xref: /openbmc/linux/drivers/gpu/drm/i915/intel_runtime_pm.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 
31 #include <drm/drm_print.h>
32 
33 #include "i915_drv.h"
34 #include "i915_trace.h"
35 
36 /**
37  * DOC: runtime pm
38  *
39  * The i915 driver supports dynamic enabling and disabling of entire hardware
40  * blocks at runtime. This is especially important on the display side where
41  * software is supposed to control many power gates manually on recent hardware,
42  * since on the GT side a lot of the power management is done by the hardware.
43  * But even there some manual control at the device level is required.
44  *
45  * Since i915 supports a diverse set of platforms with a unified codebase and
46  * hardware engineers just love to shuffle functionality around between power
47  * domains there's a sizeable amount of indirection required. This file provides
48  * generic functions to the driver for grabbing and releasing references for
49  * abstract power domains. It then maps those to the actual power wells
50  * present for a given platform.
51  */
52 
53 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
54 
55 #include <linux/sort.h>
56 
57 #define STACKDEPTH 8
58 
59 static noinline depot_stack_handle_t __save_depot_stack(void)
60 {
61 	unsigned long entries[STACKDEPTH];
62 	unsigned int n;
63 
64 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
65 	return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN);
66 }
67 
68 static void __print_depot_stack(depot_stack_handle_t stack,
69 				char *buf, int sz, int indent)
70 {
71 	unsigned long *entries;
72 	unsigned int nr_entries;
73 
74 	nr_entries = stack_depot_fetch(stack, &entries);
75 	stack_trace_snprint(buf, sz, entries, nr_entries, indent);
76 }
77 
78 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
79 {
80 	spin_lock_init(&rpm->debug.lock);
81 }
82 
83 static noinline depot_stack_handle_t
84 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
85 {
86 	depot_stack_handle_t stack, *stacks;
87 	unsigned long flags;
88 
89 	if (!rpm->available)
90 		return -1;
91 
92 	stack = __save_depot_stack();
93 	if (!stack)
94 		return -1;
95 
96 	spin_lock_irqsave(&rpm->debug.lock, flags);
97 
98 	if (!rpm->debug.count)
99 		rpm->debug.last_acquire = stack;
100 
101 	stacks = krealloc(rpm->debug.owners,
102 			  (rpm->debug.count + 1) * sizeof(*stacks),
103 			  GFP_NOWAIT | __GFP_NOWARN);
104 	if (stacks) {
105 		stacks[rpm->debug.count++] = stack;
106 		rpm->debug.owners = stacks;
107 	} else {
108 		stack = -1;
109 	}
110 
111 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
112 
113 	return stack;
114 }
115 
116 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
117 					     depot_stack_handle_t stack)
118 {
119 	unsigned long flags, n;
120 	bool found = false;
121 
122 	if (unlikely(stack == -1))
123 		return;
124 
125 	spin_lock_irqsave(&rpm->debug.lock, flags);
126 	for (n = rpm->debug.count; n--; ) {
127 		if (rpm->debug.owners[n] == stack) {
128 			memmove(rpm->debug.owners + n,
129 				rpm->debug.owners + n + 1,
130 				(--rpm->debug.count - n) * sizeof(stack));
131 			found = true;
132 			break;
133 		}
134 	}
135 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
136 
137 	if (WARN(!found,
138 		 "Unmatched wakeref (tracking %lu), count %u\n",
139 		 rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
140 		char *buf;
141 
142 		buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
143 		if (!buf)
144 			return;
145 
146 		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
147 		DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
148 
149 		stack = READ_ONCE(rpm->debug.last_release);
150 		if (stack) {
151 			__print_depot_stack(stack, buf, PAGE_SIZE, 2);
152 			DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
153 		}
154 
155 		kfree(buf);
156 	}
157 }
158 
159 static int cmphandle(const void *_a, const void *_b)
