1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include <drm/drm_print.h>
33 
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 
37 /**
38  * DOC: runtime pm
39  *
40  * The i915 driver supports dynamic enabling and disabling of entire hardware
41  * blocks at runtime. This is especially important on the display side where
42  * software is supposed to control many power gates manually on recent hardware,
43  * since on the GT side a lot of the power management is done by the hardware.
44  * But even there some manual control at the device level is required.
45  *
46  * Since i915 supports a diverse set of platforms with a unified codebase and
47  * hardware engineers just love to shuffle functionality around between power
48  * domains there's a sizeable amount of indirection required. This file provides
49  * generic functions to the driver for grabbing and releasing references for
50  * abstract power domains. It then maps those to the actual power wells
51  * present for a given platform.
52  */
53 
54 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
55 
56 #include <linux/sort.h>
57 
58 #define STACKDEPTH 8
59 
60 static noinline depot_stack_handle_t __save_depot_stack(void)
61 {
62 	unsigned long entries[STACKDEPTH];
63 	unsigned int n;
64 
65 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
66 	return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN);
67 }
68 
69 static void __print_depot_stack(depot_stack_handle_t stack,
70 				char *buf, int sz, int indent)
71 {
72 	unsigned long *entries;
73 	unsigned int nr_entries;
74 
75 	nr_entries = stack_depot_fetch(stack, &entries);
76 	stack_trace_snprint(buf, sz, entries, nr_entries, indent);
77 }
78 
79 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
80 {
81 	spin_lock_init(&rpm->debug.lock);
82 }
83 
84 static noinline depot_stack_handle_t
85 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
86 {
87 	depot_stack_handle_t stack, *stacks;
88 	unsigned long flags;
89 
90 	if (!rpm->available)
91 		return -1;
92 
93 	stack = __save_depot_stack();
94 	if (!stack)
95 		return -1;
96 
97 	spin_lock_irqsave(&rpm->debug.lock, flags);
98 
99 	if (!rpm->debug.count)
100 		rpm->debug.last_acquire = stack;
101 
102 	stacks = krealloc(rpm->debug.owners,
103 			  (rpm->debug.count + 1) * sizeof(*stacks),
104 			  GFP_NOWAIT | __GFP_NOWARN);
105 	if (stacks) {
106 		stacks[rpm->debug.count++] = stack;
107 		rpm->debug.owners = stacks;
108 	} else {
109 		stack = -1;
110 	}
111 
112 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
113 
114 	return stack;
115 }
116 
117 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
118 					     depot_stack_handle_t stack)
119 {
120 	unsigned long flags, n;
121 	bool found = false;
122 
123 	if (unlikely(stack == -1))
124 		return;
125 
126 	spin_lock_irqsave(&rpm->debug.lock, flags);
127 	for (n = rpm->debug.count; n--; ) {
128 		if (rpm->debug.owners[n] == stack) {
129 			memmove(rpm->debug.owners + n,
130 				rpm->debug.owners + n + 1,
131 				(--rpm->debug.count - n) * sizeof(stack));
132 			found = true;
133 			break;
134 		}
135 	}
136 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
137 
138 	if (WARN(!found,
139 		 "Unmatched wakeref (tracking %lu), count %u\n",
140 		 rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
141 		char *buf;
142 
143 		buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
144 		if (!buf)
145 			return;
146 
147 		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
148 		DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
149 
150 		stack = READ_ONCE(rpm->debug.last_release);
151 		if (stack) {
152 			__print_depot_stack(stack, buf, PAGE_SIZE, 2);
153 			DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
154 		}
155 
156 		kfree(buf);
157 	}
158 }
159 
160 static int cmphandle(const void *_a, const void *_b)
161 {
162 	const depot_stack_handle_t * const a = _a, * const b = _b;
163 
164 	if (*a < *b)
165 		return -1;
166 	else if (*a > *b)
167 		return 1;
168 	else
169 		return 0;
170 }
171 
172 static void
173 __print_intel_runtime_pm_wakeref(struct drm_printer *p,
174 				 const struct intel_runtime_pm_debug *dbg)
175 {
176 	unsigned long i;
177 	char *buf;
178 
179 	buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
180 	if (!buf)
181 		return;
182 
183 	if (dbg->last_acquire) {
184 		__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
185 		drm_printf(p, "Wakeref last acquired:\n%s", buf);
186 	}
187 
188 	if (dbg->last_release) {
189 		__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
190 		drm_printf(p, "Wakeref last released:\n%s", buf);
191 	}
192 
