1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct pci_dev *pdev = dev_priv->drm.pdev;
291 	struct drm_device *dev = &dev_priv->drm;
292 
293 	/*
294 	 * After we re-enable the power well, if we touch VGA register 0x3d5
295 	 * we'll get unclaimed register interrupts. This stops after we write
296 	 * anything to the VGA MSR register. The vgacon module uses this
297 	 * register all the time, so if we unbind our driver and, as a
298 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
299 	 * console_unlock(). So make here we touch the VGA MSR register, making
300 	 * sure vgacon can keep working normally without triggering interrupts
301 	 * and error messages.
302 	 */
303 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
304 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
306 
307 	if (IS_BROADWELL(dev))
308 		gen8_irq_power_well_post_enable(dev_priv,
309 						1 << PIPE_C | 1 << PIPE_B);
310 }
311 
312 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
313 {
314 	if (IS_BROADWELL(dev_priv))
315 		gen8_irq_power_well_pre_disable(dev_priv,
316 						1 << PIPE_C | 1 << PIPE_B);
317 }
318 
319 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
320 				       struct i915_power_well *power_well)
321 {
322 	struct pci_dev *pdev = dev_priv->drm.pdev;
323 
324 	/*
325 	 * After we re-enable the power well, if we touch VGA register 0x3d5
326 	 * we'll get unclaimed register interrupts. This stops after we write
327 	 * anything to the VGA MSR register. The vgacon module uses this
328 	 * register all the time, so if we unbind our driver and, as a
329 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
330 	 * console_unlock(). So make here we touch the VGA MSR register, making
331 	 * sure vgacon can keep working normally without triggering interrupts
332 	 * and error messages.
333 	 */
334 	if (power_well->data == SKL_DISP_PW_2) {
335 		vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
336 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
337 		vga_put(pdev, VGA_RSRC_LEGACY_IO);
338 
339 		gen8_irq_power_well_post_enable(dev_priv,
340 						1 << PIPE_C | 1 << PIPE_B);
341 	}
342 }
343 
344 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
345 				       struct i915_power_well *power_well)
346 {
347 	if (power_well->data == SKL_DISP_PW_2)
348 		gen8_irq_power_well_pre_disable(dev_priv,
349 						1 << PIPE_C | 1 << PIPE_B);
350 }
351 
352 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
353 			       struct i915_power_well *power_well, bool enable)
354 {
355 	bool is_enabled, enable_requested;
356 	uint32_t tmp;
357 
358 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
359 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
360 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
361 
362 	if (enable) {
363 		if (!enable_requested)
364 			I915_WRITE(HSW_PWR_WELL_DRIVER,
365 				   HSW_PWR_WELL_ENABLE_REQUEST);
366 
367 		if (!is_enabled) {
368 			DRM_DEBUG_KMS("Enabling power well\n");
369 			if (intel_wait_for_register(dev_priv,
370 						    HSW_PWR_WELL_DRIVER,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    HSW_PWR_WELL_STATE_ENABLED,
373 						    20))
374 				DRM_ERROR("Timeout enabling power well\n");
375 			hsw_power_well_post_enable(dev_priv);
376 		}
377 
378 	} else {
379 		if (enable_requested) {
380 			hsw_power_well_pre_disable(dev_priv);
381 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
382 			POSTING_READ(HSW_PWR_WELL_DRIVER);
383 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
384 		}
385 	}
386 }
387 
388 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
389 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
390 	BIT(POWER_DOMAIN_PIPE_B) |			\
391 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
392 	BIT(POWER_DOMAIN_PIPE_C) |			\
393 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
394 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
399 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
400 	BIT(POWER_DOMAIN_AUX_B) |                       \
401 	BIT(POWER_DOMAIN_AUX_C) |			\
402 	BIT(POWER_DOMAIN_AUX_D) |			\
403 	BIT(POWER_DOMAIN_AUDIO) |			\
404 	BIT(POWER_DOMAIN_VGA) |				\
405 	BIT(POWER_DOMAIN_INIT))
406 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
407 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
408 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
409 	BIT(POWER_DOMAIN_INIT))
410 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
411 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
412 	BIT(POWER_DOMAIN_INIT))
413 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
414 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
415 	BIT(POWER_DOMAIN_INIT))
416 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
417 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
418 	BIT(POWER_DOMAIN_INIT))
419 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
420 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
421 	BIT(POWER_DOMAIN_MODESET) |			\
422 	BIT(POWER_DOMAIN_AUX_A) |			\
423 	BIT(POWER_DOMAIN_INIT))
424 
425 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
426 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
427 	BIT(POWER_DOMAIN_PIPE_B) |			\
428 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
429 	BIT(POWER_DOMAIN_PIPE_C) |			\
430 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
431 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
434 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
435 	BIT(POWER_DOMAIN_AUX_B) |			\
436 	BIT(POWER_DOMAIN_AUX_C) |			\
437 	BIT(POWER_DOMAIN_AUDIO) |			\
438 	BIT(POWER_DOMAIN_VGA) |				\
439 	BIT(POWER_DOMAIN_GMBUS) |			\
440 	BIT(POWER_DOMAIN_INIT))
441 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
442 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
443 	BIT(POWER_DOMAIN_MODESET) |			\
444 	BIT(POWER_DOMAIN_AUX_A) |			\
445 	BIT(POWER_DOMAIN_INIT))
446 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
447 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
448 	BIT(POWER_DOMAIN_AUX_A) |			\
449 	BIT(POWER_DOMAIN_INIT))
450 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
451 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
452 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
453 	BIT(POWER_DOMAIN_AUX_B) |			\
454 	BIT(POWER_DOMAIN_AUX_C) |			\
455 	BIT(POWER_DOMAIN_INIT))
456 
457 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
458 {
459 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
460 		  "DC9 already programmed to be enabled.\n");
461 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
462 		  "DC5 still not disabled to enable DC9.\n");
463 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
464 	WARN_ONCE(intel_irqs_enabled(dev_priv),
465 		  "Interrupts not disabled yet.\n");
466 
467 	 /*
468 	  * TODO: check for the following to verify the conditions to enter DC9
469 	  * state are satisfied:
470 	  * 1] Check relevant display engine registers to verify if mode set
471 	  * disable sequence was followed.
472 	  * 2] Check if display uninitialize sequence is initialized.
473 	  */
474 }
475 
476 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
477 {
478 	WARN_ONCE(intel_irqs_enabled(dev_priv),
479 		  "Interrupts not disabled yet.\n");
480 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
481 		  "DC5 still not disabled.\n");
482 
483 	 /*
484 	  * TODO: check for the following to verify DC9 state was indeed
485 	  * entered before programming to disable it:
486 	  * 1] Check relevant display engine registers to verify if mode
487 	  *  set disable sequence was followed.
488 	  * 2] Check if display uninitialize sequence is initialized.
489 	  */
490 }
491 
492 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
493 				u32 state)
494 {
495 	int rewrites = 0;
496 	int rereads = 0;
497 	u32 v;
498 
499 	I915_WRITE(DC_STATE_EN, state);
500 
501 	/* It has been observed that disabling the dc6 state sometimes
502 	 * doesn't stick and dmc keeps returning old value. Make sure
503 	 * the write really sticks enough times and also force rewrite until
504 	 * we are confident that state is exactly what we want.
