1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct pci_dev *pdev = dev_priv->drm.pdev;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
303 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
305 
306 	if (IS_BROADWELL(dev_priv))
307 		gen8_irq_power_well_post_enable(dev_priv,
308 						1 << PIPE_C | 1 << PIPE_B);
309 }
310 
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 	if (IS_BROADWELL(dev_priv))
314 		gen8_irq_power_well_pre_disable(dev_priv,
315 						1 << PIPE_C | 1 << PIPE_B);
316 }
317 
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 				       struct i915_power_well *power_well)
320 {
321 	struct pci_dev *pdev = dev_priv->drm.pdev;
322 
323 	/*
324 	 * After we re-enable the power well, if we touch VGA register 0x3d5
325 	 * we'll get unclaimed register interrupts. This stops after we write
326 	 * anything to the VGA MSR register. The vgacon module uses this
327 	 * register all the time, so if we unbind our driver and, as a
328 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 	 * console_unlock(). So make here we touch the VGA MSR register, making
330 	 * sure vgacon can keep working normally without triggering interrupts
331 	 * and error messages.
332 	 */
333 	if (power_well->id == SKL_DISP_PW_2) {
334 		vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
335 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 		vga_put(pdev, VGA_RSRC_LEGACY_IO);
337 
338 		gen8_irq_power_well_post_enable(dev_priv,
339 						1 << PIPE_C | 1 << PIPE_B);
340 	}
341 }
342 
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 				       struct i915_power_well *power_well)
345 {
346 	if (power_well->id == SKL_DISP_PW_2)
347 		gen8_irq_power_well_pre_disable(dev_priv,
348 						1 << PIPE_C | 1 << PIPE_B);
349 }
350 
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 			       struct i915_power_well *power_well, bool enable)
353 {
354 	bool is_enabled, enable_requested;
355 	uint32_t tmp;
356 
357 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360 
361 	if (enable) {
362 		if (!enable_requested)
363 			I915_WRITE(HSW_PWR_WELL_DRIVER,
364 				   HSW_PWR_WELL_ENABLE_REQUEST);
365 
366 		if (!is_enabled) {
367 			DRM_DEBUG_KMS("Enabling power well\n");
368 			if (intel_wait_for_register(dev_priv,
369 						    HSW_PWR_WELL_DRIVER,
370 						    HSW_PWR_WELL_STATE_ENABLED,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    20))
373 				DRM_ERROR("Timeout enabling power well\n");
374 			hsw_power_well_post_enable(dev_priv);
375 		}
376 
377 	} else {
378 		if (enable_requested) {
379 			hsw_power_well_pre_disable(dev_priv);
380 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 			POSTING_READ(HSW_PWR_WELL_DRIVER);
382 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 		}
384 	}
385 }
386 
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
388 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
389 	BIT(POWER_DOMAIN_PIPE_B) |			\
390 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
391 	BIT(POWER_DOMAIN_PIPE_C) |			\
392 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
393 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
394 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
399 	BIT(POWER_DOMAIN_AUX_B) |                       \
400 	BIT(POWER_DOMAIN_AUX_C) |			\
401 	BIT(POWER_DOMAIN_AUX_D) |			\
402 	BIT(POWER_DOMAIN_AUDIO) |			\
403 	BIT(POWER_DOMAIN_VGA) |				\
404 	BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
406 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
407 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
408 	BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
410 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
411 	BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
413 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
414 	BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
416 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
417 	BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
419 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
420 	BIT(POWER_DOMAIN_MODESET) |			\
421 	BIT(POWER_DOMAIN_AUX_A) |			\
422 	BIT(POWER_DOMAIN_INIT))
423 
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
425 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
426 	BIT(POWER_DOMAIN_PIPE_B) |			\
427 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
428 	BIT(POWER_DOMAIN_PIPE_C) |			\
429 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
430 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
431 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
434 	BIT(POWER_DOMAIN_AUX_B) |			\
435 	BIT(POWER_DOMAIN_AUX_C) |			\
436 	BIT(POWER_DOMAIN_AUDIO) |			\
437 	BIT(POWER_DOMAIN_VGA) |				\
438 	BIT(POWER_DOMAIN_GMBUS) |			\
439 	BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
441 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
442 	BIT(POWER_DOMAIN_MODESET) |			\
443 	BIT(POWER_DOMAIN_AUX_A) |			\
444 	BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
446 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
447 	BIT(POWER_DOMAIN_AUX_A) |			\
448 	BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
450 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
451 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
452 	BIT(POWER_DOMAIN_AUX_B) |			\
453 	BIT(POWER_DOMAIN_AUX_C) |			\
454 	BIT(POWER_DOMAIN_INIT))
455 
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 		  "DC9 already programmed to be enabled.\n");
460 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 		  "DC5 still not disabled to enable DC9.\n");
462 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 	WARN_ONCE(intel_irqs_enabled(dev_priv),
464 		  "Interrupts not disabled yet.\n");
465 
466 	 /*
467 	  * TODO: check for the following to verify the conditions to enter DC9
468 	  * state are satisfied:
469 	  * 1] Check relevant display engine registers to verify if mode set
470 	  * disable sequence was followed.
471 	  * 2] Check if display uninitialize sequence is initialized.
472 	  */
473 }
474 
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 	WARN_ONCE(intel_irqs_enabled(dev_priv),
478 		  "Interrupts not disabled yet.\n");
479 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 		  "DC5 still not disabled.\n");
481 
482 	 /*
483 	  * TODO: check for the following to verify DC9 state was indeed
484 	  * entered before programming to disable it:
485 	  * 1] Check relevant display engine registers to verify if mode
486 	  *  set disable sequence was followed.
487 	  * 2] Check if display uninitialize sequence is initialized.
488 	  */
489 }
490 
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 				u32 state)
493 {
494 	int rewrites = 0;
495 	int rereads = 0;
496 	u32 v;
497 
498 	I915_WRITE(DC_STATE_EN, state);
499 
500 	/* It has been observed that disabling the dc6 state sometimes
501 	 * doesn't stick and dmc keeps returning old value. Make sure
502 	 * the write really sticks enough times and also force rewrite until
503 	 * we are confident that state is exactly what we want.
504 	 */
505 	do  {
506 		v = I915_READ(DC_STATE_EN);
507 
508 		if (v != state) {
509 			I915_WRITE(DC_STATE_EN, state);
510 			rewrites++;
511 			rereads = 0;
512 		} else if (rereads++ > 5) {
513 			break;
514 		}
515 
516 	} while (rewrites < 100);
517 
518 	if (v != state)
519 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 			  state, v);
521 
522 	/* Most of the times we need one retry, avoid spam */
523 	if (rewrites > 1)
524 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 			      state, rewrites);
526 }
527 
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 	u32 mask;
531 
532 	mask = DC_STATE_EN_UPTO_DC5;
533 	if (IS_BROXTON(dev_priv))
534 		mask |= DC_STATE_EN_DC9;
535 	else
536 		mask |= DC_STATE_EN_UPTO_DC6;
537 
538 	return mask;
539 }
540 
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 	u32 val;
544 
545 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546 
547 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 		      dev_priv->csr.dc_state, val);
549 	dev_priv->csr.dc_state = val;
550 }
551 
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 	uint32_t val;
555 	uint32_t mask;
556 
557 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 		state &= dev_priv->csr.allowed_dc_mask;
559 
560 	val = I915_READ(DC_STATE_EN);
561 	mask = gen9_dc_mask(dev_priv);
562 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 		      val & mask, state);
564 
565 	/* Check if DMC is ignoring our DC state requests */
566 	if ((val & mask) != dev_priv->csr.dc_state)
567 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 			  dev_priv->csr.dc_state, val & mask);
569 
570 	val &= ~mask;
571 	val |= state;
572 
573 	gen9_write_dc_state(dev_priv, val);
574 
575 	dev_priv->csr.dc_state = val & mask;
576 }
577 
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 	assert_can_enable_dc9(dev_priv);
581 
582 	DRM_DEBUG_KMS("Enabling DC9\n");
583 
584 	intel_power_sequencer_reset(dev_priv);
585 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587 
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 	assert_can_disable_dc9(dev_priv);
591 
592 	DRM_DEBUG_KMS("Disabling DC9\n");
593 
594 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595 
596 	intel_pps_unlock_regs_wa(dev_priv);
597 }
598 
599 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
600 {
601 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
602 		  "CSR program storage start is NULL\n");
603 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
604 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
605 }
606 
607 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
608 {
609 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
610 					SKL_DISP_PW_2);
611 
612 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
613 
614 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
615 		  "DC5 already programmed to be enabled.\n");
616 	assert_rpm_wakelock_held(dev_priv);
617 
618 	assert_csr_loaded(dev_priv);
619 }
620 
621 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622 {
623 	assert_can_enable_dc5(dev_priv);
624 
625 	DRM_DEBUG_KMS("Enabling DC5\n");
626 
627 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628 }
629 
630 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631 {
632 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
633 		  "Backlight is not disabled.\n");
634 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
635 		  "DC6 already programmed to be enabled.\n");
636 
637 	assert_csr_loaded(dev_priv);
638 }
639 
640 void skl_enable_dc6(struct drm_i915_private *dev_priv)
641 {
642 	assert_can_enable_dc6(dev_priv);
643 
644 	DRM_DEBUG_KMS("Enabling DC6\n");
645 
646 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
647 
648 }
649 
650 void skl_disable_dc6(struct drm_i915_private *dev_priv)
651 {
652 	DRM_DEBUG_KMS("Disabling DC6\n");
653 
654 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
655 }
656 
657 static void
658 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
659 				  struct i915_power_well *power_well)
660 {
661 	enum skl_disp_power_wells power_well_id = power_well->id;
662 	u32 val;
663 	u32 mask;
664 
665 	mask = SKL_POWER_WELL_REQ(power_well_id);
666 
667 	val = I915_READ(HSW_PWR_WELL_KVMR);
668 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
669 		      power_well->name))
670 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
671 
672 	val = I915_READ(HSW_PWR_WELL_BIOS);
673 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
674 
675 	if (!(val & mask))
676 		return;
677 
678 	/*
679 	 * DMC is known to force on the request bits for power well 1 on SKL
680 	 * and BXT and the misc IO power well on SKL but we don't expect any
681 	 * other request bits to be set, so WARN for those.