160 {
161 	const depot_stack_handle_t * const a = _a, * const b = _b;
162 
163 	if (*a < *b)
164 		return -1;
165 	else if (*a > *b)
166 		return 1;
167 	else
168 		return 0;
169 }
170 
171 static void
172 __print_intel_runtime_pm_wakeref(struct drm_printer *p,
173 				 const struct intel_runtime_pm_debug *dbg)
174 {
175 	unsigned long i;
176 	char *buf;
177 
178 	buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
179 	if (!buf)
180 		return;
181 
182 	if (dbg->last_acquire) {
183 		__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
184 		drm_printf(p, "Wakeref last acquired:\n%s", buf);
185 	}
186 
187 	if (dbg->last_release) {
188 		__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
189 		drm_printf(p, "Wakeref last released:\n%s", buf);
190 	}
191 
192 	drm_printf(p, "Wakeref count: %lu\n", dbg->count);
193 
194 	sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
195 
196 	for (i = 0; i < dbg->count; i++) {
197 		depot_stack_handle_t stack = dbg->owners[i];
198 		unsigned long rep;
199 
200 		rep = 1;
201 		while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
202 			rep++, i++;
203 		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
204 		drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
205 	}
206 
207 	kfree(buf);
208 }
209 
210 static noinline void
211 __untrack_all_wakerefs(struct intel_runtime_pm_debug *debug,
212 		       struct intel_runtime_pm_debug *saved)
213 {
214 	*saved = *debug;
215 
216 	debug->owners = NULL;
217 	debug->count = 0;
218 	debug->last_release = __save_depot_stack();
219 }
220 
221 static void
222 dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug)
223 {
224 	if (debug->count) {
225 		struct drm_printer p = drm_debug_printer("i915");
226 
227 		__print_intel_runtime_pm_wakeref(&p, debug);
228 	}
229 
230 	kfree(debug->owners);
231 }
232 
233 static noinline void
234 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
235 {
236 	struct intel_runtime_pm_debug dbg = {};
237 	unsigned long flags;
238 
239 	if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
240 					 &rpm->debug.lock,
241 					 flags))
242 		return;
243 
244 	__untrack_all_wakerefs(&rpm->debug, &dbg);
245 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
246 
247 	dump_and_free_wakeref_tracking(&dbg);
248 }
249 
250 static noinline void
251 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
252 {
253 	struct intel_runtime_pm_debug dbg = {};
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&rpm->debug.lock, flags);
257 	__untrack_all_wakerefs(&rpm->debug, &dbg);
258 	spin_unlock_irqrestore(&rpm->debug.lock, flags);
259 
260 	dump_and_free_wakeref_tracking(&dbg);
261 }
262 
263 void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
264 				    struct drm_printer *p)
265 {
266 	struct intel_runtime_pm_debug dbg = {};
267 
268 	do {
269 		unsigned long alloc = dbg.count;
270 		depot_stack_handle_t *s;
271 
272 		spin_lock_irq(&rpm->debug.lock);
273 		dbg.count = rpm->debug.count;
274 		if (dbg.count <= alloc) {
275 			memcpy(dbg.owners,
276 			       rpm->debug.owners,
277 			       dbg.count * sizeof(*s));
278 		}
279 		dbg.last_acquire = rpm->debug.last_acquire;
280 		dbg.last_release = rpm->debug.last_release;
281 		spin_unlock_irq(&rpm->debug.lock);
282 		if (dbg.count <= alloc)
283 			break;
284 
285 		s = krealloc(dbg.owners,
286 			     dbg.count * sizeof(*s),
287 			     GFP_NOWAIT | __GFP_NOWARN);
288 		if (!s)
289 			goto out;
290 
291 		dbg.owners = s;
292 	} while (1);
293 
294 	__print_intel_runtime_pm_wakeref(p, &dbg);
295 
296 out:
297 	kfree(dbg.owners);
298 }
299 
300 #else
301 
302 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
303 {
304 }
305 
306 static depot_stack_handle_t
307 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
308 {
309 	return -1;
310 }
311 
312 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