505 	 */
506 	do  {
507 		v = I915_READ(DC_STATE_EN);
508 
509 		if (v != state) {
510 			I915_WRITE(DC_STATE_EN, state);
511 			rewrites++;
512 			rereads = 0;
513 		} else if (rereads++ > 5) {
514 			break;
515 		}
516 
517 	} while (rewrites < 100);
518 
519 	if (v != state)
520 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
521 			  state, v);
522 
523 	/* Most of the times we need one retry, avoid spam */
524 	if (rewrites > 1)
525 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
526 			      state, rewrites);
527 }
528 
529 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
530 {
531 	u32 mask;
532 
533 	mask = DC_STATE_EN_UPTO_DC5;
534 	if (IS_BROXTON(dev_priv))
535 		mask |= DC_STATE_EN_DC9;
536 	else
537 		mask |= DC_STATE_EN_UPTO_DC6;
538 
539 	return mask;
540 }
541 
542 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
543 {
544 	u32 val;
545 
546 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
547 
548 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
549 		      dev_priv->csr.dc_state, val);
550 	dev_priv->csr.dc_state = val;
551 }
552 
553 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
554 {
555 	uint32_t val;
556 	uint32_t mask;
557 
558 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
559 		state &= dev_priv->csr.allowed_dc_mask;
560 
561 	val = I915_READ(DC_STATE_EN);
562 	mask = gen9_dc_mask(dev_priv);
563 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
564 		      val & mask, state);
565 
566 	/* Check if DMC is ignoring our DC state requests */
567 	if ((val & mask) != dev_priv->csr.dc_state)
568 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
569 			  dev_priv->csr.dc_state, val & mask);
570 
571 	val &= ~mask;
572 	val |= state;
573 
574 	gen9_write_dc_state(dev_priv, val);
575 
576 	dev_priv->csr.dc_state = val & mask;
577 }
578 
579 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
580 {
581 	assert_can_enable_dc9(dev_priv);
582 
583 	DRM_DEBUG_KMS("Enabling DC9\n");
584 
585 	intel_power_sequencer_reset(dev_priv);
586 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
587 }
588 
589 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
590 {
591 	assert_can_disable_dc9(dev_priv);
592 
593 	DRM_DEBUG_KMS("Disabling DC9\n");
594 
595 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
596 
597 	intel_pps_unlock_regs_wa(dev_priv);
598 }
599 
600 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
601 {
602 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
603 		  "CSR program storage start is NULL\n");
604 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
605 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
606 }
607 
608 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
609 {
610 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
611 					SKL_DISP_PW_2);
612 
613 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
614 
615 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
616 		  "DC5 already programmed to be enabled.\n");
617 	assert_rpm_wakelock_held(dev_priv);
618 
619 	assert_csr_loaded(dev_priv);
620 }
621 
622 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
623 {
624 	assert_can_enable_dc5(dev_priv);
625 
626 	DRM_DEBUG_KMS("Enabling DC5\n");
627 
628 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
629 }
630 
631 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
632 {
633 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
634 		  "Backlight is not disabled.\n");
635 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
636 		  "DC6 already programmed to be enabled.\n");
637 
638 	assert_csr_loaded(dev_priv);
639 }
640 
641 void skl_enable_dc6(struct drm_i915_private *dev_priv)
642 {
643 	assert_can_enable_dc6(dev_priv);
644 
645 	DRM_DEBUG_KMS("Enabling DC6\n");
646 
647 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
648 
649 }
650 
651 void skl_disable_dc6(struct drm_i915_private *dev_priv)
652 {
653 	DRM_DEBUG_KMS("Disabling DC6\n");
654 
655 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
656 }
657 
658 static void
659 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
660 				  struct i915_power_well *power_well)
661 {
662 	enum skl_disp_power_wells power_well_id = power_well->data;
663 	u32 val;
664 	u32 mask;
665 
666 	mask = SKL_POWER_WELL_REQ(power_well_id);
667 
668 	val = I915_READ(HSW_PWR_WELL_KVMR);
669 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
670 		      power_well->name))
671 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
672 
673 	val = I915_READ(HSW_PWR_WELL_BIOS);
674 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
675 
676 	if (!(val & mask))
677 		return;
678 
679 	/*
680 	 * DMC is known to force on the request bits for power well 1 on SKL
681 	 * and BXT and the misc IO power well on SKL but we don't expect any
682 	 * other request bits to be set, so WARN for those.
683 	 */
684 	if (power_well_id == SKL_DISP_PW_1 ||
685 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
686 	     power_well_id == SKL_DISP_PW_MISC_IO))
687 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
688 				 "by DMC\n", power_well->name);
689 	else
690 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
691 			  power_well->name);
692 
693 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
694 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
695 }
696 
697 static void skl_set_power_well(struct drm_i915_private *dev_priv,
698 			struct i915_power_well *power_well, bool enable)
699 {
700 	uint32_t tmp, fuse_status;
701 	uint32_t req_mask, state_mask;
702 	bool is_enabled, enable_requested, check_fuse_status = false;
703 
704 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
705 	fuse_status = I915_READ(SKL_FUSE_STATUS);
706 
707 	switch (power_well->data) {
708 	case SKL_DISP_PW_1:
709 		if (intel_wait_for_register(dev_priv,
710 					    SKL_FUSE_STATUS,
711 					    SKL_FUSE_PG0_DIST_STATUS,
712 					    SKL_FUSE_PG0_DIST_STATUS,
713 					    1)) {
714 			DRM_ERROR("PG0 not enabled\n");
715 			return;
716 		}
717 		break;
718 	case SKL_DISP_PW_2:
719 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
720 			DRM_ERROR("PG1 in disabled state\n");
721 			return;
722 		}
723 		break;
724 	case SKL_DISP_PW_DDI_A_E:
725 	case SKL_DISP_PW_DDI_B:
726 	case SKL_DISP_PW_DDI_C:
727 	case SKL_DISP_PW_DDI_D:
728 	case SKL_DISP_PW_MISC_IO:
729 		break;
730 	default:
731 		WARN(1, "Unknown power well %lu\n", power_well->data);
732 		return;
733 	}
734 
735 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
736 	enable_requested = tmp & req_mask;
737 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
738 	is_enabled = tmp & state_mask;
739 
740 	if (!enable && enable_requested)
741 		skl_power_well_pre_disable(dev_priv, power_well);
742 
743 	if (enable) {
744 		if (!enable_requested) {
745 			WARN((tmp & state_mask) &&
746 				!I915_READ(HSW_PWR_WELL_BIOS),
747 				"Invalid for power well status to be enabled, unless done by the BIOS, \
748 				when request is to disable!\n");
749 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
750 		}
751 
752 		if (!is_enabled) {
753 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
754 			check_fuse_status = true;
755 		}
756 	} else {
757 		if (enable_requested) {
758 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
759 			POSTING_READ(HSW_PWR_WELL_DRIVER);
760 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
761 		}
762 
763 		if (IS_GEN9(dev_priv))
764 			gen9_sanitize_power_well_requests(dev_priv, power_well);
765 	}
766 
767 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
768 		     1))
769 		DRM_ERROR("%s %s timeout\n",
770 			  power_well->name, enable ? "enable" : "disable");
771 
772 	if (check_fuse_status) {
773 		if (power_well->data == SKL_DISP_PW_1) {
774 			if (intel_wait_for_register(dev_priv,
775 						    SKL_FUSE_STATUS,
776 						    SKL_FUSE_PG1_DIST_STATUS,
777 						    SKL_FUSE_PG1_DIST_STATUS,
778 						    1))
779 				DRM_ERROR("PG1 distributing status timeout\n");
780 		} else if (power_well->data == SKL_DISP_PW_2) {
781 			if (intel_wait_for_register(dev_priv,
782 						    SKL_FUSE_STATUS,
783 						    SKL_FUSE_PG2_DIST_STATUS,
784 						    SKL_FUSE_PG2_DIST_STATUS,
785 						    1))
786 				DRM_ERROR("PG2 distributing status timeout\n");
787 		}
788 	}
789 
790 	if (enable && !is_enabled)
791 		skl_power_well_post_enable(dev_priv, power_well);
792 }
793 
794 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
795 				   struct i915_power_well *power_well)
796 {
797 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
798 
799 	/*
800 	 * We're taking over the BIOS, so clear any requests made by it since
801 	 * the driver is in charge now.
802 	 */
803 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
804 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
805 }
806 
807 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
808 				  struct i915_power_well *power_well)
809 {
810 	hsw_set_power_well(dev_priv, power_well, true);
811 }
812 
813 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
814 				   struct i915_power_well *power_well)
815 {
816 	hsw_set_power_well(dev_priv, power_well, false);
817 }
818 
819 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
820 					struct i915_power_well *power_well)
821 {
822 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
823 		SKL_POWER_WELL_STATE(power_well->data);
824 
825 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
826 }
827 
828 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
829 				struct i915_power_well *power_well)
830 {
831 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
832 
833 	/* Clear any request made by BIOS as driver is taking over */
834 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
835 }
836 
837 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
838 				struct i915_power_well *power_well)
839 {
840 	skl_set_power_well(dev_priv, power_well, true);
841 }
842 
843 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
844 				struct i915_power_well *power_well)
845 {
846 	skl_set_power_well(dev_priv, power_well, false);
847 }
848 
849 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
850 {
851 	enum skl_disp_power_wells power_well_id = power_well->data;
852 
853 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
854 }
855 
856 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
857 					   struct i915_power_well *power_well)
858 {
859 	enum skl_disp_power_wells power_well_id = power_well->data;
860 	struct i915_power_well *cmn_a_well = NULL;
861 
862 	if (power_well_id == BXT_DPIO_CMN_BC) {
863 		/*
864 		 * We need to copy the GRC calibration value from the eDP PHY,
865 		 * so make sure it's powered up.