193 	drm_printf(p, "Wakeref count: %lu\n", dbg->count);
194 
195 	sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
196 
197 	for (i = 0; i < dbg->count; i++) {
198 		depot_stack_handle_t stack = dbg->owners[i];
199 		unsigned long rep;
200 
201 		rep = 1;
202 		while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
203 			rep++, i++;
204 		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
205 		drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
206 	}
207 
208 	kfree(buf);
209 }
210 
211 static noinline void
212 __untrack_all_wakerefs(struct intel_runtime_pm_debug *debug,
213 		       struct intel_runtime_pm_debug *saved)
214 {
215 	*saved = *debug;
216 
217 	debug->owners = NULL;
218 	debug->count = 0;
219 	debug->last_release = __save_depot_stack();
220 }
221 
222 static void
223 dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug)
224 {
225 	if (debug->count) {
226 		struct drm_printer p = drm_debug_printer("i915");
227 
228 		__print_intel_runtime_pm_wakeref(&p, debug);
229 	}
230 
231 	kfree(debug->owners);
232 }
233 
234 static noinline void
235 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
236 {
237 	struct intel_runtime_pm_debug dbg = {};
238 	unsigned long flags;
239 
240 	if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
241 					 &rpm->debug.lock,
242 					 flags))
243 		return;
244 
245 	__untrack_all_wakerefs(&rpm->debug, &dbg);
246 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
247 
248 	dump_and_free_wakeref_tracking(&dbg);
249 }
250 
251 static noinline void
252 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
253 {
254 	struct intel_runtime_pm_debug dbg = {};
255 	unsigned long flags;
256 
257 	spin_lock_irqsave(&rpm->debug.lock, flags);
258 	__untrack_all_wakerefs(&rpm->debug, &dbg);
259 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
260 
261 	dump_and_free_wakeref_tracking(&dbg);
262 }
263 
264 void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
265 				    struct drm_printer *p)
266 {
267 	struct intel_runtime_pm_debug dbg = {};
268 
269 	do {
270 		unsigned long alloc = dbg.count;
271 		depot_stack_handle_t *s;
272 
273 		spin_lock_irq(&rpm->debug.lock);
274 		dbg.count = rpm->debug.count;
275 		if (dbg.count <= alloc) {
276 			memcpy(dbg.owners,
277 			       rpm->debug.owners,
278 			       dbg.count * sizeof(*s));
279 		}
280 		dbg.last_acquire = rpm->debug.last_acquire;
281 		dbg.last_release = rpm->debug.last_release;
282 		spin_unlock_irq(&rpm->debug.lock);
283 		if (dbg.count <= alloc)
284 			break;
285 
286 		s = krealloc(dbg.owners,
287 			     dbg.count * sizeof(*s),
288 			     GFP_NOWAIT | __GFP_NOWARN);
289 		if (!s)
290 			goto out;
291 
292 		dbg.owners = s;
293 	} while (1);
294 
295 	__print_intel_runtime_pm_wakeref(p, &dbg);
296 
297 out:
298 	kfree(dbg.owners);
299 }
300 
301 #else
302 
303 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
304 {
305 }
306 
307 static depot_stack_handle_t
308 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
309 {
310 	return -1;
311 }
312 
313 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
314 					     intel_wakeref_t wref)
315 {
316 }
317 
318 static void
319 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
320 {
321 	atomic_dec(&rpm->wakeref_count);
322 }
323 
324 static void
325 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
326 {
327 }
328 
329 #endif
330 
331 static void
332 intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
333 {
334 	if (wakelock) {
335 		atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
336 		assert_rpm_wakelock_held(rpm);
337 	} else {
338 		atomic_inc(&rpm->wakeref_count);
339 		assert_rpm_raw_wakeref_held(rpm);
340 	}
341 }
342 
343 static void
344 intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
345 {
346 	if (wakelock) {
347 		assert_rpm_wakelock_held(rpm);
348 		atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
349 	} else {
350 		assert_rpm_raw_wakeref_held(rpm);
351 	}
352 
353 	__intel_wakeref_dec_and_check_tracking(rpm);
354 }
355 
356 static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
357 					      bool wakelock)
358 {
359 	int ret;
360 
361 	ret = pm_runtime_get_sync(rpm->kdev);
362 	WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
363 
364 	intel_runtime_pm_acquire(rpm, wakelock);
365 
366 	return track_intel_runtime_pm_wakeref(rpm);
367 }
368 
369 /**
370  * intel_runtime_pm_get_raw - grab a raw runtime pm reference
371  * @rpm: the intel_runtime_pm structure
372  *
373  * This is the unlocked version of intel_display_power_is_enabled() and should
374  * only be used from error capture and recovery code where deadlocks are
375  * possible.
