power_well)
733 {
734 	skl_set_power_well(dev_priv, power_well, false);
735 }
736 
737 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
738 					   struct i915_power_well *power_well)
739 {
740 }
741 
742 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
743 					     struct i915_power_well *power_well)
744 {
745 	return true;
746 }
747 
748 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
749 			       struct i915_power_well *power_well, bool enable)
750 {
751 	enum punit_power_well power_well_id = power_well->data;
752 	u32 mask;
753 	u32 state;
754 	u32 ctrl;
755 
756 	mask = PUNIT_PWRGT_MASK(power_well_id);
757 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
758 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
759 
760 	mutex_lock(&dev_priv->rps.hw_lock);
761 
762 #define COND \
763 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
764 
765 	if (COND)
766 		goto out;
767 
768 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
769 	ctrl &= ~mask;
770 	ctrl |= state;
771 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
772 
773 	if (wait_for(COND, 100))
774 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
775 			  state,
776 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
777 
778 #undef COND
779 
780 out:
781 	mutex_unlock(&dev_priv->rps.hw_lock);
782 }
783 
784 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
785 				   struct i915_power_well *power_well)
786 {
787 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
788 }
789 
790 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
791 				  struct i915_power_well *power_well)
792 {
793 	vlv_set_power_well(dev_priv, power_well, true);
794 }
795 
796 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
797 				   struct i915_power_well *power_well)
798 {
799 	vlv_set_power_well(dev_priv, power_well, false);
800 }
801 
802 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
803 				   struct i915_power_well *power_well)
804 {
805 	int power_well_id = power_well->data;
806 	bool enabled = false;
807 	u32 mask;
808 	u32 state;
809 	u32 ctrl;
810 
811 	mask = PUNIT_PWRGT_MASK(power_well_id);
812 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
813 
814 	mutex_lock(&dev_priv->rps.hw_lock);
815 
816 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
817 	/*
818 	 * We only ever set the power-on and power-gate states, anything
819 	 * else is unexpected.
820 	 */
821 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
822 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
823 	if (state == ctrl)
824 		enabled = true;
825 
826 	/*
827 	 * A transient state at this point would mean some unexpected party
828 	 * is poking at the power controls too.
829 	 */
830 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
831 	WARN_ON(ctrl != state);
832 
833 	mutex_unlock(&dev_priv->rps.hw_lock);
834 
835 	return enabled;
836 }
837 
838 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
839 					  struct i915_power_well *power_well)
840 {
841 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
842 
843 	vlv_set_power_well(dev_priv, power_well, true);
844 
845 	spin_lock_irq(&dev_priv->irq_lock);
846 	valleyview_enable_display_irqs(dev_priv);
847 	spin_unlock_irq(&dev_priv->irq_lock);
848 
849 	/*
850 	 * During driver initialization/resume we can avoid restoring the
851 	 * part of the HW/SW state that will be inited anyway explicitly.
852 	 */
853 	if (dev_priv->power_domains.initializing)
854 		return;
855 
856 	intel_hpd_init(dev_priv);
857 
858 	i915_redisable_vga_power_on(dev_priv->dev);
859 }
860 
861 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
862 					   struct i915_power_well *power_well)
863 {
864 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
865 
866 	spin_lock_irq(&dev_priv->irq_lock);
867 	valleyview_disable_display_irqs(dev_priv);
868 	spin_unlock_irq(&dev_priv->irq_lock);
869 
870 	vlv_set_power_well(dev_priv, power_well, false);
871 
872 	vlv_power_sequencer_reset(dev_priv);
873 }
874 
875 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
876 					   struct i915_power_well *power_well)
877 {
878 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
879 
880 	/*
881 	 * Enable the CRI clock source so we can get at the
882 	 * display and the reference clock for VGA
883 	 * hotplug / manual detection.
884 	 */
885 	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
886 		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
887 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
888 
889 	vlv_set_power_well(dev_priv, power_well, true);
890 
891 	/*
892 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
893 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
894 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
895 	 *   b.	The other bits such as sfr settings / modesel may all
896 	 *	be set to 0.
897 	 *
898 	 * This should only be done on init and resume from S3 with
899 	 * both PLLs disabled, or we risk losing DPIO and PLL
900 	 * synchronization.