866 		 */
867 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
868 		intel_power_well_get(dev_priv, cmn_a_well);
869 	}
870 
871 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
872 
873 	if (cmn_a_well)
874 		intel_power_well_put(dev_priv, cmn_a_well);
875 }
876 
877 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
878 					    struct i915_power_well *power_well)
879 {
880 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
881 }
882 
883 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
884 					    struct i915_power_well *power_well)
885 {
886 	return bxt_ddi_phy_is_enabled(dev_priv,
887 				      bxt_power_well_to_phy(power_well));
888 }
889 
890 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
891 					    struct i915_power_well *power_well)
892 {
893 	if (power_well->count > 0)
894 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
895 	else
896 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
897 }
898 
899 
900 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
901 {
902 	struct i915_power_well *power_well;
903 
904 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
905 	if (power_well->count > 0)
906 		bxt_ddi_phy_verify_state(dev_priv,
907 					 bxt_power_well_to_phy(power_well));
908 
909 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
910 	if (power_well->count > 0)
911 		bxt_ddi_phy_verify_state(dev_priv,
912 					 bxt_power_well_to_phy(power_well));
913 }
914 
915 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
916 					   struct i915_power_well *power_well)
917 {
918 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
919 }
920 
921 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
922 {
923 	u32 tmp = I915_READ(DBUF_CTL);
924 
925 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
926 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
927 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
928 }
929 
930 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
931 					  struct i915_power_well *power_well)
932 {
933 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
934 
935 	WARN_ON(dev_priv->cdclk_freq !=
936 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
937 
938 	gen9_assert_dbuf_enabled(dev_priv);
939 
940 	if (IS_BROXTON(dev_priv))
941 		bxt_verify_ddi_phy_power_wells(dev_priv);
942 }
943 
944 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
945 					   struct i915_power_well *power_well)
946 {
947 	if (!dev_priv->csr.dmc_payload)
948 		return;
949 
950 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
951 		skl_enable_dc6(dev_priv);
952 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
953 		gen9_enable_dc5(dev_priv);
954 }
955 
956 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
957 					   struct i915_power_well *power_well)
958 {
959 	if (power_well->count > 0)
960 		gen9_dc_off_power_well_enable(dev_priv, power_well);
961 	else
962 		gen9_dc_off_power_well_disable(dev_priv, power_well);
963 }
964 
965 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
966 					   struct i915_power_well *power_well)
967 {
968 }
969 
970 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
971 					     struct i915_power_well *power_well)
972 {
973 	return true;
974 }
975 
976 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
977 			       struct i915_power_well *power_well, bool enable)
978 {
979 	enum punit_power_well power_well_id = power_well->data;
980 	u32 mask;
981 	u32 state;
982 	u32 ctrl;
983 
984 	mask = PUNIT_PWRGT_MASK(power_well_id);
985 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
986 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
987 
988 	mutex_lock(&dev_priv->rps.hw_lock);
989 
990 #define COND \
991 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
992 
993 	if (COND)
994 		goto out;
995 
996 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
997 	ctrl &= ~mask;
998 	ctrl |= state;
999 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
1000 
1001 	if (wait_for(COND, 100))
1002 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1003 			  state,
1004 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1005 
1006 #undef COND
1007 
1008 out:
1009 	mutex_unlock(&dev_priv->rps.hw_lock);
1010 }
1011 
1012 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1013 				   struct i915_power_well *power_well)
1014 {
1015 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1016 }
1017 
1018 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1019 				  struct i915_power_well *power_well)
1020 {
1021 	vlv_set_power_well(dev_priv, power_well, true);
1022 }
1023 
1024 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1025 				   struct i915_power_well *power_well)
1026 {
1027 	vlv_set_power_well(dev_priv, power_well, false);
1028 }
1029 
1030 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1031 				   struct i915_power_well *power_well)
1032 {
1033 	int power_well_id = power_well->data;
1034 	bool enabled = false;
1035 	u32 mask;
1036 	u32 state;
1037 	u32 ctrl;
1038 
1039 	mask = PUNIT_PWRGT_MASK(power_well_id);
1040 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1041 
1042 	mutex_lock(&dev_priv->rps.hw_lock);
1043 
1044 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1045 	/*
1046 	 * We only ever set the power-on and power-gate states, anything
1047 	 * else is unexpected.
1048 	 */
1049 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1050 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1051 	if (state == ctrl)
1052 		enabled = true;
1053 
1054 	/*
1055 	 * A transient state at this point would mean some unexpected party
1056 	 * is poking at the power controls too.
1057 	 */
1058 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1059 	WARN_ON(ctrl != state);
1060 
1061 	mutex_unlock(&dev_priv->rps.hw_lock);
1062 
1063 	return enabled;
1064 }
1065 
1066 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1067 {
1068 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1069 
1070 	/*
1071 	 * Disable trickle feed and enable pnd deadline calculation
1072 	 */
1073 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1074 	I915_WRITE(CBR1_VLV, 0);
1075 
1076 	WARN_ON(dev_priv->rawclk_freq == 0);
1077 
1078 	I915_WRITE(RAWCLK_FREQ_VLV,
1079 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1080 }
1081 
1082 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1083 {
1084 	struct intel_encoder *encoder;
1085 	enum pipe pipe;
1086 
1087 	/*
1088 	 * Enable the CRI clock source so we can get at the
1089 	 * display and the reference clock for VGA
1090 	 * hotplug / manual detection. Supposedly DSI also
1091 	 * needs the ref clock up and running.
1092 	 *
1093 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1094 	 */
1095 	for_each_pipe(&dev_priv->drm, pipe) {
1096 		u32 val = I915_READ(DPLL(pipe));
1097 
1098 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1099 		if (pipe != PIPE_A)
1100 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1101 
1102 		I915_WRITE(DPLL(pipe), val);
1103 	}
1104 
1105 	vlv_init_display_clock_gating(dev_priv);
1106 
1107 	spin_lock_irq(&dev_priv->irq_lock);
1108 	valleyview_enable_display_irqs(dev_priv);
1109 	spin_unlock_irq(&dev_priv->irq_lock);
1110 
1111 	/*
1112 	 * During driver initialization/resume we can avoid restoring the
1113 	 * part of the HW/SW state that will be inited anyway explicitly.
1114 	 */
1115 	if (dev_priv->power_domains.initializing)
1116 		return;
1117 
1118 	intel_hpd_init(dev_priv);
1119 
1120 	/* Re-enable the ADPA, if we have one */
1121 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1122 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1123 			intel_crt_reset(&encoder->base);
1124 	}
1125 
1126 	i915_redisable_vga_power_on(&dev_priv->drm);
1127 
1128 	intel_pps_unlock_regs_wa(dev_priv);
1129 }
1130 
1131 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1132 {
1133 	spin_lock_irq(&dev_priv->irq_lock);
1134 	valleyview_disable_display_irqs(dev_priv);
1135 	spin_unlock_irq(&dev_priv->irq_lock);
1136 
1137 	/* make sure we're done processing display irqs */
1138 	synchronize_irq(dev_priv->drm.irq);
1139 
1140 	intel_power_sequencer_reset(dev_priv);
1141 
1142 	/* Prevent us from re-enabling polling on accident in late suspend */
1143 	if (!dev_priv->drm.dev->power.is_suspended)
1144 		intel_hpd_poll_init(dev_priv);
1145 }
1146 
1147 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1148 					  struct i915_power_well *power_well)
1149 {
1150 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1151 
1152 	vlv_set_power_well(dev_priv, power_well, true);
1153 
1154 	vlv_display_power_well_init(dev_priv);
1155 }
1156 
1157 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1158 					   struct i915_power_well *power_well)
1159 {
1160 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1161 
1162 	vlv_display_power_well_deinit(dev_priv);
1163 
1164 	vlv_set_power_well(dev_priv, power_well, false);
1165 }
1166 
1167 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1168 					   struct i915_power_well *power_well)
1169 {
1170 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1171 
1172 	/* since ref/cri clock was enabled */
1173 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1174 
1175 	vlv_set_power_well(dev_priv, power_well, true);
1176 
1177 	/*
1178 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1179 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1180 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1181 	 *   b.	The other bits such as sfr settings / modesel may all
1182 	 *	be set to 0.
1183 	 *
1184 	 * This should only be done on init and resume from S3 with
1185 	 * both PLLs disabled, or we risk losing DPIO and PLL
1186 	 * synchronization.
1187 	 */
1188 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1189 }
1190 
1191 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1192 					    struct i915_power_well *power_well)
1193 {
1194 	enum pipe pipe;
1195 
1196 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1197 
1198 	for_each_pipe(dev_priv, pipe)
1199 		assert_pll_disabled(dev_priv, pipe);
1200 
1201 	/* Assert common reset */
1202 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1203 
1204 	vlv_set_power_well(dev_priv, power_well, false);
1205 }
1206 
1207 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1208 
1209 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1210 						 int power_well_id)
1211 {
1212 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1213 	int i;
1214 
1215 	for (i = 0; i < power_domains->power_well_count; i++) {
1216 		struct i915_power_well *power_well;
1217 
1218 		power_well = &power_domains->power_wells[i];
1219 		if (power_well->data == power_well_id)
1220 			return power_well;
1221 	}
1222 
1223 	return NULL;
1224 }
1225 
1226 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1227 
1228 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1229 {
1230 	struct i915_power_well *cmn_bc =
1231 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1232 	struct i915_power_well *cmn_d =
1233 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1234 	u32 phy_control = dev_priv->chv_phy_control;
1235 	u32 phy_status = 0;
1236 	u32 phy_status_mask = 0xffffffff;
1237 
1238 	/*
1239 	 * The BIOS can leave the PHY is some weird state
1240 	 * where it doesn't fully power down some parts.
1241 	 * Disable the asserts until the PHY has been fully
1242 	 * reset (ie. the power well has been disabled at
1243 	 * least once).
1244 	 */
1245 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1246 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1247 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1248 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1249 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1250 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1251 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1252 
1253 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1254 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1255 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1256 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1257 
1258 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1259 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1260 
1261 		/* this assumes override is only used to enable lanes */
1262 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1263 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1264 
1265 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1266 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1267 
1268 		/* CL1 is on whenever anything is on in either channel */
1269 		if (BITS_SET(phy_control,
1270 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1271 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1272 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1273 
1274 		/*
1275 		 * The DPLLB check accounts for the pipe B + port A usage
1276 		 * with CL2 powered up but all the lanes in the second channel
1277 		 * powered down.