682 	 */
683 	if (power_well_id == SKL_DISP_PW_1 ||
684 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
685 	     power_well_id == SKL_DISP_PW_MISC_IO))
686 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
687 				 "by DMC\n", power_well->name);
688 	else
689 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
690 			  power_well->name);
691 
692 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
693 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
694 }
695 
696 static void skl_set_power_well(struct drm_i915_private *dev_priv,
697 			struct i915_power_well *power_well, bool enable)
698 {
699 	uint32_t tmp, fuse_status;
700 	uint32_t req_mask, state_mask;
701 	bool is_enabled, enable_requested, check_fuse_status = false;
702 
703 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
704 	fuse_status = I915_READ(SKL_FUSE_STATUS);
705 
706 	switch (power_well->id) {
707 	case SKL_DISP_PW_1:
708 		if (intel_wait_for_register(dev_priv,
709 					    SKL_FUSE_STATUS,
710 					    SKL_FUSE_PG0_DIST_STATUS,
711 					    SKL_FUSE_PG0_DIST_STATUS,
712 					    1)) {
713 			DRM_ERROR("PG0 not enabled\n");
714 			return;
715 		}
716 		break;
717 	case SKL_DISP_PW_2:
718 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
719 			DRM_ERROR("PG1 in disabled state\n");
720 			return;
721 		}
722 		break;
723 	case SKL_DISP_PW_DDI_A_E:
724 	case SKL_DISP_PW_DDI_B:
725 	case SKL_DISP_PW_DDI_C:
726 	case SKL_DISP_PW_DDI_D:
727 	case SKL_DISP_PW_MISC_IO:
728 		break;
729 	default:
730 		WARN(1, "Unknown power well %lu\n", power_well->id);
731 		return;
732 	}
733 
734 	req_mask = SKL_POWER_WELL_REQ(power_well->id);
735 	enable_requested = tmp & req_mask;
736 	state_mask = SKL_POWER_WELL_STATE(power_well->id);
737 	is_enabled = tmp & state_mask;
738 
739 	if (!enable && enable_requested)
740 		skl_power_well_pre_disable(dev_priv, power_well);
741 
742 	if (enable) {
743 		if (!enable_requested) {
744 			WARN((tmp & state_mask) &&
745 				!I915_READ(HSW_PWR_WELL_BIOS),
746 				"Invalid for power well status to be enabled, unless done by the BIOS, \
747 				when request is to disable!\n");
748 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
749 		}
750 
751 		if (!is_enabled) {
752 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
753 			check_fuse_status = true;
754 		}
755 	} else {
756 		if (enable_requested) {
757 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
758 			POSTING_READ(HSW_PWR_WELL_DRIVER);
759 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
760 		}
761 
762 		if (IS_GEN9(dev_priv))
763 			gen9_sanitize_power_well_requests(dev_priv, power_well);
764 	}
765 
766 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
767 		     1))
768 		DRM_ERROR("%s %s timeout\n",
769 			  power_well->name, enable ? "enable" : "disable");
770 
771 	if (check_fuse_status) {
772 		if (power_well->id == SKL_DISP_PW_1) {
773 			if (intel_wait_for_register(dev_priv,
774 						    SKL_FUSE_STATUS,
775 						    SKL_FUSE_PG1_DIST_STATUS,
776 						    SKL_FUSE_PG1_DIST_STATUS,
777 						    1))
778 				DRM_ERROR("PG1 distributing status timeout\n");
779 		} else if (power_well->id == SKL_DISP_PW_2) {
780 			if (intel_wait_for_register(dev_priv,
781 						    SKL_FUSE_STATUS,
782 						    SKL_FUSE_PG2_DIST_STATUS,
783 						    SKL_FUSE_PG2_DIST_STATUS,
784 						    1))
785 				DRM_ERROR("PG2 distributing status timeout\n");
786 		}
787 	}
788 
789 	if (enable && !is_enabled)
790 		skl_power_well_post_enable(dev_priv, power_well);
791 }
792 
793 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
794 				   struct i915_power_well *power_well)
795 {
796 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
797 
798 	/*
799 	 * We're taking over the BIOS, so clear any requests made by it since
800 	 * the driver is in charge now.
801 	 */
802 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
803 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
804 }
805 
806 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
807 				  struct i915_power_well *power_well)
808 {
809 	hsw_set_power_well(dev_priv, power_well, true);
810 }
811 
812 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
813 				   struct i915_power_well *power_well)
814 {
815 	hsw_set_power_well(dev_priv, power_well, false);
816 }
817 
818 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
819 					struct i915_power_well *power_well)
820 {
821 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->id) |
822 		SKL_POWER_WELL_STATE(power_well->id);
823 
824 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
825 }
826 
827 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
828 				struct i915_power_well *power_well)
829 {
830 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
831 
832 	/* Clear any request made by BIOS as driver is taking over */
833 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
834 }
835 
836 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
837 				struct i915_power_well *power_well)
838 {
839 	skl_set_power_well(dev_priv, power_well, true);
840 }
841 
842 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
843 				struct i915_power_well *power_well)
844 {
845 	skl_set_power_well(dev_priv, power_well, false);
846 }
847 
848 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
849 					   struct i915_power_well *power_well)
850 {
851 	bxt_ddi_phy_init(dev_priv, power_well->data);
852 }
853 
854 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
855 					    struct i915_power_well *power_well)
856 {
857 	bxt_ddi_phy_uninit(dev_priv, power_well->data);
858 }
859 
860 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
861 					    struct i915_power_well *power_well)
862 {
863 	return bxt_ddi_phy_is_enabled(dev_priv, power_well->data);
864 }
865 
866 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
867 					    struct i915_power_well *power_well)
868 {
869 	if (power_well->count > 0)
870 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
871 	else
872 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
873 }
874 
875 
876 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
877 {
878 	struct i915_power_well *power_well;
879 
880 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
881 	if (power_well->count > 0)
882 		bxt_ddi_phy_verify_state(dev_priv, power_well->data);
883 
884 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
885 	if (power_well->count > 0)
886 		bxt_ddi_phy_verify_state(dev_priv, power_well->data);
887 }
888 
889 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
890 					   struct i915_power_well *power_well)
891 {
892 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
893 }
894 
895 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
896 {
897 	u32 tmp = I915_READ(DBUF_CTL);
898 
899 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
900 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
901 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
902 }
903 
904 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
905 					  struct i915_power_well *power_well)
906 {
907 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
908 
909 	WARN_ON(dev_priv->cdclk_freq !=
910 		dev_priv->display.get_display_clock_speed(dev_priv));
911 
912 	gen9_assert_dbuf_enabled(dev_priv);
913 
914 	if (IS_BROXTON(dev_priv))
915 		bxt_verify_ddi_phy_power_wells(dev_priv);
916 }
917 
918 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
919 					   struct i915_power_well *power_well)
920 {
921 	if (!dev_priv->csr.dmc_payload)
922 		return;
923 
924 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
925 		skl_enable_dc6(dev_priv);
926 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
927 		gen9_enable_dc5(dev_priv);
928 }
929 
930 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
931 					   struct i915_power_well *power_well)
932 {
933 	if (power_well->count > 0)
934 		gen9_dc_off_power_well_enable(dev_priv, power_well);
935 	else
936 		gen9_dc_off_power_well_disable(dev_priv, power_well);
937 }
938 
939 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
940 					   struct i915_power_well *power_well)
941 {
942 }
943 
944 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
945 					     struct i915_power_well *power_well)
946 {
947 	return true;
948 }
949 
950 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
951 			       struct i915_power_well *power_well, bool enable)
952 {
953 	enum punit_power_well power_well_id = power_well->id;
954 	u32 mask;
955 	u32 state;
956 	u32 ctrl;
957 
958 	mask = PUNIT_PWRGT_MASK(power_well_id);
959 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
960 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
961 
962 	mutex_lock(&dev_priv->rps.hw_lock);
963 
964 #define COND \
965 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
966 
967 	if (COND)
968 		goto out;
969 
970 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
971 	ctrl &= ~mask;
972 	ctrl |= state;
973 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
974 
975 	if (wait_for(COND, 100))
976 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
977 			  state,
978 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
979 
980 #undef COND
981 
982 out:
983 	mutex_unlock(&dev_priv->rps.hw_lock);
984 }
985 
986 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
987 				   struct i915_power_well *power_well)
988 {
989 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
990 }
991 
992 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
993 				  struct i915_power_well *power_well)
994 {
995 	vlv_set_power_well(dev_priv, power_well, true);
996 }
997 
998 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
999 				   struct i915_power_well *power_well)
1000 {
1001 	vlv_set_power_well(dev_priv, power_well, false);
1002 }
1003 
1004 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1005 				   struct i915_power_well *power_well)
1006 {
1007 	int power_well_id = power_well->id;
1008 	bool enabled = false;
1009 	u32 mask;
1010 	u32 state;
1011 	u32 ctrl;
1012 
1013 	mask = PUNIT_PWRGT_MASK(power_well_id);
1014 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1015 
1016 	mutex_lock(&dev_priv->rps.hw_lock);
1017 
1018 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1019 	/*
1020 	 * We only ever set the power-on and power-gate states, anything
1021 	 * else is unexpected.