901 	 */
902 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
903 }
904 
905 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
906 					    struct i915_power_well *power_well)
907 {
908 	enum pipe pipe;
909 
910 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
911 
912 	for_each_pipe(dev_priv, pipe)
913 		assert_pll_disabled(dev_priv, pipe);
914 
915 	/* Assert common reset */
916 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
917 
918 	vlv_set_power_well(dev_priv, power_well, false);
919 }
920 
921 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
922 					   struct i915_power_well *power_well)
923 {
924 	enum dpio_phy phy;
925 
926 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
927 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
928 
929 	/*
930 	 * Enable the CRI clock source so we can get at the
931 	 * display and the reference clock for VGA
932 	 * hotplug / manual detection.
933 	 */
934 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
935 		phy = DPIO_PHY0;
936 		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
937 			   DPLL_REFA_CLK_ENABLE_VLV);
938 		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
939 			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
940 	} else {
941 		phy = DPIO_PHY1;
942 		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
943 			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
944 	}
945 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
946 	vlv_set_power_well(dev_priv, power_well, true);
947 
948 	/* Poll for phypwrgood signal */
949 	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
950 		DRM_ERROR("Display PHY %d is not power up\n", phy);
951 
952 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
953 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
954 }
955 
956 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
957 					    struct i915_power_well *power_well)
958 {
959 	enum dpio_phy phy;
960 
961 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
962 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
963 
964 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
965 		phy = DPIO_PHY0;
966 		assert_pll_disabled(dev_priv, PIPE_A);
967 		assert_pll_disabled(dev_priv, PIPE_B);
968 	} else {
969 		phy = DPIO_PHY1;
970 		assert_pll_disabled(dev_priv, PIPE_C);
971 	}
972 
973 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
974 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
975 
976 	vlv_set_power_well(dev_priv, power_well, false);
977 }
978 
979 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
980 					struct i915_power_well *power_well)
981 {
982 	enum pipe pipe = power_well->data;
983 	bool enabled;
984 	u32 state, ctrl;
985 
986 	mutex_lock(&dev_priv->rps.hw_lock);
987 
988 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
989 	/*
990 	 * We only ever set the power-on and power-gate states, anything
991 	 * else is unexpected.
992 	 */
993 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
994 	enabled = state == DP_SSS_PWR_ON(pipe);
995 
996 	/*
997 	 * A transient state at this point would mean some unexpected party
998 	 * is poking at the power controls too.
999 	 */
1000 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1001 	WARN_ON(ctrl << 16 != state);
1002 
1003 	mutex_unlock(&dev_priv->rps.hw_lock);
1004 
1005 	return enabled;
1006 }
1007 
1008 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1009 				    struct i915_power_well *power_well,
1010 				    bool enable)
1011 {
1012 	enum pipe pipe = power_well->data;
1013 	u32 state;
1014 	u32 ctrl;
1015 
1016 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1017 
1018 	mutex_lock(&dev_priv->rps.hw_lock);
1019 
1020 #define COND \
1021 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1022 
1023 	if (COND)
1024 		goto out;
1025 
1026 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1027 	ctrl &= ~DP_SSC_MASK(pipe);
1028 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1029 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1030 
1031 	if (wait_for(COND, 100))
1032 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1033 			  state,
1034 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1035 
1036 #undef COND
1037 
1038 out:
1039 	mutex_unlock(&dev_priv->rps.hw_lock);
1040 }
1041 
1042 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1043 					struct i915_power_well *power_well)
1044 {
1045 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1046 }
1047 
1048 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1049 				       struct i915_power_well *power_well)
1050 {
1051 	WARN_ON_ONCE(power_well->data != PIPE_A &&
1052 		     power_well->data != PIPE_B &&
1053 		     power_well->data != PIPE_C);
1054 
1055 	chv_set_pipe_power_well(dev_priv, power_well, true);
1056 
1057 	if (power_well->data == PIPE_A) {
1058 		spin_lock_irq(&dev_priv->irq_lock);
1059 		valleyview_enable_display_irqs(dev_priv);
1060 		spin_unlock_irq(&dev_priv->irq_lock);
1061 
1062 		/*
1063 		 * During driver initialization/resume we can avoid restoring the
1064 		 * part of the HW/SW state that will be inited anyway explicitly.