1278 		 */
1279 		if (BITS_SET(phy_control,
1280 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1281 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1282 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1283 
1284 		if (BITS_SET(phy_control,
1285 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1286 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1287 		if (BITS_SET(phy_control,
1288 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1289 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1290 
1291 		if (BITS_SET(phy_control,
1292 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1293 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1294 		if (BITS_SET(phy_control,
1295 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1296 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1297 	}
1298 
1299 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1300 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1301 
1302 		/* this assumes override is only used to enable lanes */
1303 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1304 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1305 
1306 		if (BITS_SET(phy_control,
1307 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1308 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1309 
1310 		if (BITS_SET(phy_control,
1311 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1312 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1313 		if (BITS_SET(phy_control,
1314 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1315 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1316 	}
1317 
1318 	phy_status &= phy_status_mask;
1319 
1320 	/*
1321 	 * The PHY may be busy with some initial calibration and whatnot,
1322 	 * so the power state can take a while to actually change.
1323 	 */
1324 	if (intel_wait_for_register(dev_priv,
1325 				    DISPLAY_PHY_STATUS,
1326 				    phy_status_mask,
1327 				    phy_status,
1328 				    10))
1329 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1330 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1331 			   phy_status, dev_priv->chv_phy_control);
1332 }
1333 
1334 #undef BITS_SET
1335 
1336 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1337 					   struct i915_power_well *power_well)
1338 {
1339 	enum dpio_phy phy;
1340 	enum pipe pipe;
1341 	uint32_t tmp;
1342 
1343 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1344 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1345 
1346 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1347 		pipe = PIPE_A;
1348 		phy = DPIO_PHY0;
1349 	} else {
1350 		pipe = PIPE_C;
1351 		phy = DPIO_PHY1;
1352 	}
1353 
1354 	/* since ref/cri clock was enabled */
1355 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1356 	vlv_set_power_well(dev_priv, power_well, true);
1357 
1358 	/* Poll for phypwrgood signal */
1359 	if (intel_wait_for_register(dev_priv,
1360 				    DISPLAY_PHY_STATUS,
1361 				    PHY_POWERGOOD(phy),
1362 				    PHY_POWERGOOD(phy),
1363 				    1))
1364 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1365 
1366 	mutex_lock(&dev_priv->sb_lock);
1367 
1368 	/* Enable dynamic power down */
1369 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1370 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1371 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1372 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1373 
1374 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1375 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1376 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1377 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1378 	} else {
1379 		/*
1380 		 * Force the non-existing CL2 off. BXT does this
1381 		 * too, so maybe it saves some power even though
1382 		 * CL2 doesn't exist?
1383 		 */
1384 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1385 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1386 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1387 	}
1388 
1389 	mutex_unlock(&dev_priv->sb_lock);
1390 
1391 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1392 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1393 
1394 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1395 		      phy, dev_priv->chv_phy_control);
1396 
1397 	assert_chv_phy_status(dev_priv);
1398 }
1399 
1400 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1401 					    struct i915_power_well *power_well)
1402 {
1403 	enum dpio_phy phy;
1404 
1405 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1406 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1407 
1408 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1409 		phy = DPIO_PHY0;
1410 		assert_pll_disabled(dev_priv, PIPE_A);
1411 		assert_pll_disabled(dev_priv, PIPE_B);
1412 	} else {
1413 		phy = DPIO_PHY1;
1414 		assert_pll_disabled(dev_priv, PIPE_C);
1415 	}
1416 
1417 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1418 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1419 
1420 	vlv_set_power_well(dev_priv, power_well, false);
1421 
1422 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1423 		      phy, dev_priv->chv_phy_control);
1424 
1425 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1426 	dev_priv->chv_phy_assert[phy] = true;
1427 
1428 	assert_chv_phy_status(dev_priv);
1429 }
1430 
1431 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1432 				     enum dpio_channel ch, bool override, unsigned int mask)
1433 {
1434 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1435 	u32 reg, val, expected, actual;
1436 
1437 	/*
1438 	 * The BIOS can leave the PHY is some weird state
1439 	 * where it doesn't fully power down some parts.
1440 	 * Disable the asserts until the PHY has been fully
1441 	 * reset (ie. the power well has been disabled at
1442 	 * least once).
1443 	 */
1444 	if (!dev_priv->chv_phy_assert[phy])
1445 		return;
1446 
1447 	if (ch == DPIO_CH0)
1448 		reg = _CHV_CMN_DW0_CH0;
1449 	else
1450 		reg = _CHV_CMN_DW6_CH1;
1451 
1452 	mutex_lock(&dev_priv->sb_lock);
1453 	val = vlv_dpio_read(dev_priv, pipe, reg);
1454 	mutex_unlock(&dev_priv->sb_lock);
1455 
1456 	/*
1457 	 * This assumes !override is only used when the port is disabled.
1458 	 * All lanes should power down even without the override when
1459 	 * the port is disabled.
1460 	 */
1461 	if (!override || mask == 0xf) {
1462 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1463 		/*
1464 		 * If CH1 common lane is not active anymore
1465 		 * (eg. for pipe B DPLL) the entire channel will
1466 		 * shut down, which causes the common lane registers
1467 		 * to read as 0. That means we can't actually check
1468 		 * the lane power down status bits, but as the entire
1469 		 * register reads as 0 it's a good indication that the
1470 		 * channel is indeed entirely powered down.
1471 		 */
1472 		if (ch == DPIO_CH1 && val == 0)
1473 			expected = 0;
1474 	} else if (mask != 0x0) {
1475 		expected = DPIO_ANYDL_POWERDOWN;
1476 	} else {
1477 		expected = 0;
1478 	}
1479 
1480 	if (ch == DPIO_CH0)
1481 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1482 	else
1483 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1484 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1485 
1486 	WARN(actual != expected,
1487 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1488 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1489 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1490 	     reg, val);
1491 }
1492 
1493 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1494 			  enum dpio_channel ch, bool override)
1495 {
1496 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1497 	bool was_override;
1498 
1499 	mutex_lock(&power_domains->lock);
1500 
1501 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1502 
1503 	if (override == was_override)
1504 		goto out;
1505 
1506 	if (override)
1507 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1508 	else
1509 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1510 
1511 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1512 
1513 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1514 		      phy, ch, dev_priv->chv_phy_control);
1515 
1516 	assert_chv_phy_status(dev_priv);
1517 
1518 out:
1519 	mutex_unlock(&power_domains->lock);
1520 
1521 	return was_override;
1522 }
1523 
1524 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1525 			     bool override, unsigned int mask)
1526 {
1527 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1528 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1529 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1530 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1531 
1532 	mutex_lock(&power_domains->lock);
1533 
1534 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1535 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1536 
1537 	if (override)
1538 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1539 	else
1540 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1541 
1542 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1543 
1544 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1545 		      phy, ch, mask, dev_priv->chv_phy_control);
1546 
1547 	assert_chv_phy_status(dev_priv);
1548 
1549 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1550 
1551 	mutex_unlock(&power_domains->lock);
1552 }
1553 
1554 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1555 					struct i915_power_well *power_well)
1556 {
1557 	enum pipe pipe = power_well->data;
1558 	bool enabled;
1559 	u32 state, ctrl;
1560 
1561 	mutex_lock(&dev_priv->rps.hw_lock);
1562 
1563 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1564 	/*
1565 	 * We only ever set the power-on and power-gate states, anything
1566 	 * else is unexpected.
1567 	 */
1568 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1569 	enabled = state == DP_SSS_PWR_ON(pipe);
1570 
1571 	/*
1572 	 * A transient state at this point would mean some unexpected party
1573 	 * is poking at the power controls too.
1574 	 */
1575 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1576 	WARN_ON(ctrl << 16 != state);
1577 
1578 	mutex_unlock(&dev_priv->rps.hw_lock);
1579 
1580 	return enabled;
1581 }
1582 
1583 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1584 				    struct i915_power_well *power_well,
1585 				    bool enable)
1586 {
1587 	enum pipe pipe = power_well->data;
1588 	u32 state;
1589 	u32 ctrl;
1590 
1591 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1592 
1593 	mutex_lock(&dev_priv->rps.hw_lock);
1594 
1595 #define COND \
1596 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1597 
1598 	if (COND)
1599 		goto out;
1600 
1601 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1602 	ctrl &= ~DP_SSC_MASK(pipe);
1603 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1604 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1605 
1606 	if (wait_for(COND, 100))
1607 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1608 			  state,
1609 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1610 
1611 #undef COND
1612 
1613 out:
1614 	mutex_unlock(&dev_priv->rps.hw_lock);
1615 }
1616 
1617 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1618 					struct i915_power_well *power_well)
1619 {
1620 	WARN_ON_ONCE(power_well->data != PIPE_A);
1621 
1622 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1623 }
1624 
1625 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1626 				       struct i915_power_well *power_well)
1627 {
1628 	WARN_ON_ONCE(power_well->data != PIPE_A);
1629 
1630 	chv_set_pipe_power_well(dev_priv, power_well, true);
1631 
1632 	vlv_display_power_well_init(dev_priv);
1633 }
1634 
1635 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1636 					struct i915_power_well *power_well)
1637 {
1638 	WARN_ON_ONCE(power_well->data != PIPE_A);
1639 
1640 	vlv_display_power_well_deinit(dev_priv);
1641 
1642 	chv_set_pipe_power_well(dev_priv, power_well, false);
1643 }
1644 
1645 static void
1646 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1647 				 enum intel_display_power_domain domain)
1648 {
1649 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1650 	struct i915_power_well *power_well;
1651 	int i;
1652 
1653 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1654 		intel_power_well_get(dev_priv, power_well);
1655 
1656 	power_domains->domain_use_count[domain]++;
1657 }
1658 
1659 /**
1660  * intel_display_power_get - grab a power domain reference
1661  * @dev_priv: i915 device instance
1662  * @domain: power domain to reference
1663  *
1664  * This function grabs a power domain reference for @domain and ensures that the
1665  * power domain and all its parents are powered up. Therefore users should only
1666  * grab a reference to the innermost power domain they need.