1022 	 */
1023 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1024 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1025 	if (state == ctrl)
1026 		enabled = true;
1027 
1028 	/*
1029 	 * A transient state at this point would mean some unexpected party
1030 	 * is poking at the power controls too.
1031 	 */
1032 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1033 	WARN_ON(ctrl != state);
1034 
1035 	mutex_unlock(&dev_priv->rps.hw_lock);
1036 
1037 	return enabled;
1038 }
1039 
1040 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1041 {
1042 	u32 val;
1043 
1044 	/*
1045 	 * On driver load, a pipe may be active and driving a DSI display.
1046 	 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
1047 	 * (and never recovering) in this case. intel_dsi_post_disable() will
1048 	 * clear it when we turn off the display.
1049 	 */
1050 	val = I915_READ(DSPCLK_GATE_D);
1051 	val &= DPOUNIT_CLOCK_GATE_DISABLE;
1052 	val |= VRHUNIT_CLOCK_GATE_DISABLE;
1053 	I915_WRITE(DSPCLK_GATE_D, val);
1054 
1055 	/*
1056 	 * Disable trickle feed and enable pnd deadline calculation
1057 	 */
1058 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1059 	I915_WRITE(CBR1_VLV, 0);
1060 
1061 	WARN_ON(dev_priv->rawclk_freq == 0);
1062 
1063 	I915_WRITE(RAWCLK_FREQ_VLV,
1064 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1065 }
1066 
1067 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1068 {
1069 	struct intel_encoder *encoder;
1070 	enum pipe pipe;
1071 
1072 	/*
1073 	 * Enable the CRI clock source so we can get at the
1074 	 * display and the reference clock for VGA
1075 	 * hotplug / manual detection. Supposedly DSI also
1076 	 * needs the ref clock up and running.
1077 	 *
1078 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1079 	 */
1080 	for_each_pipe(dev_priv, pipe) {
1081 		u32 val = I915_READ(DPLL(pipe));
1082 
1083 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1084 		if (pipe != PIPE_A)
1085 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1086 
1087 		I915_WRITE(DPLL(pipe), val);
1088 	}
1089 
1090 	vlv_init_display_clock_gating(dev_priv);
1091 
1092 	spin_lock_irq(&dev_priv->irq_lock);
1093 	valleyview_enable_display_irqs(dev_priv);
1094 	spin_unlock_irq(&dev_priv->irq_lock);
1095 
1096 	/*
1097 	 * During driver initialization/resume we can avoid restoring the
1098 	 * part of the HW/SW state that will be inited anyway explicitly.
1099 	 */
1100 	if (dev_priv->power_domains.initializing)
1101 		return;
1102 
1103 	intel_hpd_init(dev_priv);
1104 
1105 	/* Re-enable the ADPA, if we have one */
1106 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1107 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1108 			intel_crt_reset(&encoder->base);
1109 	}
1110 
1111 	i915_redisable_vga_power_on(dev_priv);
1112 
1113 	intel_pps_unlock_regs_wa(dev_priv);
1114 }
1115 
1116 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1117 {
1118 	spin_lock_irq(&dev_priv->irq_lock);
1119 	valleyview_disable_display_irqs(dev_priv);
1120 	spin_unlock_irq(&dev_priv->irq_lock);
1121 
1122 	/* make sure we're done processing display irqs */
1123 	synchronize_irq(dev_priv->drm.irq);
1124 
1125 	intel_power_sequencer_reset(dev_priv);
1126 
1127 	/* Prevent us from re-enabling polling on accident in late suspend */
1128 	if (!dev_priv->drm.dev->power.is_suspended)
1129 		intel_hpd_poll_init(dev_priv);
1130 }
1131 
1132 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1133 					  struct i915_power_well *power_well)
1134 {
1135 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1136 
1137 	vlv_set_power_well(dev_priv, power_well, true);
1138 
1139 	vlv_display_power_well_init(dev_priv);
1140 }
1141 
1142 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1143 					   struct i915_power_well *power_well)
1144 {
1145 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1146 
1147 	vlv_display_power_well_deinit(dev_priv);
1148 
1149 	vlv_set_power_well(dev_priv, power_well, false);
1150 }
1151 
1152 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1153 					   struct i915_power_well *power_well)
1154 {
1155 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1156 
1157 	/* since ref/cri clock was enabled */
1158 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1159 
1160 	vlv_set_power_well(dev_priv, power_well, true);
1161 
1162 	/*
1163 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1164 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1165 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1166 	 *   b.	The other bits such as sfr settings / modesel may all
1167 	 *	be set to 0.
1168 	 *
1169 	 * This should only be done on init and resume from S3 with
1170 	 * both PLLs disabled, or we risk losing DPIO and PLL
1171 	 * synchronization.
1172 	 */
1173 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1174 }
1175 
1176 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1177 					    struct i915_power_well *power_well)
1178 {
1179 	enum pipe pipe;
1180 
1181 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1182 
1183 	for_each_pipe(dev_priv, pipe)
1184 		assert_pll_disabled(dev_priv, pipe);
1185 
1186 	/* Assert common reset */
1187 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1188 
1189 	vlv_set_power_well(dev_priv, power_well, false);
1190 }
1191 
1192 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1193 
1194 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1195 						 int power_well_id)
1196 {
1197 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1198 	int i;
1199 
1200 	for (i = 0; i < power_domains->power_well_count; i++) {
1201 		struct i915_power_well *power_well;
1202 
1203 		power_well = &power_domains->power_wells[i];
1204 		if (power_well->id == power_well_id)
1205 			return power_well;
1206 	}
1207 
1208 	return NULL;
1209 }
1210 
1211 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1212 
1213 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1214 {
1215 	struct i915_power_well *cmn_bc =
1216 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1217 	struct i915_power_well *cmn_d =
1218 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1219 	u32 phy_control = dev_priv->chv_phy_control;
1220 	u32 phy_status = 0;
1221 	u32 phy_status_mask = 0xffffffff;
1222 
1223 	/*
1224 	 * The BIOS can leave the PHY is some weird state
1225 	 * where it doesn't fully power down some parts.
1226 	 * Disable the asserts until the PHY has been fully
1227 	 * reset (ie. the power well has been disabled at
1228 	 * least once).
1229 	 */
1230 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1231 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1232 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1233 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1234 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1235 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1236 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1237 
1238 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1239 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1240 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1241 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1242 
1243 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1244 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1245 
1246 		/* this assumes override is only used to enable lanes */
1247 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1248 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1249 
1250 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1251 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1252 
1253 		/* CL1 is on whenever anything is on in either channel */
1254 		if (BITS_SET(phy_control,
1255 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1256 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1257 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1258 
1259 		/*
1260 		 * The DPLLB check accounts for the pipe B + port A usage
1261 		 * with CL2 powered up but all the lanes in the second channel
1262 		 * powered down.
1263 		 */
1264 		if (BITS_SET(phy_control,
1265 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1266 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1267 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1268 
1269 		if (BITS_SET(phy_control,
1270 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1271 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1272 		if (BITS_SET(phy_control,
1273 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1274 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1275 
1276 		if (BITS_SET(phy_control,
1277 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1278 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1279 		if (BITS_SET(phy_control,
1280 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1281 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1282 	}
1283 
1284 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1285 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1286 
1287 		/* this assumes override is only used to enable lanes */
1288 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1289 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1290 
1291 		if (BITS_SET(phy_control,
1292 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1293 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1294 
1295 		if (BITS_SET(phy_control,
1296 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1297 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1298 		if (BITS_SET(phy_control,
1299 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1300 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1301 	}
1302 
1303 	phy_status &= phy_status_mask;
1304 
1305 	/*
1306 	 * The PHY may be busy with some initial calibration and whatnot,
1307 	 * so the power state can take a while to actually change.