1065 		 */
1066 		if (dev_priv->power_domains.initializing)
1067 			return;
1068 
1069 		intel_hpd_init(dev_priv);
1070 
1071 		i915_redisable_vga_power_on(dev_priv->dev);
1072 	}
1073 }
1074 
1075 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1076 					struct i915_power_well *power_well)
1077 {
1078 	WARN_ON_ONCE(power_well->data != PIPE_A &&
1079 		     power_well->data != PIPE_B &&
1080 		     power_well->data != PIPE_C);
1081 
1082 	if (power_well->data == PIPE_A) {
1083 		spin_lock_irq(&dev_priv->irq_lock);
1084 		valleyview_disable_display_irqs(dev_priv);
1085 		spin_unlock_irq(&dev_priv->irq_lock);
1086 	}
1087 
1088 	chv_set_pipe_power_well(dev_priv, power_well, false);
1089 
1090 	if (power_well->data == PIPE_A)
1091 		vlv_power_sequencer_reset(dev_priv);
1092 }
1093 
1094 /**
1095  * intel_display_power_get - grab a power domain reference
1096  * @dev_priv: i915 device instance
1097  * @domain: power domain to reference
1098  *
1099  * This function grabs a power domain reference for @domain and ensures that the
1100  * power domain and all its parents are powered up. Therefore users should only
1101  * grab a reference to the innermost power domain they need.
1102  *
1103  * Any power domain reference obtained by this function must have a symmetric
1104  * call to intel_display_power_put() to release the reference again.
1105  */
1106 void intel_display_power_get(struct drm_i915_private *dev_priv,
1107 			     enum intel_display_power_domain domain)
1108 {
1109 	struct i915_power_domains *power_domains;
1110 	struct i915_power_well *power_well;
1111 	int i;
1112 
1113 	intel_runtime_pm_get(dev_priv);
1114 
1115 	power_domains = &dev_priv->power_domains;
1116 
1117 	mutex_lock(&power_domains->lock);
1118 
1119 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1120 		if (!power_well->count++) {
1121 			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
1122 			power_well->ops->enable(dev_priv, power_well);
1123 			power_well->hw_enabled = true;
1124 		}
1125 	}
1126 
1127 	power_domains->domain_use_count[domain]++;
1128 
1129 	mutex_unlock(&power_domains->lock);
1130 }
1131 
1132 /**
1133  * intel_display_power_put - release a power domain reference
1134  * @dev_priv: i915 device instance
1135  * @domain: power domain to reference
1136  *
1137  * This function drops the power domain reference obtained by
1138  * intel_display_power_get() and might power down the corresponding hardware
1139  * block right away if this is the last reference.
1140  */
1141 void intel_display_power_put(struct drm_i915_private *dev_priv,
1142 			     enum intel_display_power_domain domain)
1143 {
1144 	struct i915_power_domains *power_domains;
1145 	struct i915_power_well *power_well;
1146 	int i;
1147 
1148 	power_domains = &dev_priv->power_domains;
1149 
1150 	mutex_lock(&power_domains->lock);
1151 
1152 	WARN_ON(!power_domains->domain_use_count[domain]);
1153 	power_domains->domain_use_count[domain]--;
1154 
1155 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1156 		WARN_ON(!power_well->count);
1157 
1158 		if (!--power_well->count && i915.disable_power_well) {
1159 			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
1160 			power_well->hw_enabled = false;
1161 			power_well->ops->disable(dev_priv, power_well);
1162 		}
1163 	}
1164 
1165 	mutex_unlock(&power_domains->lock);
1166 
1167 	intel_runtime_pm_put(dev_priv);
1168 }
1169 
1170 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1171 
1172 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
1173 	BIT(POWER_DOMAIN_PIPE_A) |			\
1174 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1175 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
1176 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
1177 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
1178 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
1179 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
1180 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
1181 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
1182 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
1183 	BIT(POWER_DOMAIN_PORT_CRT) |			\
1184 	BIT(POWER_DOMAIN_PLLS) |			\