1667  *
1668  * Any power domain reference obtained by this function must have a symmetric
1669  * call to intel_display_power_put() to release the reference again.
1670  */
1671 void intel_display_power_get(struct drm_i915_private *dev_priv,
1672 			     enum intel_display_power_domain domain)
1673 {
1674 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1675 
1676 	intel_runtime_pm_get(dev_priv);
1677 
1678 	mutex_lock(&power_domains->lock);
1679 
1680 	__intel_display_power_get_domain(dev_priv, domain);
1681 
1682 	mutex_unlock(&power_domains->lock);
1683 }
1684 
1685 /**
1686  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1687  * @dev_priv: i915 device instance
1688  * @domain: power domain to reference
1689  *
1690  * This function grabs a power domain reference for @domain and ensures that the
1691  * power domain and all its parents are powered up. Therefore users should only
1692  * grab a reference to the innermost power domain they need.
1693  *
1694  * Any power domain reference obtained by this function must have a symmetric
1695  * call to intel_display_power_put() to release the reference again.
1696  */
1697 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1698 					enum intel_display_power_domain domain)
1699 {
1700 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1701 	bool is_enabled;
1702 
1703 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1704 		return false;
1705 
1706 	mutex_lock(&power_domains->lock);
1707 
1708 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1709 		__intel_display_power_get_domain(dev_priv, domain);
1710 		is_enabled = true;
1711 	} else {
1712 		is_enabled = false;
1713 	}
1714 
1715 	mutex_unlock(&power_domains->lock);
1716 
1717 	if (!is_enabled)
1718 		intel_runtime_pm_put(dev_priv);
1719 
1720 	return is_enabled;
1721 }
1722 
1723 /**
1724  * intel_display_power_put - release a power domain reference
1725  * @dev_priv: i915 device instance
1726  * @domain: power domain to reference
1727  *
1728  * This function drops the power domain reference obtained by
1729  * intel_display_power_get() and might power down the corresponding hardware
1730  * block right away if this is the last reference.
1731  */
1732 void intel_display_power_put(struct drm_i915_private *dev_priv,
1733 			     enum intel_display_power_domain domain)
1734 {
1735 	struct i915_power_domains *power_domains;
1736 	struct i915_power_well *power_well;
1737 	int i;
1738 
1739 	power_domains = &dev_priv->power_domains;
1740 
1741 	mutex_lock(&power_domains->lock);
1742 
1743 	WARN(!power_domains->domain_use_count[domain],
1744 	     "Use count on domain %s is already zero\n",
1745 	     intel_display_power_domain_str(domain));
1746 	power_domains->domain_use_count[domain]--;
1747 
1748 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1749 		intel_power_well_put(dev_priv, power_well);
1750 
1751 	mutex_unlock(&power_domains->lock);
1752 
1753 	intel_runtime_pm_put(dev_priv);
1754 }
1755 
1756 #define HSW_DISPLAY_POWER_DOMAINS (			\
1757 	BIT(POWER_DOMAIN_PIPE_B) |			\
1758 	BIT(POWER_DOMAIN_PIPE_C) |			\
1759 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1760 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1761 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1762 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1763 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1764 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1765 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1766 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1767 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1768 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1769 	BIT(POWER_DOMAIN_VGA) |				\
1770 	BIT(POWER_DOMAIN_AUDIO) |			\
1771 	BIT(POWER_DOMAIN_INIT))
1772 
1773 #define BDW_DISPLAY_POWER_DOMAINS (			\
1774 	BIT(POWER_DOMAIN_PIPE_B) |			\
1775 	BIT(POWER_DOMAIN_PIPE_C) |			\
1776 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1777 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1778 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1779 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1780 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1781 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1782 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1783 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1784 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1785 	BIT(POWER_DOMAIN_VGA) |				\
1786 	BIT(POWER_DOMAIN_AUDIO) |			\
1787 	BIT(POWER_DOMAIN_INIT))
1788 
1789 #define VLV_DISPLAY_POWER_DOMAINS (		\
1790 	BIT(POWER_DOMAIN_PIPE_A) |		\
1791 	BIT(POWER_DOMAIN_PIPE_B) |		\
1792 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1793 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1794 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1795 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1796 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1797 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1798 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1799 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1800 	BIT(POWER_DOMAIN_VGA) |			\
1801 	BIT(POWER_DOMAIN_AUDIO) |		\
1802 	BIT(POWER_DOMAIN_AUX_B) |		\
1803 	BIT(POWER_DOMAIN_AUX_C) |		\
1804 	BIT(POWER_DOMAIN_GMBUS) |		\
1805 	BIT(POWER_DOMAIN_INIT))
1806 
1807 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1808 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1809 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1810 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1811 	BIT(POWER_DOMAIN_AUX_B) |		\
1812 	BIT(POWER_DOMAIN_AUX_C) |		\
1813 	BIT(POWER_DOMAIN_INIT))
1814 
1815 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1816 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1817 	BIT(POWER_DOMAIN_AUX_B) |		\
1818 	BIT(POWER_DOMAIN_INIT))
1819 
1820 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1821 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1822 	BIT(POWER_DOMAIN_AUX_B) |		\
1823 	BIT(POWER_DOMAIN_INIT))
1824 
1825 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1826 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1827 	BIT(POWER_DOMAIN_AUX_C) |		\
1828 	BIT(POWER_DOMAIN_INIT))
1829 
1830 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1831 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1832 	BIT(POWER_DOMAIN_AUX_C) |		\
1833 	BIT(POWER_DOMAIN_INIT))
1834 
1835 #define CHV_DISPLAY_POWER_DOMAINS (		\
1836 	BIT(POWER_DOMAIN_PIPE_A) |		\
1837 	BIT(POWER_DOMAIN_PIPE_B) |		\
1838 	BIT(POWER_DOMAIN_PIPE_C) |		\
1839 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1840 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1841 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1842 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1843 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1844 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1845 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1846 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1847 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1848 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1849 	BIT(POWER_DOMAIN_VGA) |			\
1850 	BIT(POWER_DOMAIN_AUDIO) |		\
1851 	BIT(POWER_DOMAIN_AUX_B) |		\
1852 	BIT(POWER_DOMAIN_AUX_C) |		\
1853 	BIT(POWER_DOMAIN_AUX_D) |		\
1854 	BIT(POWER_DOMAIN_GMBUS) |		\
1855 	BIT(POWER_DOMAIN_INIT))
1856 
1857 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1858 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1859 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1860 	BIT(POWER_DOMAIN_AUX_B) |		\
1861 	BIT(POWER_DOMAIN_AUX_C) |		\
1862 	BIT(POWER_DOMAIN_INIT))
1863 
1864 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1865 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1866 	BIT(POWER_DOMAIN_AUX_D) |		\
1867 	BIT(POWER_DOMAIN_INIT))
1868 
1869 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1870 	.sync_hw = i9xx_always_on_power_well_noop,
1871 	.enable = i9xx_always_on_power_well_noop,
1872 	.disable = i9xx_always_on_power_well_noop,
1873 	.is_enabled = i9xx_always_on_power_well_enabled,
1874 };
1875 
1876 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1877 	.sync_hw = chv_pipe_power_well_sync_hw,
1878 	.enable = chv_pipe_power_well_enable,
1879 	.disable = chv_pipe_power_well_disable,
1880 	.is_enabled = chv_pipe_power_well_enabled,
1881 };
1882 
1883 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1884 	.sync_hw = vlv_power_well_sync_hw,
1885 	.enable = chv_dpio_cmn_power_well_enable,
1886 	.disable = chv_dpio_cmn_power_well_disable,
1887 	.is_enabled = vlv_power_well_enabled,
1888 };
1889 
1890 static struct i915_power_well i9xx_always_on_power_well[] = {
1891 	{
1892 		.name = "always-on",
1893 		.always_on = 1,
1894 		.domains = POWER_DOMAIN_MASK,
1895 		.ops = &i9xx_always_on_power_well_ops,
1896 	},
1897 };
1898 
1899 static const struct i915_power_well_ops hsw_power_well_ops = {
1900 	.sync_hw = hsw_power_well_sync_hw,
1901 	.enable = hsw_power_well_enable,
1902 	.disable = hsw_power_well_disable,
1903 	.is_enabled = hsw_power_well_enabled,
1904 };
1905 
1906 static const struct i915_power_well_ops skl_power_well_ops = {