1308 	 */
1309 	if (intel_wait_for_register(dev_priv,
1310 				    DISPLAY_PHY_STATUS,
1311 				    phy_status_mask,
1312 				    phy_status,
1313 				    10))
1314 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1315 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1316 			   phy_status, dev_priv->chv_phy_control);
1317 }
1318 
1319 #undef BITS_SET
1320 
1321 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1322 					   struct i915_power_well *power_well)
1323 {
1324 	enum dpio_phy phy;
1325 	enum pipe pipe;
1326 	uint32_t tmp;
1327 
1328 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1329 		     power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1330 
1331 	if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1332 		pipe = PIPE_A;
1333 		phy = DPIO_PHY0;
1334 	} else {
1335 		pipe = PIPE_C;
1336 		phy = DPIO_PHY1;
1337 	}
1338 
1339 	/* since ref/cri clock was enabled */
1340 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1341 	vlv_set_power_well(dev_priv, power_well, true);
1342 
1343 	/* Poll for phypwrgood signal */
1344 	if (intel_wait_for_register(dev_priv,
1345 				    DISPLAY_PHY_STATUS,
1346 				    PHY_POWERGOOD(phy),
1347 				    PHY_POWERGOOD(phy),
1348 				    1))
1349 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1350 
1351 	mutex_lock(&dev_priv->sb_lock);
1352 
1353 	/* Enable dynamic power down */
1354 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1355 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1356 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1357 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1358 
1359 	if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1360 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1361 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1362 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1363 	} else {
1364 		/*
1365 		 * Force the non-existing CL2 off. BXT does this
1366 		 * too, so maybe it saves some power even though
1367 		 * CL2 doesn't exist?
1368 		 */
1369 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1370 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1371 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1372 	}
1373 
1374 	mutex_unlock(&dev_priv->sb_lock);
1375 
1376 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1377 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1378 
1379 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1380 		      phy, dev_priv->chv_phy_control);
1381 
1382 	assert_chv_phy_status(dev_priv);
1383 }
1384 
1385 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1386 					    struct i915_power_well *power_well)
1387 {
1388 	enum dpio_phy phy;
1389 
1390 	WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1391 		     power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1392 
1393 	if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1394 		phy = DPIO_PHY0;
1395 		assert_pll_disabled(dev_priv, PIPE_A);
1396 		assert_pll_disabled(dev_priv, PIPE_B);
1397 	} else {
1398 		phy = DPIO_PHY1;
1399 		assert_pll_disabled(dev_priv, PIPE_C);
1400 	}
1401 
1402 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1403 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1404 
1405 	vlv_set_power_well(dev_priv, power_well, false);
1406 
1407 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1408 		      phy, dev_priv->chv_phy_control);
1409 
1410 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1411 	dev_priv->chv_phy_assert[phy] = true;
1412 
1413 	assert_chv_phy_status(dev_priv);
1414 }
1415 
1416 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1417 				     enum dpio_channel ch, bool override, unsigned int mask)
1418 {
1419 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1420 	u32 reg, val, expected, actual;
1421 
1422 	/*
1423 	 * The BIOS can leave the PHY is some weird state
1424 	 * where it doesn't fully power down some parts.
1425 	 * Disable the asserts until the PHY has been fully
1426 	 * reset (ie. the power well has been disabled at
1427 	 * least once).
1428 	 */
1429 	if (!dev_priv->chv_phy_assert[phy])
1430 		return;
1431 
1432 	if (ch == DPIO_CH0)
1433 		reg = _CHV_CMN_DW0_CH0;
1434 	else
1435 		reg = _CHV_CMN_DW6_CH1;
1436 
1437 	mutex_lock(&dev_priv->sb_lock);
1438 	val = vlv_dpio_read(dev_priv, pipe, reg);
1439 	mutex_unlock(&dev_priv->sb_lock);
1440 
1441 	/*
1442 	 * This assumes !override is only used when the port is disabled.
1443 	 * All lanes should power down even without the override when
1444 	 * the port is disabled.
1445 	 */
1446 	if (!override || mask == 0xf) {
1447 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1448 		/*
1449 		 * If CH1 common lane is not active anymore
1450 		 * (eg. for pipe B DPLL) the entire channel will
1451 		 * shut down, which causes the common lane registers
1452 		 * to read as 0. That means we can't actually check
1453 		 * the lane power down status bits, but as the entire
1454 		 * register reads as 0 it's a good indication that the
1455 		 * channel is indeed entirely powered down.
1456 		 */
1457 		if (ch == DPIO_CH1 && val == 0)
1458 			expected = 0;
1459 	} else if (mask != 0x0) {
1460 		expected = DPIO_ANYDL_POWERDOWN;
1461 	} else {
1462 		expected = 0;
1463 	}
1464 
1465 	if (ch == DPIO_CH0)
1466 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1467 	else
1468 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1469 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1470 
1471 	WARN(actual != expected,
1472 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1473 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1474 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1475 	     reg, val);
1476 }
1477 
1478 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1479 			  enum dpio_channel ch, bool override)
1480 {
1481 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1482 	bool was_override;
1483 
1484 	mutex_lock(&power_domains->lock);
1485 
1486 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1487 
1488 	if (override == was_override)
1489 		goto out;
1490 
1491 	if (override)
1492 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1493 	else
1494 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1495 
1496 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1497 
1498 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1499 		      phy, ch, dev_priv->chv_phy_control);
1500 
1501 	assert_chv_phy_status(dev_priv);
1502 
1503 out:
1504 	mutex_unlock(&power_domains->lock);
1505 
1506 	return was_override;
1507 }
1508 
1509 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1510 			     bool override, unsigned int mask)
1511 {
1512 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1513 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1514 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1515 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1516 
1517 	mutex_lock(&power_domains->lock);
1518 
1519 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1520 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1521 
1522 	if (override)
1523 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1524 	else
1525 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1526 
1527 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1528 
1529 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1530 		      phy, ch, mask, dev_priv->chv_phy_control);
1531 
1532 	assert_chv_phy_status(dev_priv);
1533 
1534 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1535 
1536 	mutex_unlock(&power_domains->lock);
1537 }
1538 
1539 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1540 					struct i915_power_well *power_well)
1541 {
1542 	enum pipe pipe = power_well->id;
1543 	bool enabled;
1544 	u32 state, ctrl;
1545 
1546 	mutex_lock(&dev_priv->rps.hw_lock);
1547 
1548 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1549 	/*
1550 	 * We only ever set the power-on and power-gate states, anything
1551 	 * else is unexpected.
1552 	 */
1553 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1554 	enabled = state == DP_SSS_PWR_ON(pipe);
1555 
1556 	/*
1557 	 * A transient state at this point would mean some unexpected party
1558 	 * is poking at the power controls too.
1559 	 */
1560 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1561 	WARN_ON(ctrl << 16 != state);
1562 
1563 	mutex_unlock(&dev_priv->rps.hw_lock);
1564 
1565 	return enabled;
1566 }
1567 
1568 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1569 				    struct i915_power_well *power_well,
1570 				    bool enable)
1571 {
1572 	enum pipe pipe = power_well->id;
1573 	u32 state;
1574 	u32 ctrl;
1575 
1576 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1577 
1578 	mutex_lock(&dev_priv->rps.hw_lock);
1579 
1580 #define COND \
1581 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1582 
1583 	if (COND)
1584 		goto out;
1585 
1586 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1587 	ctrl &= ~DP_SSC_MASK(pipe);
1588 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1589 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1590 
1591 	if (wait_for(COND, 100))
1592 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1593 			  state,
1594 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1595 
1596 #undef COND
1597 
1598 out:
1599 	mutex_unlock(&dev_priv->rps.hw_lock);
1600 }
1601 
1602 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1603 					struct i915_power_well *power_well)
1604 {
1605 	WARN_ON_ONCE(power_well->id != PIPE_A);
1606 
1607 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1608 }
1609 
1610 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1611 				       struct i915_power_well *power_well)
1612 {
1613 	WARN_ON_ONCE(power_well->id != PIPE_A);
1614 
1615 	chv_set_pipe_power_well(dev_priv, power_well, true);
1616 
1617 	vlv_display_power_well_init(dev_priv);
1618 }
1619 
1620 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1621 					struct i915_power_well *power_well)
1622 {
1623 	WARN_ON_ONCE(power_well->id != PIPE_A);
1624 
1625 	vlv_display_power_well_deinit(dev_priv);
1626 
1627 	chv_set_pipe_power_well(dev_priv, power_well, false);
1628 }
1629 
1630 static void
1631 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1632 				 enum intel_display_power_domain domain)
1633 {
1634 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1635 	struct i915_power_well *power_well;
1636 	int i;
1637 
1638 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1639 		intel_power_well_get(dev_priv, power_well);
1640 
1641 	power_domains->domain_use_count[domain]++;
1642 }
1643 
1644 /**
1645  * intel_display_power_get - grab a power domain reference
1646  * @dev_priv: i915 device instance
1647  * @domain: power domain to reference
1648  *
1649  * This function grabs a power domain reference for @domain and ensures that the
1650  * power domain and all its parents are powered up. Therefore users should only
1651  * grab a reference to the innermost power domain they need.