376  * This function grabs a device-level runtime pm reference (mostly used for
377  * asynchronous PM management from display code) and ensures that it is powered
378  * up. Raw references are not considered during wakelock assert checks.
379  *
380  * Any runtime pm reference obtained by this function must have a symmetric
381  * call to intel_runtime_pm_put_raw() to release the reference again.
382  *
383  * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
384  * as True if the wakeref was acquired, or False otherwise.
385  */
386 intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
387 {
388 	return __intel_runtime_pm_get(rpm, false);
389 }
390 
391 /**
392  * intel_runtime_pm_get - grab a runtime pm reference
393  * @rpm: the intel_runtime_pm structure
394  *
395  * This function grabs a device-level runtime pm reference (mostly used for GEM
396  * code to ensure the GTT or GT is on) and ensures that it is powered up.
397  *
398  * Any runtime pm reference obtained by this function must have a symmetric
399  * call to intel_runtime_pm_put() to release the reference again.
400  *
401  * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
402  */
403 intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
404 {
405 	return __intel_runtime_pm_get(rpm, true);
406 }
407 
408 /**
409  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
410  * @rpm: the intel_runtime_pm structure
411  *
412  * This function grabs a device-level runtime pm reference if the device is
413  * already in use and ensures that it is powered up. It is illegal to try
414  * and access the HW should intel_runtime_pm_get_if_in_use() report failure.
415  *
416  * Any runtime pm reference obtained by this function must have a symmetric
417  * call to intel_runtime_pm_put() to release the reference again.
418  *
419  * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
420  * as True if the wakeref was acquired, or False otherwise.
421  */
422 intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
423 {
424 	if (IS_ENABLED(CONFIG_PM)) {
425 		/*
426 		 * In cases runtime PM is disabled by the RPM core and we get
427 		 * an -EINVAL return value we are not supposed to call this
428 		 * function, since the power state is undefined. This applies
429 		 * atm to the late/early system suspend/resume handlers.
430 		 */
431 		if (pm_runtime_get_if_in_use(rpm->kdev) <= 0)
432 			return 0;
433 	}
434 
435 	intel_runtime_pm_acquire(rpm, true);
436 
437 	return track_intel_runtime_pm_wakeref(rpm);
438 }
439 
440 /**
441  * intel_runtime_pm_get_noresume - grab a runtime pm reference
442  * @rpm: the intel_runtime_pm structure
443  *
444  * This function grabs a device-level runtime pm reference (mostly used for GEM
445  * code to ensure the GTT or GT is on).
446  *
447  * It will _not_ power up the device but instead only check that it's powered
448  * on.  Therefore it is only valid to call this functions from contexts where
449  * the device is known to be powered up and where trying to power it up would
450  * result in hilarity and deadlocks. That pretty much means only the system
451  * suspend/resume code where this is used to grab runtime pm references for
452  * delayed setup down in work items.
453  *
454  * Any runtime pm reference obtained by this function must have a symmetric
455  * call to intel_runtime_pm_put() to release the reference again.
456  *
457  * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
458  */
459 intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
460 {
461 	assert_rpm_wakelock_held(rpm);
462 	pm_runtime_get_noresume(rpm->kdev);
463 
464 	intel_runtime_pm_acquire(rpm, true);
465 
466 	return track_intel_runtime_pm_wakeref(rpm);
467 }
468 
469 static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
470 				   intel_wakeref_t wref,
471 				   bool wakelock)
472 {
473 	struct device *kdev = rpm->kdev;
474 
475 	untrack_intel_runtime_pm_wakeref(rpm, wref);
476 
477 	intel_runtime_pm_release(rpm, wakelock);
478 
479 	pm_runtime_mark_last_busy(kdev);
480 	pm_runtime_put_autosuspend(kdev);
481 }
482 
483 /**
484  * intel_runtime_pm_put_raw - release a raw runtime pm reference
485  * @rpm: the intel_runtime_pm structure
486  * @wref: wakeref acquired for the reference that is being released
487  *
488  * This function drops the device-level runtime pm reference obtained by
489  * intel_runtime_pm_get_raw() and might power down the corresponding
490  * hardware block right away if this is the last reference.