1185 	BIT(POWER_DOMAIN_AUX_A) |			\
1186 	BIT(POWER_DOMAIN_AUX_B) |			\
1187 	BIT(POWER_DOMAIN_AUX_C) |			\
1188 	BIT(POWER_DOMAIN_AUX_D) |			\
1189 	BIT(POWER_DOMAIN_INIT))
1190 #define HSW_DISPLAY_POWER_DOMAINS (				\
1191 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
1192 	BIT(POWER_DOMAIN_INIT))
1193 
1194 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
1195 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
1196 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1197 #define BDW_DISPLAY_POWER_DOMAINS (				\
1198 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
1199 	BIT(POWER_DOMAIN_INIT))
1200 
1201 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
1202 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
1203 
1204 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1205 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
1206 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
1207 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
1208 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
1209 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1210 	BIT(POWER_DOMAIN_AUX_B) |		\
1211 	BIT(POWER_DOMAIN_AUX_C) |		\
1212 	BIT(POWER_DOMAIN_INIT))
1213 
1214 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1215 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
1216 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
1217 	BIT(POWER_DOMAIN_AUX_B) |		\
1218 	BIT(POWER_DOMAIN_INIT))
1219 
1220 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1221 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
1222 	BIT(POWER_DOMAIN_AUX_B) |		\
1223 	BIT(POWER_DOMAIN_INIT))
1224 
1225 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1226 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
1227 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
1228 	BIT(POWER_DOMAIN_AUX_C) |		\
1229 	BIT(POWER_DOMAIN_INIT))
1230 
1231 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1232 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
1233 	BIT(POWER_DOMAIN_AUX_C) |		\
1234 	BIT(POWER_DOMAIN_INIT))
1235 
1236 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1237 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
1238 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
1239 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
1240 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
1241 	BIT(POWER_DOMAIN_AUX_B) |		\
1242 	BIT(POWER_DOMAIN_AUX_C) |		\
1243 	BIT(POWER_DOMAIN_INIT))
1244 
1245 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1246 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
1247 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
1248 	BIT(POWER_DOMAIN_AUX_D) |		\
1249 	BIT(POWER_DOMAIN_INIT))
1250 
1251 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1252 	.sync_hw = i9xx_always_on_power_well_noop,
1253 	.enable = i9xx_always_on_power_well_noop,
1254 	.disable = i9xx_always_on_power_well_noop,
1255 	.is_enabled = i9xx_always_on_power_well_enabled,
1256 };
1257 
1258 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1259 	.sync_hw = chv_pipe_power_well_sync_hw,
1260 	.enable = chv_pipe_power_well_enable,
1261 	.disable = chv_pipe_power_well_disable,
1262 	.is_enabled = chv_pipe_power_well_enabled,
1263 };
1264 
1265 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1266 	.sync_hw = vlv_power_well_sync_hw,
1267 	.enable = chv_dpio_cmn_power_well_enable,
1268 	.disable = chv_dpio_cmn_power_well_disable,
1269 	.is_enabled = vlv_power_well_enabled,
1270 };
1271 
1272 static struct i915_power_well i9xx_always_on_power_well[] = {
1273 	{
1274 		.name = "always-on",
1275 		.always_on = 1,
1276 		.domains = POWER_DOMAIN_MASK,
1277 		.ops = &i9xx_always_on_power_well_ops,
1278 	},
1279 };
1280 
1281 static const struct i915_power_well_ops hsw_power_well_ops = {
1282 	.sync_hw = hsw_power_well_sync_hw,
1283 	.enable = hsw_power_well_enable,
1284 	.disable = hsw_power_well_disable,
1285 	.is_enabled = hsw_power_well_enabled,
1286 };
1287 
1288 static const struct i915_power_well_ops skl_power_well_ops = {
1289 	.sync_hw = skl_power_well_sync_hw,
1290 	.enable = skl_power_well_enable,
1291 	.disable = skl_power_well_disable,