1652  *
1653  * Any power domain reference obtained by this function must have a symmetric
1654  * call to intel_display_power_put() to release the reference again.
1655  */
1656 void intel_display_power_get(struct drm_i915_private *dev_priv,
1657 			     enum intel_display_power_domain domain)
1658 {
1659 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1660 
1661 	intel_runtime_pm_get(dev_priv);
1662 
1663 	mutex_lock(&power_domains->lock);
1664 
1665 	__intel_display_power_get_domain(dev_priv, domain);
1666 
1667 	mutex_unlock(&power_domains->lock);
1668 }
1669 
1670 /**
1671  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1672  * @dev_priv: i915 device instance
1673  * @domain: power domain to reference
1674  *
1675  * This function grabs a power domain reference for @domain and ensures that the
1676  * power domain and all its parents are powered up. Therefore users should only
1677  * grab a reference to the innermost power domain they need.
1678  *
1679  * Any power domain reference obtained by this function must have a symmetric
1680  * call to intel_display_power_put() to release the reference again.
1681  */
1682 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1683 					enum intel_display_power_domain domain)
1684 {
1685 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1686 	bool is_enabled;
1687 
1688 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1689 		return false;
1690 
1691 	mutex_lock(&power_domains->lock);
1692 
1693 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1694 		__intel_display_power_get_domain(dev_priv, domain);
1695 		is_enabled = true;
1696 	} else {
1697 		is_enabled = false;
1698 	}
1699 
1700 	mutex_unlock(&power_domains->lock);
1701 
1702 	if (!is_enabled)
1703 		intel_runtime_pm_put(dev_priv);
1704 
1705 	return is_enabled;
1706 }
1707 
1708 /**
1709  * intel_display_power_put - release a power domain reference
1710  * @dev_priv: i915 device instance
1711  * @domain: power domain to reference
1712  *
1713  * This function drops the power domain reference obtained by
1714  * intel_display_power_get() and might power down the corresponding hardware
1715  * block right away if this is the last reference.
1716  */
1717 void intel_display_power_put(struct drm_i915_private *dev_priv,
1718 			     enum intel_display_power_domain domain)
1719 {
1720 	struct i915_power_domains *power_domains;
1721 	struct i915_power_well *power_well;
1722 	int i;
1723 
1724 	power_domains = &dev_priv->power_domains;
1725 
1726 	mutex_lock(&power_domains->lock);
1727 
1728 	WARN(!power_domains->domain_use_count[domain],
1729 	     "Use count on domain %s is already zero\n",
1730 	     intel_display_power_domain_str(domain));
1731 	power_domains->domain_use_count[domain]--;
1732 
1733 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1734 		intel_power_well_put(dev_priv, power_well);
1735 
1736 	mutex_unlock(&power_domains->lock);
1737 
1738 	intel_runtime_pm_put(dev_priv);
1739 }
1740 
1741 #define HSW_DISPLAY_POWER_DOMAINS (			\
1742 	BIT(POWER_DOMAIN_PIPE_B) |			\
1743 	BIT(POWER_DOMAIN_PIPE_C) |			\
1744 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1745 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1746 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1747 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1748 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1749 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1750 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1751 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1752 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1753 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1754 	BIT(POWER_DOMAIN_VGA) |				\
1755 	BIT(POWER_DOMAIN_AUDIO) |			\
1756 	BIT(POWER_DOMAIN_INIT))
1757 
1758 #define BDW_DISPLAY_POWER_DOMAINS (			\
1759 	BIT(POWER_DOMAIN_PIPE_B) |			\
1760 	BIT(POWER_DOMAIN_PIPE_C) |			\
1761 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1762 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1763 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1764 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1765 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1766 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1767 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1768 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1769 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1770 	BIT(POWER_DOMAIN_VGA) |				\
1771 	BIT(POWER_DOMAIN_AUDIO) |			\
1772 	BIT(POWER_DOMAIN_INIT))
1773 
1774 #define VLV_DISPLAY_POWER_DOMAINS (		\
1775 	BIT(POWER_DOMAIN_PIPE_A) |		\
1776 	BIT(POWER_DOMAIN_PIPE_B) |		\
1777 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1778 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1779 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1780 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1781 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1782 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1783 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1784 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1785 	BIT(POWER_DOMAIN_VGA) |			\
1786 	BIT(POWER_DOMAIN_AUDIO) |		\
1787 	BIT(POWER_DOMAIN_AUX_B) |		\
1788 	BIT(POWER_DOMAIN_AUX_C) |		\
1789 	BIT(POWER_DOMAIN_GMBUS) |		\
1790 	BIT(POWER_DOMAIN_INIT))
1791 
1792 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1793 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1794 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1795 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1796 	BIT(POWER_DOMAIN_AUX_B) |		\
1797 	BIT(POWER_DOMAIN_AUX_C) |		\
1798 	BIT(POWER_DOMAIN_INIT))
1799 
1800 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1801 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1802 	BIT(POWER_DOMAIN_AUX_B) |		\
1803 	BIT(POWER_DOMAIN_INIT))
1804 
1805 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1806 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1807 	BIT(POWER_DOMAIN_AUX_B) |		\
1808 	BIT(POWER_DOMAIN_INIT))
1809 
1810 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1811 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1812 	BIT(POWER_DOMAIN_AUX_C) |		\
1813 	BIT(POWER_DOMAIN_INIT))
1814 
1815 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1816 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1817 	BIT(POWER_DOMAIN_AUX_C) |		\
1818 	BIT(POWER_DOMAIN_INIT))
1819 
1820 #define CHV_DISPLAY_POWER_DOMAINS (		\
1821 	BIT(POWER_DOMAIN_PIPE_A) |		\
1822 	BIT(POWER_DOMAIN_PIPE_B) |		\
1823 	BIT(POWER_DOMAIN_PIPE_C) |		\
1824 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1825 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1826 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1827 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1828 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1829 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1830 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1831 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1832 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1833 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1834 	BIT(POWER_DOMAIN_VGA) |			\
1835 	BIT(POWER_DOMAIN_AUDIO) |		\
1836 	BIT(POWER_DOMAIN_AUX_B) |		\
1837 	BIT(POWER_DOMAIN_AUX_C) |		\
1838 	BIT(POWER_DOMAIN_AUX_D) |		\
1839 	BIT(POWER_DOMAIN_GMBUS) |		\
1840 	BIT(POWER_DOMAIN_INIT))
1841 
1842 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1843 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1844 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1845 	BIT(POWER_DOMAIN_AUX_B) |		\
1846 	BIT(POWER_DOMAIN_AUX_C) |		\
1847 	BIT(POWER_DOMAIN_INIT))
1848 
1849 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1850 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1851 	BIT(POWER_DOMAIN_AUX_D) |		\
1852 	BIT(POWER_DOMAIN_INIT))
1853 
1854 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1855 	.sync_hw = i9xx_always_on_power_well_noop,
1856 	.enable = i9xx_always_on_power_well_noop,
1857 	.disable = i9xx_always_on_power_well_noop,
1858 	.is_enabled = i9xx_always_on_power_well_enabled,
1859 };
1860 
1861 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1862 	.sync_hw = chv_pipe_power_well_sync_hw,
1863 	.enable = chv_pipe_power_well_enable,
1864 	.disable = chv_pipe_power_well_disable,
1865 	.is_enabled = chv_pipe_power_well_enabled,
1866 };
1867 
1868 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1869 	.sync_hw = vlv_power_well_sync_hw,
1870 	.enable = chv_dpio_cmn_power_well_enable,
1871 	.disable = chv_dpio_cmn_power_well_disable,
1872 	.is_enabled = vlv_power_well_enabled,
1873 };
1874 
1875 static struct i915_power_well i9xx_always_on_power_well[] = {
1876 	{
1877 		.name = "always-on",
1878 		.always_on = 1,
1879 		.domains = POWER_DOMAIN_MASK,
1880 		.ops = &i9xx_always_on_power_well_ops,
1881 	},
1882 };
1883 
1884 static const struct i915_power_well_ops hsw_power_well_ops = {
1885 	.sync_hw = hsw_power_well_sync_hw,
1886 	.enable = hsw_power_well_enable,
1887 	.disable = hsw_power_well_disable,
1888 	.is_enabled = hsw_power_well_enabled,
1889 };
1890 
1891 static const struct i915_power_well_ops skl_power_well_ops = {