1907 	.sync_hw = skl_power_well_sync_hw,
1908 	.enable = skl_power_well_enable,
1909 	.disable = skl_power_well_disable,
1910 	.is_enabled = skl_power_well_enabled,
1911 };
1912 
1913 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1914 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1915 	.enable = gen9_dc_off_power_well_enable,
1916 	.disable = gen9_dc_off_power_well_disable,
1917 	.is_enabled = gen9_dc_off_power_well_enabled,
1918 };
1919 
1920 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1921 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1922 	.enable = bxt_dpio_cmn_power_well_enable,
1923 	.disable = bxt_dpio_cmn_power_well_disable,
1924 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1925 };
1926 
1927 static struct i915_power_well hsw_power_wells[] = {
1928 	{
1929 		.name = "always-on",
1930 		.always_on = 1,
1931 		.domains = POWER_DOMAIN_MASK,
1932 		.ops = &i9xx_always_on_power_well_ops,
1933 	},
1934 	{
1935 		.name = "display",
1936 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1937 		.ops = &hsw_power_well_ops,
1938 	},
1939 };
1940 
1941 static struct i915_power_well bdw_power_wells[] = {
1942 	{
1943 		.name = "always-on",
1944 		.always_on = 1,
1945 		.domains = POWER_DOMAIN_MASK,
1946 		.ops = &i9xx_always_on_power_well_ops,
1947 	},
1948 	{
1949 		.name = "display",
1950 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1951 		.ops = &hsw_power_well_ops,
1952 	},
1953 };
1954 
1955 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1956 	.sync_hw = vlv_power_well_sync_hw,
1957 	.enable = vlv_display_power_well_enable,
1958 	.disable = vlv_display_power_well_disable,
1959 	.is_enabled = vlv_power_well_enabled,
1960 };
1961 
1962 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1963 	.sync_hw = vlv_power_well_sync_hw,
1964 	.enable = vlv_dpio_cmn_power_well_enable,
1965 	.disable = vlv_dpio_cmn_power_well_disable,
1966 	.is_enabled = vlv_power_well_enabled,
1967 };
1968 
1969 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1970 	.sync_hw = vlv_power_well_sync_hw,
1971 	.enable = vlv_power_well_enable,
1972 	.disable = vlv_power_well_disable,
1973 	.is_enabled = vlv_power_well_enabled,
1974 };
1975 
1976 static struct i915_power_well vlv_power_wells[] = {
1977 	{
1978 		.name = "always-on",
1979 		.always_on = 1,
1980 		.domains = POWER_DOMAIN_MASK,
1981 		.ops = &i9xx_always_on_power_well_ops,
1982 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1983 	},
1984 	{
1985 		.name = "display",
1986 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1987 		.data = PUNIT_POWER_WELL_DISP2D,
1988 		.ops = &vlv_display_power_well_ops,
1989 	},
1990 	{
1991 		.name = "dpio-tx-b-01",
1992 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1993 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1994 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1995 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1996 		.ops = &vlv_dpio_power_well_ops,
1997 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1998 	},
1999 	{
2000 		.name = "dpio-tx-b-23",
2001 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2002 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2003 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2004 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2005 		.ops = &vlv_dpio_power_well_ops,
2006 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2007 	},
2008 	{
2009 		.name = "dpio-tx-c-01",
2010 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2011 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2012 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2013 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2014 		.ops = &vlv_dpio_power_well_ops,
2015 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2016 	},
2017 	{
2018 		.name = "dpio-tx-c-23",
2019 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2020 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2021 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2022 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2023 		.ops = &vlv_dpio_power_well_ops,
2024 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2025 	},
2026 	{
2027 		.name = "dpio-common",
2028 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2029 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2030 		.ops = &vlv_dpio_cmn_power_well_ops,
2031 	},
2032 };
2033 
2034 static struct i915_power_well chv_power_wells[] = {
2035 	{
2036 		.name = "always-on",
2037 		.always_on = 1,
2038 		.domains = POWER_DOMAIN_MASK,
2039 		.ops = &i9xx_always_on_power_well_ops,
2040 	},
2041 	{
2042 		.name = "display",
2043 		/*
2044 		 * Pipe A power well is the new disp2d well. Pipe B and C
2045 		 * power wells don't actually exist. Pipe A power well is
2046 		 * required for any pipe to work.
2047 		 */
2048 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2049 		.data = PIPE_A,
2050 		.ops = &chv_pipe_power_well_ops,
2051 	},
2052 	{
2053 		.name = "dpio-common-bc",
2054 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2055 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2056 		.ops = &chv_dpio_cmn_power_well_ops,
2057 	},
2058 	{
2059 		.name = "dpio-common-d",
2060 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2061 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2062 		.ops = &chv_dpio_cmn_power_well_ops,
2063 	},
2064 };
2065 
2066 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2067 				    int power_well_id)
2068 {
2069 	struct i915_power_well *power_well;
2070 	bool ret;
2071 
2072 	power_well = lookup_power_well(dev_priv, power_well_id);
2073 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2074 
2075 	return ret;
2076 }
2077 
2078 static struct i915_power_well skl_power_wells[] = {
2079 	{
2080 		.name = "always-on",
2081 		.always_on = 1,
2082 		.domains = POWER_DOMAIN_MASK,
2083 		.ops = &i9xx_always_on_power_well_ops,
2084 		.data = SKL_DISP_PW_ALWAYS_ON,
2085 	},
2086 	{
2087 		.name = "power well 1",
2088 		/* Handled by the DMC firmware */
2089 		.domains = 0,
2090 		.ops = &skl_power_well_ops,
2091 		.data = SKL_DISP_PW_1,
2092 	},
2093 	{
2094 		.name = "MISC IO power well",
2095 		/* Handled by the DMC firmware */
2096 		.domains = 0,
2097 		.ops = &skl_power_well_ops,
2098 		.data = SKL_DISP_PW_MISC_IO,
2099 	},
2100 	{
2101 		.name = "DC off",
2102 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2103 		.ops = &gen9_dc_off_power_well_ops,
2104 		.data = SKL_DISP_PW_DC_OFF,
2105 	},
2106 	{
2107 		.name = "power well 2",
2108 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2109 		.ops = &skl_power_well_ops,
2110 		.data = SKL_DISP_PW_2,
2111 	},
2112 	{
2113 		.name = "DDI A/E power well",
2114 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2115 		.ops = &skl_power_well_ops,
2116 		.data = SKL_DISP_PW_DDI_A_E,
2117 	},
2118 	{
2119 		.name = "DDI B power well",
2120 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2121 		.ops = &skl_power_well_ops,
2122 		.data = SKL_DISP_PW_DDI_B,
2123 	},
2124 	{
2125 		.name = "DDI C power well",
2126 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2127 		.ops = &skl_power_well_ops,
2128 		.data = SKL_DISP_PW_DDI_C,
2129 	},
2130 	{
2131 		.name = "DDI D power well",
2132 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2133 		.ops = &skl_power_well_ops,
2134 		.data = SKL_DISP_PW_DDI_D,
2135 	},
2136 };
2137 
2138 static struct i915_power_well bxt_power_wells[] = {
2139 	{
2140 		.name = "always-on",
2141 		.always_on = 1,
2142 		.domains = POWER_DOMAIN_MASK,
2143 		.ops = &i9xx_always_on_power_well_ops,
2144 	},
2145 	{
2146 		.name = "power well 1",
2147 		.domains = 0,
2148 		.ops = &skl_power_well_ops,
2149 		.data = SKL_DISP_PW_1,
2150 	},
2151 	{
2152 		.name = "DC off",
2153 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2154 		.ops = &gen9_dc_off_power_well_ops,
2155 		.data = SKL_DISP_PW_DC_OFF,
2156 	},
2157 	{
2158 		.name = "power well 2",
2159 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2160 		.ops = &skl_power_well_ops,
2161 		.data = SKL_DISP_PW_2,
2162 	},
2163 	{
2164 		.name = "dpio-common-a",
2165 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2166 		.ops = &bxt_dpio_cmn_power_well_ops,
2167 		.data = BXT_DPIO_CMN_A,
2168 	},
2169 	{
2170 		.name = "dpio-common-bc",
2171 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2172 		.ops = &bxt_dpio_cmn_power_well_ops,
2173 		.data = BXT_DPIO_CMN_BC,
2174 	},
2175 };
2176 
2177 static int
2178 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2179 				   int disable_power_well)
2180 {
2181 	if (disable_power_well >= 0)
2182 		return !!disable_power_well;
2183 
2184 	return 1;
2185 }
2186 
2187 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2188 				    int enable_dc)
2189 {
2190 	uint32_t mask;
2191 	int requested_dc;
2192 	int max_dc;
2193 
2194 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2195 		max_dc = 2;
2196 		mask = 0;
2197 	} else if (IS_BROXTON(dev_priv)) {
2198 		max_dc = 1;
2199 		/*
2200 		 * DC9 has a separate HW flow from the rest of the DC states,
2201 		 * not depending on the DMC firmware. It's needed by system
2202 		 * suspend/resume, so allow it unconditionally.