1292 	.is_enabled = skl_power_well_enabled,
1293 };
1294 
1295 static struct i915_power_well hsw_power_wells[] = {
1296 	{
1297 		.name = "always-on",
1298 		.always_on = 1,
1299 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1300 		.ops = &i9xx_always_on_power_well_ops,
1301 	},
1302 	{
1303 		.name = "display",
1304 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1305 		.ops = &hsw_power_well_ops,
1306 	},
1307 };
1308 
1309 static struct i915_power_well bdw_power_wells[] = {
1310 	{
1311 		.name = "always-on",
1312 		.always_on = 1,
1313 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1314 		.ops = &i9xx_always_on_power_well_ops,
1315 	},
1316 	{
1317 		.name = "display",
1318 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1319 		.ops = &hsw_power_well_ops,
1320 	},
1321 };
1322 
1323 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1324 	.sync_hw = vlv_power_well_sync_hw,
1325 	.enable = vlv_display_power_well_enable,
1326 	.disable = vlv_display_power_well_disable,
1327 	.is_enabled = vlv_power_well_enabled,
1328 };
1329 
1330 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1331 	.sync_hw = vlv_power_well_sync_hw,
1332 	.enable = vlv_dpio_cmn_power_well_enable,
1333 	.disable = vlv_dpio_cmn_power_well_disable,
1334 	.is_enabled = vlv_power_well_enabled,
1335 };
1336 
1337 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1338 	.sync_hw = vlv_power_well_sync_hw,
1339 	.enable = vlv_power_well_enable,
1340 	.disable = vlv_power_well_disable,
1341 	.is_enabled = vlv_power_well_enabled,
1342 };
1343 
1344 static struct i915_power_well vlv_power_wells[] = {
1345 	{
1346 		.name = "always-on",
1347 		.always_on = 1,
1348 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1349 		.ops = &i9xx_always_on_power_well_ops,
1350 	},
1351 	{
1352 		.name = "display",
1353 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1354 		.data = PUNIT_POWER_WELL_DISP2D,
1355 		.ops = &vlv_display_power_well_ops,
1356 	},
1357 	{
1358 		.name = "dpio-tx-b-01",
1359 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1360 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1361 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1362 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1363 		.ops = &vlv_dpio_power_well_ops,
1364 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1365 	},
1366 	{
1367 		.name = "dpio-tx-b-23",
1368 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1369 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1370 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1371 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1372 		.ops = &vlv_dpio_power_well_ops,
1373 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1374 	},
1375 	{
1376 		.name = "dpio-tx-c-01",
1377 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1378 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1379 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1380 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1381 		.ops = &vlv_dpio_power_well_ops,
1382 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1383 	},
1384 	{
1385 		.name = "dpio-tx-c-23",
1386 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1387 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1388 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1389 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1390 		.ops = &vlv_dpio_power_well_ops,
1391 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1392 	},
1393 	{
1394 		.name = "dpio-common",
1395 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1396 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1397 		.ops = &vlv_dpio_cmn_power_well_ops,
1398 	},
1399 };
1400 
1401 static struct i915_power_well chv_power_wells[] = {
1402 	{
1403 		.name = "always-on",
1404 		.always_on = 1,
1405 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1406 		.ops = &i9xx_always_on_power_well_ops,
1407 	},
1408 	{
1409 		.name = "display",
1410 		/*
1411 		 * Pipe A power well is the new disp2d well. Pipe B and C
1412 		 * power wells don't actually exist. Pipe A power well is
1413 		 * required for any pipe to work.