1892 	.sync_hw = skl_power_well_sync_hw,
1893 	.enable = skl_power_well_enable,
1894 	.disable = skl_power_well_disable,
1895 	.is_enabled = skl_power_well_enabled,
1896 };
1897 
1898 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1899 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1900 	.enable = gen9_dc_off_power_well_enable,
1901 	.disable = gen9_dc_off_power_well_disable,
1902 	.is_enabled = gen9_dc_off_power_well_enabled,
1903 };
1904 
1905 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1906 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1907 	.enable = bxt_dpio_cmn_power_well_enable,
1908 	.disable = bxt_dpio_cmn_power_well_disable,
1909 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1910 };
1911 
1912 static struct i915_power_well hsw_power_wells[] = {
1913 	{
1914 		.name = "always-on",
1915 		.always_on = 1,
1916 		.domains = POWER_DOMAIN_MASK,
1917 		.ops = &i9xx_always_on_power_well_ops,
1918 	},
1919 	{
1920 		.name = "display",
1921 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1922 		.ops = &hsw_power_well_ops,
1923 	},
1924 };
1925 
1926 static struct i915_power_well bdw_power_wells[] = {
1927 	{
1928 		.name = "always-on",
1929 		.always_on = 1,
1930 		.domains = POWER_DOMAIN_MASK,
1931 		.ops = &i9xx_always_on_power_well_ops,
1932 	},
1933 	{
1934 		.name = "display",
1935 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1936 		.ops = &hsw_power_well_ops,
1937 	},
1938 };
1939 
1940 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1941 	.sync_hw = vlv_power_well_sync_hw,
1942 	.enable = vlv_display_power_well_enable,
1943 	.disable = vlv_display_power_well_disable,
1944 	.is_enabled = vlv_power_well_enabled,
1945 };
1946 
1947 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1948 	.sync_hw = vlv_power_well_sync_hw,
1949 	.enable = vlv_dpio_cmn_power_well_enable,
1950 	.disable = vlv_dpio_cmn_power_well_disable,
1951 	.is_enabled = vlv_power_well_enabled,
1952 };
1953 
1954 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1955 	.sync_hw = vlv_power_well_sync_hw,
1956 	.enable = vlv_power_well_enable,
1957 	.disable = vlv_power_well_disable,
1958 	.is_enabled = vlv_power_well_enabled,
1959 };
1960 
1961 static struct i915_power_well vlv_power_wells[] = {
1962 	{
1963 		.name = "always-on",
1964 		.always_on = 1,
1965 		.domains = POWER_DOMAIN_MASK,
1966 		.ops = &i9xx_always_on_power_well_ops,
1967 		.id = PUNIT_POWER_WELL_ALWAYS_ON,
1968 	},
1969 	{
1970 		.name = "display",
1971 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1972 		.id = PUNIT_POWER_WELL_DISP2D,
1973 		.ops = &vlv_display_power_well_ops,
1974 	},
1975 	{
1976 		.name = "dpio-tx-b-01",
1977 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1978 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1979 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1980 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1981 		.ops = &vlv_dpio_power_well_ops,
1982 		.id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1983 	},
1984 	{
1985 		.name = "dpio-tx-b-23",
1986 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1987 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1988 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1989 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1990 		.ops = &vlv_dpio_power_well_ops,
1991 		.id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1992 	},
1993 	{
1994 		.name = "dpio-tx-c-01",
1995 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1996 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1997 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1998 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1999 		.ops = &vlv_dpio_power_well_ops,
2000 		.id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2001 	},
2002 	{
2003 		.name = "dpio-tx-c-23",
2004 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2005 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2006 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2007 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2008 		.ops = &vlv_dpio_power_well_ops,
2009 		.id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2010 	},
2011 	{
2012 		.name = "dpio-common",
2013 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2014 		.id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2015 		.ops = &vlv_dpio_cmn_power_well_ops,
2016 	},
2017 };
2018 
2019 static struct i915_power_well chv_power_wells[] = {
2020 	{
2021 		.name = "always-on",
2022 		.always_on = 1,
2023 		.domains = POWER_DOMAIN_MASK,
2024 		.ops = &i9xx_always_on_power_well_ops,
2025 	},
2026 	{
2027 		.name = "display",
2028 		/*
2029 		 * Pipe A power well is the new disp2d well. Pipe B and C
2030 		 * power wells don't actually exist. Pipe A power well is
2031 		 * required for any pipe to work.
2032 		 */
2033 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2034 		.id = PIPE_A,
2035 		.ops = &chv_pipe_power_well_ops,
2036 	},
2037 	{
2038 		.name = "dpio-common-bc",
2039 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2040 		.id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2041 		.ops = &chv_dpio_cmn_power_well_ops,
2042 	},
2043 	{
2044 		.name = "dpio-common-d",
2045 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2046 		.id = PUNIT_POWER_WELL_DPIO_CMN_D,
2047 		.ops = &chv_dpio_cmn_power_well_ops,
2048 	},
2049 };
2050 
2051 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2052 				    int power_well_id)
2053 {
2054 	struct i915_power_well *power_well;
2055 	bool ret;
2056 
2057 	power_well = lookup_power_well(dev_priv, power_well_id);
2058 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2059 
2060 	return ret;
2061 }
2062 
2063 static struct i915_power_well skl_power_wells[] = {
2064 	{
2065 		.name = "always-on",
2066 		.always_on = 1,
2067 		.domains = POWER_DOMAIN_MASK,
2068 		.ops = &i9xx_always_on_power_well_ops,
2069 		.id = SKL_DISP_PW_ALWAYS_ON,
2070 	},
2071 	{
2072 		.name = "power well 1",
2073 		/* Handled by the DMC firmware */
2074 		.domains = 0,
2075 		.ops = &skl_power_well_ops,
2076 		.id = SKL_DISP_PW_1,
2077 	},
2078 	{
2079 		.name = "MISC IO power well",
2080 		/* Handled by the DMC firmware */
2081 		.domains = 0,
2082 		.ops = &skl_power_well_ops,
2083 		.id = SKL_DISP_PW_MISC_IO,
2084 	},
2085 	{
2086 		.name = "DC off",
2087 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2088 		.ops = &gen9_dc_off_power_well_ops,
2089 		.id = SKL_DISP_PW_DC_OFF,
2090 	},
2091 	{
2092 		.name = "power well 2",
2093 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2094 		.ops = &skl_power_well_ops,
2095 		.id = SKL_DISP_PW_2,
2096 	},
2097 	{
2098 		.name = "DDI A/E power well",
2099 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2100 		.ops = &skl_power_well_ops,
2101 		.id = SKL_DISP_PW_DDI_A_E,
2102 	},
2103 	{
2104 		.name = "DDI B power well",
2105 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2106 		.ops = &skl_power_well_ops,
2107 		.id = SKL_DISP_PW_DDI_B,
2108 	},
2109 	{
2110 		.name = "DDI C power well",
2111 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2112 		.ops = &skl_power_well_ops,
2113 		.id = SKL_DISP_PW_DDI_C,
2114 	},
2115 	{
2116 		.name = "DDI D power well",
2117 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2118 		.ops = &skl_power_well_ops,
2119 		.id = SKL_DISP_PW_DDI_D,
2120 	},
2121 };
2122 
2123 static struct i915_power_well bxt_power_wells[] = {
2124 	{
2125 		.name = "always-on",
2126 		.always_on = 1,
2127 		.domains = POWER_DOMAIN_MASK,
2128 		.ops = &i9xx_always_on_power_well_ops,
2129 	},
2130 	{
2131 		.name = "power well 1",
2132 		.domains = 0,
2133 		.ops = &skl_power_well_ops,
2134 		.id = SKL_DISP_PW_1,
2135 	},
2136 	{
2137 		.name = "DC off",
2138 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2139 		.ops = &gen9_dc_off_power_well_ops,
2140 		.id = SKL_DISP_PW_DC_OFF,
2141 	},
2142 	{
2143 		.name = "power well 2",
2144 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2145 		.ops = &skl_power_well_ops,
2146 		.id = SKL_DISP_PW_2,
2147 	},
2148 	{
2149 		.name = "dpio-common-a",
2150 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2151 		.ops = &bxt_dpio_cmn_power_well_ops,
2152 		.id = BXT_DPIO_CMN_A,
2153 		.data = DPIO_PHY1,
2154 	},
2155 	{
2156 		.name = "dpio-common-bc",
2157 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2158 		.ops = &bxt_dpio_cmn_power_well_ops,
2159 		.id = BXT_DPIO_CMN_BC,
2160 		.data = DPIO_PHY0,
2161 	},
2162 };
2163 
2164 static int
2165 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2166 				   int disable_power_well)
2167 {
2168 	if (disable_power_well >= 0)
2169 		return !!disable_power_well;
2170 
2171 	return 1;
2172 }
2173 
2174 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2175 				    int enable_dc)
2176 {
2177 	uint32_t mask;
2178 	int requested_dc;
2179 	int max_dc;
2180 
2181 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2182 		max_dc = 2;
2183 		mask = 0;
2184 	} else if (IS_BROXTON(dev_priv)) {
2185 		max_dc = 1;
2186 		/*
2187 		 * DC9 has a separate HW flow from the rest of the DC states,
2188 		 * not depending on the DMC firmware. It's needed by system
2189 		 * suspend/resume, so allow it unconditionally.