313 					     intel_wakeref_t wref)
314 {
315 }
316 
317 static void
318 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
319 {
320 	atomic_dec(&rpm->wakeref_count);
321 }
322 
323 static void
324 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
325 {
326 }
327 
328 #endif
329 
330 static void
331 intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
332 {
333 	if (wakelock) {
334 		atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
335 		assert_rpm_wakelock_held(rpm);
336 	} else {
337 		atomic_inc(&rpm->wakeref_count);
338 		assert_rpm_raw_wakeref_held(rpm);
339 	}
340 }
341 
342 static void
343 intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
344 {
345 	if (wakelock) {
346 		assert_rpm_wakelock_held(rpm);
347 		atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
348 	} else {
349 		assert_rpm_raw_wakeref_held(rpm);
350 	}
351 
352 	__intel_wakeref_dec_and_check_tracking(rpm);
353 }
354 
355 static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
356 					      bool wakelock)
357 {
358 	int ret;
359 
360 	ret = pm_runtime_get_sync(rpm->kdev);
361 	WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
362 
363 	intel_runtime_pm_acquire(rpm, wakelock);
364 
365 	return track_intel_runtime_pm_wakeref(rpm);
366 }
367 
368 /**
369  * intel_runtime_pm_get_raw - grab a raw runtime pm reference
370  * @rpm: the intel_runtime_pm structure
371  *
372  * This is the unlocked version of intel_display_power_is_enabled() and should
373  * only be used from error capture and recovery code where deadlocks are
374  * possible.
375  * This function grabs a device-level runtime pm reference (mostly used for
376  * asynchronous PM management from display code) and ensures that it is powered
377  * up. Raw references are not considered during wakelock assert checks.
378  *
379  * Any runtime pm reference obtained by this function must have a symmetric
380  * call to intel_runtime_pm_put_raw() to release the reference again.
381  *
382  * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
383  * as True if the wakeref was acquired, or False otherwise.
384  */
385 intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
386 {
387 	return __intel_runtime_pm_get(rpm, false);
388 }
389 
390 /**
391  * intel_runtime_pm_get - grab a runtime pm reference
392  * @rpm: the intel_runtime_pm structure
393  *
394  * This function grabs a device-level runtime pm reference (mostly used for GEM
395  * code to ensure the GTT or GT is on) and ensures that it is powered up.
396  *
397  * Any runtime pm reference obtained by this function must have a symmetric
398  * call to intel_runtime_pm_put() to release the reference again.
399  *
400  * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
401  */
402 intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
403 {
404 	return __intel_runtime_pm_get(rpm, true);
405 }
406 
407 /**
408  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
409  * @rpm: the intel_runtime_pm structure
410  *
411  * This function grabs a device-level runtime pm reference if the device is
412  * already in use and ensures that it is powered up. It is illegal to try
413  * and access the HW should intel_runtime_pm_get_if_in_use() report failure.
414  *
415  * Any runtime pm reference obtained by this function must have a symmetric
416  * call to intel_runtime_pm_put() to release the reference again.
417  *
418  * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
419  * as True if the wakeref was acquired, or False otherwise.
420  */
421 intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
422 {
423 	if (IS_ENABLED(CONFIG_PM)) {
424 		/*
425 		 * In cases runtime PM is disabled by the RPM core and we get
426 		 * an -EINVAL return value we are not supposed to call this
427 		 * function, since the power state is undefined. This applies
428 		 * atm to the late/early system suspend/resume handlers.