1414 		 */
1415 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1416 		.data = PIPE_A,
1417 		.ops = &chv_pipe_power_well_ops,
1418 	},
1419 	{
1420 		.name = "dpio-common-bc",
1421 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1422 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1423 		.ops = &chv_dpio_cmn_power_well_ops,
1424 	},
1425 	{
1426 		.name = "dpio-common-d",
1427 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1428 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
1429 		.ops = &chv_dpio_cmn_power_well_ops,
1430 	},
1431 };
1432 
1433 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1434 						 int power_well_id)
1435 {
1436 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1437 	struct i915_power_well *power_well;
1438 	int i;
1439 
1440 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1441 		if (power_well->data == power_well_id)
1442 			return power_well;
1443 	}
1444 
1445 	return NULL;
1446 }
1447 
1448 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1449 				    int power_well_id)
1450 {
1451 	struct i915_power_well *power_well;
1452 	bool ret;
1453 
1454 	power_well = lookup_power_well(dev_priv, power_well_id);
1455 	ret = power_well->ops->is_enabled(dev_priv, power_well);
1456 
1457 	return ret;
1458 }
1459 
1460 static struct i915_power_well skl_power_wells[] = {
1461 	{
1462 		.name = "always-on",
1463 		.always_on = 1,
1464 		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1465 		.ops = &i9xx_always_on_power_well_ops,
1466 	},
1467 	{
1468 		.name = "power well 1",
1469 		.domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1470 		.ops = &skl_power_well_ops,
1471 		.data = SKL_DISP_PW_1,
1472 	},
1473 	{
1474 		.name = "MISC IO power well",
1475 		.domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS,
1476 		.ops = &skl_power_well_ops,
1477 		.data = SKL_DISP_PW_MISC_IO,
1478 	},
1479 	{
1480 		.name = "power well 2",
1481 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1482 		.ops = &skl_power_well_ops,
1483 		.data = SKL_DISP_PW_2,
1484 	},
1485 	{
1486 		.name = "DDI A/E power well",
1487 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1488 		.ops = &skl_power_well_ops,
1489 		.data = SKL_DISP_PW_DDI_A_E,
1490 	},
1491 	{
1492 		.name = "DDI B power well",
1493 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1494 		.ops = &skl_power_well_ops,
1495 		.data = SKL_DISP_PW_DDI_B,
1496 	},
1497 	{
1498 		.name = "DDI C power well",
1499 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1500 		.ops = &skl_power_well_ops,
1501 		.data = SKL_DISP_PW_DDI_C,
1502 	},
1503 	{
1504 		.name = "DDI D power well",
1505 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1506 		.ops = &skl_power_well_ops,
1507 		.data = SKL_DISP_PW_DDI_D,
1508 	},
1509 };
1510 
1511 static struct i915_power_well bxt_power_wells[] = {
1512 	{
1513 		.name = "always-on",
1514 		.always_on = 1,
1515 		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1516 		.ops = &i9xx_always_on_power_well_ops,
1517 	},
1518 	{
1519 		.name = "power well 1",
1520 		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1521 		.ops = &skl_power_well_ops,
1522 		.data = SKL_DISP_PW_1,
1523 	},
1524 	{
1525 		.name = "power well 2",
1526 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1527 		.ops = &skl_power_well_ops,
1528 		.data = SKL_DISP_PW_2,
1529 	}
1530 };
1531 
1532 #define set_power_wells(power_domains, __power_wells) ({		\
1533 	(power_domains)->power_wells = (__power_wells);			\
1534 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
1535 })
1536 
1537 /**
1538  * intel_power_domains_init - initializes the power domain structures
1539  * @dev_priv: i915 device instance
1540  *
1541  * Initializes the power domain structures for @dev_priv depending upon the
1542  * supported platform.
1543  */
1544 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1545 {
1546 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1547 
1548 	mutex_init(&power_domains->lock);
1549 
1550 	/*
1551 	 * The enabling order will be from lower to higher indexed wells,
1552 	 * the disabling order is reversed.
1553 	 */
1554 	if (IS_HASWELL(dev_priv->dev)) {
1555 		set_power_wells(power_domains, hsw_power_wells);
1556 	} else if (IS_BROADWELL(dev_priv->dev)) {
1557 		set_power_wells(power_domains, bdw_power_wells);
1558 	} else if (IS_SKYLAKE(dev_priv->dev)) {
1559 		set_power_wells(power_domains, skl_power_wells);
1560 	} else if (IS_BROXTON(dev_priv->dev)) {
1561 		set_power_wells(power_domains, bxt_power_wells);
1562 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1563 		set_power_wells(power_domains, chv_power_wells);
1564 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
1565 		set_power_wells(power_domains, vlv_power_wells);
1566 	} else {
1567 		set_power_wells(power_domains, i9xx_always_on_power_well);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv)
1574 {
1575 	struct drm_device *dev = dev_priv->dev;
1576 	struct device *device = &dev->pdev->dev;
1577 
1578 	if (!HAS_RUNTIME_PM(dev))
1579 		return;
1580 
1581 	if (!intel_enable_rc6(dev))
1582 		return;
1583 
1584 	/* Make sure we're not suspended first. */
1585 	pm_runtime_get_sync(device);
1586 	pm_runtime_disable(device);
1587 }
1588 
1589 /**
1590  * intel_power_domains_fini - finalizes the power domain structures
1591  * @dev_priv: i915 device instance
1592  *
1593  * Finalizes the power domain structures for @dev_priv depending upon the
1594  * supported platform. This function also disables runtime pm and ensures that
1595  * the device stays powered up so that the driver can be reloaded.