2190 		 */
2191 		mask = DC_STATE_EN_DC9;
2192 	} else {
2193 		max_dc = 0;
2194 		mask = 0;
2195 	}
2196 
2197 	if (!i915.disable_power_well)
2198 		max_dc = 0;
2199 
2200 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2201 		requested_dc = enable_dc;
2202 	} else if (enable_dc == -1) {
2203 		requested_dc = max_dc;
2204 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2205 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2206 			      enable_dc, max_dc);
2207 		requested_dc = max_dc;
2208 	} else {
2209 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2210 		requested_dc = max_dc;
2211 	}
2212 
2213 	if (requested_dc > 1)
2214 		mask |= DC_STATE_EN_UPTO_DC6;
2215 	if (requested_dc > 0)
2216 		mask |= DC_STATE_EN_UPTO_DC5;
2217 
2218 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2219 
2220 	return mask;
2221 }
2222 
2223 #define set_power_wells(power_domains, __power_wells) ({		\
2224 	(power_domains)->power_wells = (__power_wells);			\
2225 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2226 })
2227 
2228 /**
2229  * intel_power_domains_init - initializes the power domain structures
2230  * @dev_priv: i915 device instance
2231  *
2232  * Initializes the power domain structures for @dev_priv depending upon the
2233  * supported platform.
2234  */
2235 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2236 {
2237 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2238 
2239 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2240 						     i915.disable_power_well);
2241 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2242 							    i915.enable_dc);
2243 
2244 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2245 
2246 	mutex_init(&power_domains->lock);
2247 
2248 	/*
2249 	 * The enabling order will be from lower to higher indexed wells,
2250 	 * the disabling order is reversed.
2251 	 */
2252 	if (IS_HASWELL(dev_priv)) {
2253 		set_power_wells(power_domains, hsw_power_wells);
2254 	} else if (IS_BROADWELL(dev_priv)) {
2255 		set_power_wells(power_domains, bdw_power_wells);
2256 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2257 		set_power_wells(power_domains, skl_power_wells);
2258 	} else if (IS_BROXTON(dev_priv)) {
2259 		set_power_wells(power_domains, bxt_power_wells);
2260 	} else if (IS_CHERRYVIEW(dev_priv)) {
2261 		set_power_wells(power_domains, chv_power_wells);
2262 	} else if (IS_VALLEYVIEW(dev_priv)) {
2263 		set_power_wells(power_domains, vlv_power_wells);
2264 	} else {
2265 		set_power_wells(power_domains, i9xx_always_on_power_well);
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  * intel_power_domains_fini - finalizes the power domain structures
2273  * @dev_priv: i915 device instance
2274  *
2275  * Finalizes the power domain structures for @dev_priv depending upon the
2276  * supported platform. This function also disables runtime pm and ensures that
2277  * the device stays powered up so that the driver can be reloaded.
2278  */
2279 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2280 {
2281 	struct device *kdev = &dev_priv->drm.pdev->dev;
2282 
2283 	/*
2284 	 * The i915.ko module is still not prepared to be loaded when
2285 	 * the power well is not enabled, so just enable it in case
2286 	 * we're going to unload/reload.
2287 	 * The following also reacquires the RPM reference the core passed
2288 	 * to the driver during loading, which is dropped in
2289 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2290 	 * device to the core with this reference held.
2291 	 */
2292 	intel_display_set_init_power(dev_priv, true);
2293 
2294 	/* Remove the refcount we took to keep power well support disabled. */
2295 	if (!i915.disable_power_well)
2296 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2297 
2298 	/*
2299 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2300 	 * the platform doesn't support runtime PM.
2301 	 */
2302 	if (!HAS_RUNTIME_PM(dev_priv))
2303 		pm_runtime_put(kdev);
2304 }
2305 
2306 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2307 {
2308 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2309 	struct i915_power_well *power_well;
2310 	int i;
2311 
2312 	mutex_lock(&power_domains->lock);
2313 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2314 		power_well->ops->sync_hw(dev_priv, power_well);
2315 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2316 								     power_well);
2317 	}
2318 	mutex_unlock(&power_domains->lock);
2319 }
2320 
2321 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2322 {
2323 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2324 	POSTING_READ(DBUF_CTL);
2325 
2326 	udelay(10);
2327 
2328 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2329 		DRM_ERROR("DBuf power enable timeout\n");
2330 }
2331 
2332 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2333 {
2334 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2335 	POSTING_READ(DBUF_CTL);
2336 
2337 	udelay(10);
2338 
2339 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2340 		DRM_ERROR("DBuf power disable timeout!\n");
2341 }
2342 
2343 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2344 				   bool resume)
2345 {
2346 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2347 	struct i915_power_well *well;
2348 	uint32_t val;
2349 
2350 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2351 
2352 	/* enable PCH reset handshake */
2353 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2354 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2355 
2356 	/* enable PG1 and Misc I/O */
2357 	mutex_lock(&power_domains->lock);
2358 
2359 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2360 	intel_power_well_enable(dev_priv, well);
2361 
2362 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2363 	intel_power_well_enable(dev_priv, well);
2364 
2365 	mutex_unlock(&power_domains->lock);
2366 
2367 	skl_init_cdclk(dev_priv);
2368 
2369 	gen9_dbuf_enable(dev_priv);
2370 
2371 	if (resume && dev_priv->csr.dmc_payload)
2372 		intel_csr_load_program(dev_priv);
2373 }
2374 
2375 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2376 {
2377 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2378 	struct i915_power_well *well;
2379 
2380 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2381 
2382 	gen9_dbuf_disable(dev_priv);
2383 
2384 	skl_uninit_cdclk(dev_priv);
2385 
2386 	/* The spec doesn't call for removing the reset handshake flag */
2387 	/* disable PG1 and Misc I/O */
2388 
2389 	mutex_lock(&power_domains->lock);
2390 
2391 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2392 	intel_power_well_disable(dev_priv, well);
2393 
2394 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2395 	intel_power_well_disable(dev_priv, well);
2396 
2397 	mutex_unlock(&power_domains->lock);
2398 }
2399 
2400 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2401 			   bool resume)
2402 {
2403 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2404 	struct i915_power_well *well;
2405 	uint32_t val;
2406 
2407 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2408 
2409 	/*
2410 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2411 	 * or else the reset will hang because there is no PCH to respond.
2412 	 * Move the handshake programming to initialization sequence.
2413 	 * Previously was left up to BIOS.
2414 	 */
2415 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2416 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2417 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2418 
2419 	/* Enable PG1 */
2420 	mutex_lock(&power_domains->lock);
2421 
2422 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2423 	intel_power_well_enable(dev_priv, well);
2424 
2425 	mutex_unlock(&power_domains->lock);
2426 
2427 	bxt_init_cdclk(dev_priv);
2428 
2429 	gen9_dbuf_enable(dev_priv);
2430 
2431 	if (resume && dev_priv->csr.dmc_payload)
2432 		intel_csr_load_program(dev_priv);
2433 }
2434 
2435 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2436 {
2437 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2438 	struct i915_power_well *well;
2439 
2440 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2441 
2442 	gen9_dbuf_disable(dev_priv);
2443 
2444 	bxt_uninit_cdclk(dev_priv);
2445 
2446 	/* The spec doesn't call for removing the reset handshake flag */
2447 
2448 	/* Disable PG1 */
2449 	mutex_lock(&power_domains->lock);
2450 
2451 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2452 	intel_power_well_disable(dev_priv, well);
2453 
2454 	mutex_unlock(&power_domains->lock);
2455 }
2456 
2457 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2458 {
2459 	struct i915_power_well *cmn_bc =
2460 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2461 	struct i915_power_well *cmn_d =
2462 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2463 
2464 	/*
2465 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2466 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2467 	 * instead maintain a shadow copy ourselves. Use the actual
2468 	 * power well state and lane status to reconstruct the
2469 	 * expected initial value.
2470 	 */
2471 	dev_priv->chv_phy_control =
2472 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2473 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2474 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2475 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2476 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2477 
2478 	/*
2479 	 * If all lanes are disabled we leave the override disabled
2480 	 * with all power down bits cleared to match the state we
2481 	 * would use after disabling the port. Otherwise enable the
2482 	 * override and set the lane powerdown bits accding to the
2483 	 * current lane status.