2203 		 */
2204 		mask = DC_STATE_EN_DC9;
2205 	} else {
2206 		max_dc = 0;
2207 		mask = 0;
2208 	}
2209 
2210 	if (!i915.disable_power_well)
2211 		max_dc = 0;
2212 
2213 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2214 		requested_dc = enable_dc;
2215 	} else if (enable_dc == -1) {
2216 		requested_dc = max_dc;
2217 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2218 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2219 			      enable_dc, max_dc);
2220 		requested_dc = max_dc;
2221 	} else {
2222 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2223 		requested_dc = max_dc;
2224 	}
2225 
2226 	if (requested_dc > 1)
2227 		mask |= DC_STATE_EN_UPTO_DC6;
2228 	if (requested_dc > 0)
2229 		mask |= DC_STATE_EN_UPTO_DC5;
2230 
2231 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2232 
2233 	return mask;
2234 }
2235 
2236 #define set_power_wells(power_domains, __power_wells) ({		\
2237 	(power_domains)->power_wells = (__power_wells);			\
2238 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2239 })
2240 
2241 /**
2242  * intel_power_domains_init - initializes the power domain structures
2243  * @dev_priv: i915 device instance
2244  *
2245  * Initializes the power domain structures for @dev_priv depending upon the
2246  * supported platform.
2247  */
2248 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2249 {
2250 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2251 
2252 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2253 						     i915.disable_power_well);
2254 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2255 							    i915.enable_dc);
2256 
2257 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2258 
2259 	mutex_init(&power_domains->lock);
2260 
2261 	/*
2262 	 * The enabling order will be from lower to higher indexed wells,
2263 	 * the disabling order is reversed.
2264 	 */
2265 	if (IS_HASWELL(dev_priv)) {
2266 		set_power_wells(power_domains, hsw_power_wells);
2267 	} else if (IS_BROADWELL(dev_priv)) {
2268 		set_power_wells(power_domains, bdw_power_wells);
2269 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2270 		set_power_wells(power_domains, skl_power_wells);
2271 	} else if (IS_BROXTON(dev_priv)) {
2272 		set_power_wells(power_domains, bxt_power_wells);
2273 	} else if (IS_CHERRYVIEW(dev_priv)) {
2274 		set_power_wells(power_domains, chv_power_wells);
2275 	} else if (IS_VALLEYVIEW(dev_priv)) {
2276 		set_power_wells(power_domains, vlv_power_wells);
2277 	} else {
2278 		set_power_wells(power_domains, i9xx_always_on_power_well);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /**
2285  * intel_power_domains_fini - finalizes the power domain structures
2286  * @dev_priv: i915 device instance
2287  *
2288  * Finalizes the power domain structures for @dev_priv depending upon the
2289  * supported platform. This function also disables runtime pm and ensures that
2290  * the device stays powered up so that the driver can be reloaded.
2291  */
2292 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2293 {
2294 	struct device *kdev = &dev_priv->drm.pdev->dev;
2295 
2296 	/*
2297 	 * The i915.ko module is still not prepared to be loaded when
2298 	 * the power well is not enabled, so just enable it in case
2299 	 * we're going to unload/reload.
2300 	 * The following also reacquires the RPM reference the core passed
2301 	 * to the driver during loading, which is dropped in
2302 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2303 	 * device to the core with this reference held.
2304 	 */
2305 	intel_display_set_init_power(dev_priv, true);
2306 
2307 	/* Remove the refcount we took to keep power well support disabled. */
2308 	if (!i915.disable_power_well)
2309 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2310 
2311 	/*
2312 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2313 	 * the platform doesn't support runtime PM.
2314 	 */
2315 	if (!HAS_RUNTIME_PM(dev_priv))
2316 		pm_runtime_put(kdev);
2317 }
2318 
2319 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2320 {
2321 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2322 	struct i915_power_well *power_well;
2323 	int i;
2324 
2325 	mutex_lock(&power_domains->lock);
2326 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2327 		power_well->ops->sync_hw(dev_priv, power_well);
2328 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2329 								     power_well);
2330 	}
2331 	mutex_unlock(&power_domains->lock);
2332 }
2333 
2334 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2335 {
2336 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2337 	POSTING_READ(DBUF_CTL);
2338 
2339 	udelay(10);
2340 
2341 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2342 		DRM_ERROR("DBuf power enable timeout\n");
2343 }
2344 
2345 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2346 {
2347 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2348 	POSTING_READ(DBUF_CTL);
2349 
2350 	udelay(10);
2351 
2352 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2353 		DRM_ERROR("DBuf power disable timeout!\n");
2354 }
2355 
2356 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2357 				   bool resume)
2358 {
2359 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2360 	struct i915_power_well *well;
2361 	uint32_t val;
2362 
2363 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2364 
2365 	/* enable PCH reset handshake */
2366 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2367 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2368 
2369 	/* enable PG1 and Misc I/O */
2370 	mutex_lock(&power_domains->lock);
2371 
2372 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2373 	intel_power_well_enable(dev_priv, well);
2374 
2375 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2376 	intel_power_well_enable(dev_priv, well);
2377 
2378 	mutex_unlock(&power_domains->lock);
2379 
2380 	skl_init_cdclk(dev_priv);
2381 
2382 	gen9_dbuf_enable(dev_priv);
2383 
2384 	if (resume && dev_priv->csr.dmc_payload)
2385 		intel_csr_load_program(dev_priv);
2386 }
2387 
2388 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2389 {
2390 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2391 	struct i915_power_well *well;
2392 
2393 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2394 
2395 	gen9_dbuf_disable(dev_priv);
2396 
2397 	skl_uninit_cdclk(dev_priv);
2398 
2399 	/* The spec doesn't call for removing the reset handshake flag */
2400 	/* disable PG1 and Misc I/O */
2401 
2402 	mutex_lock(&power_domains->lock);
2403 
2404 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2405 	intel_power_well_disable(dev_priv, well);
2406 
2407 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2408 	intel_power_well_disable(dev_priv, well);
2409 
2410 	mutex_unlock(&power_domains->lock);
2411 }
2412 
2413 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2414 			   bool resume)
2415 {
2416 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2417 	struct i915_power_well *well;
2418 	uint32_t val;
2419 
2420 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2421 
2422 	/*
2423 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2424 	 * or else the reset will hang because there is no PCH to respond.
2425 	 * Move the handshake programming to initialization sequence.
2426 	 * Previously was left up to BIOS.
2427 	 */
2428 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2429 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2430 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2431 
2432 	/* Enable PG1 */
2433 	mutex_lock(&power_domains->lock);
2434 
2435 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2436 	intel_power_well_enable(dev_priv, well);
2437 
2438 	mutex_unlock(&power_domains->lock);
2439 
2440 	bxt_init_cdclk(dev_priv);
2441 
2442 	gen9_dbuf_enable(dev_priv);
2443 
2444 	if (resume && dev_priv->csr.dmc_payload)
2445 		intel_csr_load_program(dev_priv);
2446 }
2447 
2448 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2449 {
2450 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2451 	struct i915_power_well *well;
2452 
2453 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2454 
2455 	gen9_dbuf_disable(dev_priv);
2456 
2457 	bxt_uninit_cdclk(dev_priv);
2458 
2459 	/* The spec doesn't call for removing the reset handshake flag */
2460 
2461 	/* Disable PG1 */
2462 	mutex_lock(&power_domains->lock);
2463 
2464 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2465 	intel_power_well_disable(dev_priv, well);
2466 
2467 	mutex_unlock(&power_domains->lock);
2468 }
2469 
2470 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2471 {
2472 	struct i915_power_well *cmn_bc =
2473 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2474 	struct i915_power_well *cmn_d =
2475 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2476 
2477 	/*
2478 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2479 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2480 	 * instead maintain a shadow copy ourselves. Use the actual
2481 	 * power well state and lane status to reconstruct the
2482 	 * expected initial value.
2483 	 */
2484 	dev_priv->chv_phy_control =
2485 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2486 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2487 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2488 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2489 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2490 
2491 	/*
2492 	 * If all lanes are disabled we leave the override disabled
2493 	 * with all power down bits cleared to match the state we
2494 	 * would use after disabling the port. Otherwise enable the
2495 	 * override and set the lane powerdown bits accding to the
2496 	 * current lane status.