1596  */
1597 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
1598 {
1599 	intel_runtime_pm_disable(dev_priv);
1600 
1601 	/* The i915.ko module is still not prepared to be loaded when
1602 	 * the power well is not enabled, so just enable it in case
1603 	 * we're going to unload/reload. */
1604 	intel_display_set_init_power(dev_priv, true);
1605 }
1606 
1607 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
1608 {
1609 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1610 	struct i915_power_well *power_well;
1611 	int i;
1612 
1613 	mutex_lock(&power_domains->lock);
1614 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1615 		power_well->ops->sync_hw(dev_priv, power_well);
1616 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
1617 								     power_well);
1618 	}
1619 	mutex_unlock(&power_domains->lock);
1620 }
1621 
1622 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1623 {
1624 	struct i915_power_well *cmn_bc =
1625 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1626 	struct i915_power_well *cmn_d =
1627 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1628 
1629 	/*
1630 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1631 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1632 	 * instead maintain a shadow copy ourselves. Use the actual
1633 	 * power well state to reconstruct the expected initial
1634 	 * value.
1635 	 */
1636 	dev_priv->chv_phy_control =
1637 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1638 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1639 		PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH0) |
1640 		PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH1) |
1641 		PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY1, DPIO_CH0);
1642 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc))
1643 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1644 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d))
1645 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1646 }
1647 
1648 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1649 {
1650 	struct i915_power_well *cmn =
1651 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1652 	struct i915_power_well *disp2d =
1653 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
1654 
1655 	/* If the display might be already active skip this */
1656 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
1657 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
1658 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
1659 		return;
1660 
1661 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
1662 
1663 	/* cmnlane needs DPLL registers */
1664 	disp2d->ops->enable(dev_priv, disp2d);
1665 
1666 	/*
1667 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1668 	 * Need to assert and de-assert PHY SB reset by gating the
1669 	 * common lane power, then un-gating it.
1670 	 * Simply ungating isn't enough to reset the PHY enough to get
1671 	 * ports and lanes running.
1672 	 */
1673 	cmn->ops->disable(dev_priv, cmn);
1674 }
1675 
1676 /**
1677  * intel_power_domains_init_hw - initialize hardware power domain state
1678  * @dev_priv: i915 device instance
1679  *
1680  * This function initializes the hardware power domain state and enables all
1681  * power domains using intel_display_set_init_power().
1682  */
1683 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
1684 {
1685 	struct drm_device *dev = dev_priv->dev;
1686 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1687 
1688 	power_domains->initializing = true;
1689 
1690 	if (IS_CHERRYVIEW(dev)) {
1691 		chv_phy_control_init(dev_priv);
1692 	} else if (IS_VALLEYVIEW(dev)) {
1693 		mutex_lock(&power_domains->lock);
1694 		vlv_cmnlane_wa(dev_priv);
1695 		mutex_unlock(&power_domains->lock);
1696 	}
1697 
1698 	/* For now, we need the power well to be always enabled. */
1699 	intel_display_set_init_power(dev_priv, true);
1700 	intel_power_domains_resume(dev_priv);
1701 	power_domains->initializing = false;
1702 }
1703 
1704 /**
1705  * intel_aux_display_runtime_get - grab an auxiliary power domain reference
1706  * @dev_priv: i915 device instance
1707  *
1708  * This function grabs a power domain reference for the auxiliary power domain
1709  * (for access to the GMBUS and DP AUX blocks) and ensures that it and all its
1710  * parents are powered up. Therefore users should only grab a reference to the
1711  * innermost power domain they need.
1712  *
1713  * Any power domain reference obtained by this function must have a symmetric
1714  * call to intel_aux_display_runtime_put() to release the reference again.