2484 	 */
2485 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2486 		uint32_t status = I915_READ(DPLL(PIPE_A));
2487 		unsigned int mask;
2488 
2489 		mask = status & DPLL_PORTB_READY_MASK;
2490 		if (mask == 0xf)
2491 			mask = 0x0;
2492 		else
2493 			dev_priv->chv_phy_control |=
2494 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2495 
2496 		dev_priv->chv_phy_control |=
2497 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2498 
2499 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2500 		if (mask == 0xf)
2501 			mask = 0x0;
2502 		else
2503 			dev_priv->chv_phy_control |=
2504 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2505 
2506 		dev_priv->chv_phy_control |=
2507 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2508 
2509 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2510 
2511 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2512 	} else {
2513 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2514 	}
2515 
2516 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2517 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2518 		unsigned int mask;
2519 
2520 		mask = status & DPLL_PORTD_READY_MASK;
2521 
2522 		if (mask == 0xf)
2523 			mask = 0x0;
2524 		else
2525 			dev_priv->chv_phy_control |=
2526 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2527 
2528 		dev_priv->chv_phy_control |=
2529 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2530 
2531 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2532 
2533 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2534 	} else {
2535 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2536 	}
2537 
2538 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2539 
2540 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2541 		      dev_priv->chv_phy_control);
2542 }
2543 
2544 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2545 {
2546 	struct i915_power_well *cmn =
2547 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2548 	struct i915_power_well *disp2d =
2549 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2550 
2551 	/* If the display might be already active skip this */
2552 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2553 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2554 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2555 		return;
2556 
2557 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2558 
2559 	/* cmnlane needs DPLL registers */
2560 	disp2d->ops->enable(dev_priv, disp2d);
2561 
2562 	/*
2563 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2564 	 * Need to assert and de-assert PHY SB reset by gating the
2565 	 * common lane power, then un-gating it.
2566 	 * Simply ungating isn't enough to reset the PHY enough to get
2567 	 * ports and lanes running.
2568 	 */
2569 	cmn->ops->disable(dev_priv, cmn);
2570 }
2571 
2572 /**
2573  * intel_power_domains_init_hw - initialize hardware power domain state
2574  * @dev_priv: i915 device instance
2575  * @resume: Called from resume code paths or not
2576  *
2577  * This function initializes the hardware power domain state and enables all
2578  * power domains using intel_display_set_init_power().
2579  */
2580 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2581 {
2582 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2583 
2584 	power_domains->initializing = true;
2585 
2586 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2587 		skl_display_core_init(dev_priv, resume);
2588 	} else if (IS_BROXTON(dev_priv)) {
2589 		bxt_display_core_init(dev_priv, resume);
2590 	} else if (IS_CHERRYVIEW(dev_priv)) {
2591 		mutex_lock(&power_domains->lock);
2592 		chv_phy_control_init(dev_priv);
2593 		mutex_unlock(&power_domains->lock);
2594 	} else if (IS_VALLEYVIEW(dev_priv)) {
2595 		mutex_lock(&power_domains->lock);
2596 		vlv_cmnlane_wa(dev_priv);
2597 		mutex_unlock(&power_domains->lock);
2598 	}
2599 
2600 	/* For now, we need the power well to be always enabled. */
2601 	intel_display_set_init_power(dev_priv, true);
2602 	/* Disable power support if the user asked so. */
2603 	if (!i915.disable_power_well)
2604 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2605 	intel_power_domains_sync_hw(dev_priv);
2606 	power_domains->initializing = false;
2607 }
2608 
2609 /**
2610  * intel_power_domains_suspend - suspend power domain state
2611  * @dev_priv: i915 device instance
2612  *
2613  * This function prepares the hardware power domain state before entering
2614  * system suspend. It must be paired with intel_power_domains_init_hw().
2615  */
2616 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2617 {
2618 	/*
2619 	 * Even if power well support was disabled we still want to disable
2620 	 * power wells while we are system suspended.
2621 	 */
2622 	if (!i915.disable_power_well)
2623 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2624 
2625 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2626 		skl_display_core_uninit(dev_priv);
2627 	else if (IS_BROXTON(dev_priv))
2628 		bxt_display_core_uninit(dev_priv);
2629 }
2630 
2631 /**
2632  * intel_runtime_pm_get - grab a runtime pm reference
2633  * @dev_priv: i915 device instance
2634  *
2635  * This function grabs a device-level runtime pm reference (mostly used for GEM
2636  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2637  *
2638  * Any runtime pm reference obtained by this function must have a symmetric
2639  * call to intel_runtime_pm_put() to release the reference again.
2640  */
2641 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2642 {
2643 	struct pci_dev *pdev = dev_priv->drm.pdev;
2644 	struct device *kdev = &pdev->dev;
2645 
2646 	pm_runtime_get_sync(kdev);
2647 
2648 	atomic_inc(&dev_priv->pm.wakeref_count);
2649 	assert_rpm_wakelock_held(dev_priv);
2650 }
2651 
2652 /**
2653  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2654  * @dev_priv: i915 device instance
2655  *
2656  * This function grabs a device-level runtime pm reference if the device is
2657  * already in use and ensures that it is powered up.
2658  *
2659  * Any runtime pm reference obtained by this function must have a symmetric
2660  * call to intel_runtime_pm_put() to release the reference again.
2661  */
2662 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2663 {
2664 	struct pci_dev *pdev = dev_priv->drm.pdev;
2665 	struct device *kdev = &pdev->dev;
2666 
2667 	if (IS_ENABLED(CONFIG_PM)) {
2668 		int ret = pm_runtime_get_if_in_use(kdev);
2669 
2670 		/*
2671 		 * In cases runtime PM is disabled by the RPM core and we get
2672 		 * an -EINVAL return value we are not supposed to call this
2673 		 * function, since the power state is undefined. This applies
2674 		 * atm to the late/early system suspend/resume handlers.
2675 		 */
2676 		WARN_ON_ONCE(ret < 0);
2677 		if (ret <= 0)
2678 			return false;
2679 	}
2680 
2681 	atomic_inc(&dev_priv->pm.wakeref_count);
2682 	assert_rpm_wakelock_held(dev_priv);
2683 
2684 	return true;
2685 }
2686 
2687 /**
2688  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2689  * @dev_priv: i915 device instance
2690  *
2691  * This function grabs a device-level runtime pm reference (mostly used for GEM
2692  * code to ensure the GTT or GT is on).
2693  *
2694  * It will _not_ power up the device but instead only check that it's powered
2695  * on.  Therefore it is only valid to call this functions from contexts where
2696  * the device is known to be powered up and where trying to power it up would
2697  * result in hilarity and deadlocks. That pretty much means only the system
2698  * suspend/resume code where this is used to grab runtime pm references for
2699  * delayed setup down in work items.
2700  *
2701  * Any runtime pm reference obtained by this function must have a symmetric
2702  * call to intel_runtime_pm_put() to release the reference again.
2703  */
2704 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2705 {
2706 	struct pci_dev *pdev = dev_priv->drm.pdev;
2707 	struct device *kdev = &pdev->dev;
2708 
2709 	assert_rpm_wakelock_held(dev_priv);
2710 	pm_runtime_get_noresume(kdev);
2711 
2712 	atomic_inc(&dev_priv->pm.wakeref_count);
2713 }
2714 
2715 /**
2716  * intel_runtime_pm_put - release a runtime pm reference
2717  * @dev_priv: i915 device instance
2718  *
2719  * This function drops the device-level runtime pm reference obtained by
2720  * intel_runtime_pm_get() and might power down the corresponding
2721  * hardware block right away if this is the last reference.
2722  */
2723 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2724 {
2725 	struct pci_dev *pdev = dev_priv->drm.pdev;
2726 	struct device *kdev = &pdev->dev;
2727 
2728 	assert_rpm_wakelock_held(dev_priv);
2729 	atomic_dec(&dev_priv->pm.wakeref_count);
2730 
2731 	pm_runtime_mark_last_busy(kdev);
2732 	pm_runtime_put_autosuspend(kdev);
2733 }
2734 
2735 /**
2736  * intel_runtime_pm_enable - enable runtime pm
2737  * @dev_priv: i915 device instance
2738  *
2739  * This function enables runtime pm at the end of the driver load sequence.
2740  *
2741  * Note that this function does currently not enable runtime pm for the
2742  * subordinate display power domains. That is only done on the first modeset
2743  * using intel_display_set_init_power().
2744  */
2745 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2746 {
2747 	struct pci_dev *pdev = dev_priv->drm.pdev;
2748 	struct device *kdev = &pdev->dev;
2749 
2750 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2751 	pm_runtime_mark_last_busy(kdev);
2752 
2753 	/*
2754 	 * Take a permanent reference to disable the RPM functionality and drop
2755 	 * it only when unloading the driver. Use the low level get/put helpers,
2756 	 * so the driver's own RPM reference tracking asserts also work on
2757 	 * platforms without RPM support.
2758 	 */
2759 	if (!HAS_RUNTIME_PM(dev_priv)) {
2760 		pm_runtime_dont_use_autosuspend(kdev);
2761 		pm_runtime_get_sync(kdev);
2762 	} else {
2763 		pm_runtime_use_autosuspend(kdev);
2764 	}
2765 
2766 	/*
2767 	 * The core calls the driver load handler with an RPM reference held.
2768 	 * We drop that here and will reacquire it during unloading in
2769 	 * intel_power_domains_fini().
2770 	 */
2771 	pm_runtime_put_autosuspend(kdev);
2772 }
2773