2497 	 */
2498 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2499 		uint32_t status = I915_READ(DPLL(PIPE_A));
2500 		unsigned int mask;
2501 
2502 		mask = status & DPLL_PORTB_READY_MASK;
2503 		if (mask == 0xf)
2504 			mask = 0x0;
2505 		else
2506 			dev_priv->chv_phy_control |=
2507 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2508 
2509 		dev_priv->chv_phy_control |=
2510 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2511 
2512 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2513 		if (mask == 0xf)
2514 			mask = 0x0;
2515 		else
2516 			dev_priv->chv_phy_control |=
2517 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2518 
2519 		dev_priv->chv_phy_control |=
2520 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2521 
2522 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2523 
2524 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2525 	} else {
2526 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2527 	}
2528 
2529 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2530 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2531 		unsigned int mask;
2532 
2533 		mask = status & DPLL_PORTD_READY_MASK;
2534 
2535 		if (mask == 0xf)
2536 			mask = 0x0;
2537 		else
2538 			dev_priv->chv_phy_control |=
2539 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2540 
2541 		dev_priv->chv_phy_control |=
2542 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2543 
2544 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2545 
2546 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2547 	} else {
2548 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2549 	}
2550 
2551 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2552 
2553 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2554 		      dev_priv->chv_phy_control);
2555 }
2556 
2557 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2558 {
2559 	struct i915_power_well *cmn =
2560 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2561 	struct i915_power_well *disp2d =
2562 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2563 
2564 	/* If the display might be already active skip this */
2565 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2566 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2567 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2568 		return;
2569 
2570 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2571 
2572 	/* cmnlane needs DPLL registers */
2573 	disp2d->ops->enable(dev_priv, disp2d);
2574 
2575 	/*
2576 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2577 	 * Need to assert and de-assert PHY SB reset by gating the
2578 	 * common lane power, then un-gating it.
2579 	 * Simply ungating isn't enough to reset the PHY enough to get
2580 	 * ports and lanes running.
2581 	 */
2582 	cmn->ops->disable(dev_priv, cmn);
2583 }
2584 
2585 /**
2586  * intel_power_domains_init_hw - initialize hardware power domain state
2587  * @dev_priv: i915 device instance
2588  * @resume: Called from resume code paths or not
2589  *
2590  * This function initializes the hardware power domain state and enables all
2591  * power domains using intel_display_set_init_power().
2592  */
2593 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2594 {
2595 	struct drm_device *dev = &dev_priv->drm;
2596 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2597 
2598 	power_domains->initializing = true;
2599 
2600 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2601 		skl_display_core_init(dev_priv, resume);
2602 	} else if (IS_BROXTON(dev)) {
2603 		bxt_display_core_init(dev_priv, resume);
2604 	} else if (IS_CHERRYVIEW(dev)) {
2605 		mutex_lock(&power_domains->lock);
2606 		chv_phy_control_init(dev_priv);
2607 		mutex_unlock(&power_domains->lock);
2608 	} else if (IS_VALLEYVIEW(dev)) {
2609 		mutex_lock(&power_domains->lock);
2610 		vlv_cmnlane_wa(dev_priv);
2611 		mutex_unlock(&power_domains->lock);
2612 	}
2613 
2614 	/* For now, we need the power well to be always enabled. */
2615 	intel_display_set_init_power(dev_priv, true);
2616 	/* Disable power support if the user asked so. */
2617 	if (!i915.disable_power_well)
2618 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2619 	intel_power_domains_sync_hw(dev_priv);
2620 	power_domains->initializing = false;
2621 }
2622 
2623 /**
2624  * intel_power_domains_suspend - suspend power domain state
2625  * @dev_priv: i915 device instance
2626  *
2627  * This function prepares the hardware power domain state before entering
2628  * system suspend. It must be paired with intel_power_domains_init_hw().
2629  */
2630 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2631 {
2632 	/*
2633 	 * Even if power well support was disabled we still want to disable
2634 	 * power wells while we are system suspended.
2635 	 */
2636 	if (!i915.disable_power_well)
2637 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2638 
2639 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2640 		skl_display_core_uninit(dev_priv);
2641 	else if (IS_BROXTON(dev_priv))
2642 		bxt_display_core_uninit(dev_priv);
2643 }
2644 
2645 /**
2646  * intel_runtime_pm_get - grab a runtime pm reference
2647  * @dev_priv: i915 device instance
2648  *
2649  * This function grabs a device-level runtime pm reference (mostly used for GEM
2650  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2651  *
2652  * Any runtime pm reference obtained by this function must have a symmetric
2653  * call to intel_runtime_pm_put() to release the reference again.
2654  */
2655 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2656 {
2657 	struct pci_dev *pdev = dev_priv->drm.pdev;
2658 	struct device *kdev = &pdev->dev;
2659 
2660 	pm_runtime_get_sync(kdev);
2661 
2662 	atomic_inc(&dev_priv->pm.wakeref_count);
2663 	assert_rpm_wakelock_held(dev_priv);
2664 }
2665 
2666 /**
2667  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2668  * @dev_priv: i915 device instance
2669  *
2670  * This function grabs a device-level runtime pm reference if the device is
2671  * already in use and ensures that it is powered up.
2672  *
2673  * Any runtime pm reference obtained by this function must have a symmetric
2674  * call to intel_runtime_pm_put() to release the reference again.
2675  */
2676 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2677 {
2678 	struct pci_dev *pdev = dev_priv->drm.pdev;
2679 	struct device *kdev = &pdev->dev;
2680 
2681 	if (IS_ENABLED(CONFIG_PM)) {
2682 		int ret = pm_runtime_get_if_in_use(kdev);
2683 
2684 		/*
2685 		 * In cases runtime PM is disabled by the RPM core and we get
2686 		 * an -EINVAL return value we are not supposed to call this
2687 		 * function, since the power state is undefined. This applies
2688 		 * atm to the late/early system suspend/resume handlers.
2689 		 */
2690 		WARN_ON_ONCE(ret < 0);
2691 		if (ret <= 0)
2692 			return false;
2693 	}
2694 
2695 	atomic_inc(&dev_priv->pm.wakeref_count);
2696 	assert_rpm_wakelock_held(dev_priv);
2697 
2698 	return true;
2699 }
2700 
2701 /**
2702  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2703  * @dev_priv: i915 device instance
2704  *
2705  * This function grabs a device-level runtime pm reference (mostly used for GEM
2706  * code to ensure the GTT or GT is on).
2707  *
2708  * It will _not_ power up the device but instead only check that it's powered
2709  * on.  Therefore it is only valid to call this functions from contexts where
2710  * the device is known to be powered up and where trying to power it up would
2711  * result in hilarity and deadlocks. That pretty much means only the system
2712  * suspend/resume code where this is used to grab runtime pm references for
2713  * delayed setup down in work items.
2714  *
2715  * Any runtime pm reference obtained by this function must have a symmetric
2716  * call to intel_runtime_pm_put() to release the reference again.
2717  */
2718 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2719 {
2720 	struct pci_dev *pdev = dev_priv->drm.pdev;
2721 	struct device *kdev = &pdev->dev;
2722 
2723 	assert_rpm_wakelock_held(dev_priv);
2724 	pm_runtime_get_noresume(kdev);
2725 
2726 	atomic_inc(&dev_priv->pm.wakeref_count);
2727 }
2728 
2729 /**
2730  * intel_runtime_pm_put - release a runtime pm reference
2731  * @dev_priv: i915 device instance
2732  *
2733  * This function drops the device-level runtime pm reference obtained by
2734  * intel_runtime_pm_get() and might power down the corresponding
2735  * hardware block right away if this is the last reference.
2736  */
2737 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2738 {
2739 	struct pci_dev *pdev = dev_priv->drm.pdev;
2740 	struct device *kdev = &pdev->dev;
2741 
2742 	assert_rpm_wakelock_held(dev_priv);
2743 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2744 		atomic_inc(&dev_priv->pm.atomic_seq);
2745 
2746 	pm_runtime_mark_last_busy(kdev);
2747 	pm_runtime_put_autosuspend(kdev);
2748 }
2749 
2750 /**
2751  * intel_runtime_pm_enable - enable runtime pm
2752  * @dev_priv: i915 device instance
2753  *
2754  * This function enables runtime pm at the end of the driver load sequence.
2755  *
2756  * Note that this function does currently not enable runtime pm for the
2757  * subordinate display power domains. That is only done on the first modeset
2758  * using intel_display_set_init_power().
2759  */
2760 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2761 {
2762 	struct pci_dev *pdev = dev_priv->drm.pdev;
2763 	struct drm_device *dev = &dev_priv->drm;
2764 	struct device *kdev = &pdev->dev;
2765 
2766 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2767 	pm_runtime_mark_last_busy(kdev);
2768 
2769 	/*
2770 	 * Take a permanent reference to disable the RPM functionality and drop
2771 	 * it only when unloading the driver. Use the low level get/put helpers,
2772 	 * so the driver's own RPM reference tracking asserts also work on
2773 	 * platforms without RPM support.
2774 	 */
2775 	if (!HAS_RUNTIME_PM(dev)) {
2776 		pm_runtime_dont_use_autosuspend(kdev);
2777 		pm_runtime_get_sync(kdev);
2778 	} else {
2779 		pm_runtime_use_autosuspend(kdev);
2780 	}
2781 
2782 	/*
2783 	 * The core calls the driver load handler with an RPM reference held.
2784 	 * We drop that here and will reacquire it during unloading in
2785 	 * intel_power_domains_fini().
2786 	 */
2787 	pm_runtime_put_autosuspend(kdev);
2788 }
2789