1715  */
1716 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
1717 {
1718 	intel_runtime_pm_get(dev_priv);
1719 }
1720 
1721 /**
1722  * intel_aux_display_runtime_put - release an auxiliary power domain reference
1723  * @dev_priv: i915 device instance
1724  *
1725  * This function drops the auxiliary power domain reference obtained by
1726  * intel_aux_display_runtime_get() and might power down the corresponding
1727  * hardware block right away if this is the last reference.
1728  */
1729 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
1730 {
1731 	intel_runtime_pm_put(dev_priv);
1732 }
1733 
1734 /**
1735  * intel_runtime_pm_get - grab a runtime pm reference
1736  * @dev_priv: i915 device instance
1737  *
1738  * This function grabs a device-level runtime pm reference (mostly used for GEM
1739  * code to ensure the GTT or GT is on) and ensures that it is powered up.
1740  *
1741  * Any runtime pm reference obtained by this function must have a symmetric
1742  * call to intel_runtime_pm_put() to release the reference again.
1743  */
1744 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
1745 {
1746 	struct drm_device *dev = dev_priv->dev;
1747 	struct device *device = &dev->pdev->dev;
1748 
1749 	if (!HAS_RUNTIME_PM(dev))
1750 		return;
1751 
1752 	pm_runtime_get_sync(device);
1753 	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
1754 }
1755 
1756 /**
1757  * intel_runtime_pm_get_noresume - grab a runtime pm reference
1758  * @dev_priv: i915 device instance
1759  *
1760  * This function grabs a device-level runtime pm reference (mostly used for GEM
1761  * code to ensure the GTT or GT is on).
1762  *
1763  * It will _not_ power up the device but instead only check that it's powered
1764  * on.  Therefore it is only valid to call this functions from contexts where
1765  * the device is known to be powered up and where trying to power it up would
1766  * result in hilarity and deadlocks. That pretty much means only the system
1767  * suspend/resume code where this is used to grab runtime pm references for
1768  * delayed setup down in work items.
1769  *
1770  * Any runtime pm reference obtained by this function must have a symmetric
1771  * call to intel_runtime_pm_put() to release the reference again.
1772  */
1773 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
1774 {
1775 	struct drm_device *dev = dev_priv->dev;
1776 	struct device *device = &dev->pdev->dev;
1777 
1778 	if (!HAS_RUNTIME_PM(dev))
1779 		return;
1780 
1781 	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
1782 	pm_runtime_get_noresume(device);
1783 }
1784 
1785 /**
1786  * intel_runtime_pm_put - release a runtime pm reference
1787  * @dev_priv: i915 device instance
1788  *
1789  * This function drops the device-level runtime pm reference obtained by
1790  * intel_runtime_pm_get() and might power down the corresponding
1791  * hardware block right away if this is the last reference.
1792  */
1793 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
1794 {
1795 	struct drm_device *dev = dev_priv->dev;
1796 	struct device *device = &dev->pdev->dev;
1797 
1798 	if (!HAS_RUNTIME_PM(dev))
1799 		return;
1800 
1801 	pm_runtime_mark_last_busy(device);
1802 	pm_runtime_put_autosuspend(device);
1803 }
1804 
1805 /**
1806  * intel_runtime_pm_enable - enable runtime pm
1807  * @dev_priv: i915 device instance
1808  *
1809  * This function enables runtime pm at the end of the driver load sequence.
1810  *
1811  * Note that this function does currently not enable runtime pm for the
1812  * subordinate display power domains. That is only done on the first modeset
1813  * using intel_display_set_init_power().
1814  */
1815 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
1816 {
1817 	struct drm_device *dev = dev_priv->dev;
1818 	struct device *device = &dev->pdev->dev;
1819 
1820 	if (!HAS_RUNTIME_PM(dev))
1821 		return;
1822 
1823 	pm_runtime_set_active(device);
1824 
1825 	/*
1826 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
1827 	 * requirement.
1828 	 */
1829 	if (!intel_enable_rc6(dev)) {
1830 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
1831 		return;
1832 	}
1833 
1834 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
1835 	pm_runtime_mark_last_busy(device);
1836 	pm_runtime_use_autosuspend(device);
1837 
1838 	pm_runtime_put_autosuspend(device);
1839 }
1840 
1841