491  */
492 void
493 intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
494 {
495 	__intel_runtime_pm_put(rpm, wref, false);
496 }
497 
498 /**
499  * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
500  * @rpm: the intel_runtime_pm structure
501  *
502  * This function drops the device-level runtime pm reference obtained by
503  * intel_runtime_pm_get() and might power down the corresponding
504  * hardware block right away if this is the last reference.
505  *
506  * This function exists only for historical reasons and should be avoided in
507  * new code, as the correctness of its use cannot be checked. Always use
508  * intel_runtime_pm_put() instead.
509  */
510 void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
511 {
512 	__intel_runtime_pm_put(rpm, -1, true);
513 }
514 
515 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
516 /**
517  * intel_runtime_pm_put - release a runtime pm reference
518  * @rpm: the intel_runtime_pm structure
519  * @wref: wakeref acquired for the reference that is being released
520  *
521  * This function drops the device-level runtime pm reference obtained by
522  * intel_runtime_pm_get() and might power down the corresponding
523  * hardware block right away if this is the last reference.
524  */
525 void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
526 {
527 	__intel_runtime_pm_put(rpm, wref, true);
528 }
529 #endif
530 
531 /**
532  * intel_runtime_pm_enable - enable runtime pm
533  * @rpm: the intel_runtime_pm structure
534  *
535  * This function enables runtime pm at the end of the driver load sequence.
536  *
537  * Note that this function does currently not enable runtime pm for the
538  * subordinate display power domains. That is done by
539  * intel_power_domains_enable().
540  */
541 void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
542 {
543 	struct device *kdev = rpm->kdev;
544 
545 	/*
546 	 * Disable the system suspend direct complete optimization, which can
547 	 * leave the device suspended skipping the driver's suspend handlers
548 	 * if the device was already runtime suspended. This is needed due to
549 	 * the difference in our runtime and system suspend sequence and
550 	 * becaue the HDA driver may require us to enable the audio power
551 	 * domain during system suspend.
552 	 */
553 	dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP);
554 
555 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
556 	pm_runtime_mark_last_busy(kdev);
557 
558 	/*
559 	 * Take a permanent reference to disable the RPM functionality and drop
560 	 * it only when unloading the driver. Use the low level get/put helpers,
561 	 * so the driver's own RPM reference tracking asserts also work on
562 	 * platforms without RPM support.
563 	 */
564 	if (!rpm->available) {
565 		int ret;
566 
567 		pm_runtime_dont_use_autosuspend(kdev);
568 		ret = pm_runtime_get_sync(kdev);
569 		WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
570 	} else {
571 		pm_runtime_use_autosuspend(kdev);
572 	}
573 
574 	/*
575 	 * The core calls the driver load handler with an RPM reference held.
576 	 * We drop that here and will reacquire it during unloading in
577 	 * intel_power_domains_fini().
578 	 */
579 	pm_runtime_put_autosuspend(kdev);
580 }
581 
582 void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
583 {
584 	struct device *kdev = rpm->kdev;
585 
586 	/* Transfer rpm ownership back to core */
587 	WARN(pm_runtime_get_sync(kdev) < 0,
588 	     "Failed to pass rpm ownership back to core\n");
589 
590 	pm_runtime_dont_use_autosuspend(kdev);
591 
592 	if (!rpm->available)
593 		pm_runtime_put(kdev);
594 }
595 
596 void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm)
597 {
598 	int count = atomic_read(&rpm->wakeref_count);
599 
600 	WARN(count,
601 	     "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
602 	     intel_rpm_raw_wakeref_count(count),
603 	     intel_rpm_wakelock_count(count));
604 
605 	untrack_all_intel_runtime_pm_wakerefs(rpm);
606 }
607 
608 void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
609 {
610 	struct drm_i915_private *i915 =
611 			container_of(rpm, struct drm_i915_private, runtime_pm);
612 	struct pci_dev *pdev = i915->drm.pdev;
613 	struct device *kdev = &pdev->dev;
614 
615 	rpm->kdev = kdev;
616 	rpm->available = HAS_RUNTIME_PM(i915);
617 
618 	init_intel_runtime_pm_wakeref(rpm);
619 }
620