429 		 */
430 		if (pm_runtime_get_if_in_use(rpm->kdev) <= 0)
431 			return 0;
432 	}
433 
434 	intel_runtime_pm_acquire(rpm, true);
435 
436 	return track_intel_runtime_pm_wakeref(rpm);
437 }
438 
439 /**
440  * intel_runtime_pm_get_noresume - grab a runtime pm reference
441  * @rpm: the intel_runtime_pm structure
442  *
443  * This function grabs a device-level runtime pm reference (mostly used for GEM
444  * code to ensure the GTT or GT is on).
445  *
446  * It will _not_ power up the device but instead only check that it's powered
447  * on.  Therefore it is only valid to call this functions from contexts where
448  * the device is known to be powered up and where trying to power it up would
449  * result in hilarity and deadlocks. That pretty much means only the system
450  * suspend/resume code where this is used to grab runtime pm references for
451  * delayed setup down in work items.
452  *
453  * Any runtime pm reference obtained by this function must have a symmetric
454  * call to intel_runtime_pm_put() to release the reference again.
455  *
456  * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
457  */
458 intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
459 {
460 	assert_rpm_wakelock_held(rpm);
461 	pm_runtime_get_noresume(rpm->kdev);
462 
463 	intel_runtime_pm_acquire(rpm, true);
464 
465 	return track_intel_runtime_pm_wakeref(rpm);
466 }
467 
468 static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
469 				   intel_wakeref_t wref,
470 				   bool wakelock)
471 {
472 	struct device *kdev = rpm->kdev;
473 
474 	untrack_intel_runtime_pm_wakeref(rpm, wref);
475 
476 	intel_runtime_pm_release(rpm, wakelock);
477 
478 	pm_runtime_mark_last_busy(kdev);
479 	pm_runtime_put_autosuspend(kdev);
480 }
481 
482 /**
483  * intel_runtime_pm_put_raw - release a raw runtime pm reference
484  * @rpm: the intel_runtime_pm structure
485  * @wref: wakeref acquired for the reference that is being released
486  *
487  * This function drops the device-level runtime pm reference obtained by
488  * intel_runtime_pm_get_raw() and might power down the corresponding
489  * hardware block right away if this is the last reference.
490  */
491 void
492 intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
493 {
494 	__intel_runtime_pm_put(rpm, wref, false);
495 }
496 
497 /**
498  * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
499  * @rpm: the intel_runtime_pm structure
500  *
501  * This function drops the device-level runtime pm reference obtained by
502  * intel_runtime_pm_get() and might power down the corresponding
503  * hardware block right away if this is the last reference.
504  *
505  * This function exists only for historical reasons and should be avoided in
506  * new code, as the correctness of its use cannot be checked. Always use
507  * intel_runtime_pm_put() instead.
508  */
509 void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
510 {
511 	__intel_runtime_pm_put(rpm, -1, true);
512 }
513 
514 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
515 /**
516  * intel_runtime_pm_put - release a runtime pm reference
517  * @rpm: the intel_runtime_pm structure
518  * @wref: wakeref acquired for the reference that is being released
519  *
520  * This function drops the device-level runtime pm reference obtained by
521  * intel_runtime_pm_get() and might power down the corresponding
522  * hardware block right away if this is the last reference.
523  */
524 void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
525 {
526 	__intel_runtime_pm_put(rpm, wref, true);
527 }
528 #endif
529 
530 /**
531  * intel_runtime_pm_enable - enable runtime pm
532  * @rpm: the intel_runtime_pm structure
533  *
534  * This function enables runtime pm at the end of the driver load sequence.
535  *
536  * Note that this function does currently not enable runtime pm for the
537  * subordinate display power domains. That is done by
538  * intel_power_domains_enable().
539  */
540 void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
541 {
542 	struct device *kdev = rpm->kdev;
543 
544 	/*
545 	 * Disable the system suspend direct complete optimization, which can
546 	 * leave the device suspended skipping the driver's suspend handlers
547 	 * if the device was already runtime suspended. This is needed due to
548 	 * the difference in our runtime and system suspend sequence and
549 	 * becaue the HDA driver may require us to enable the audio power
550 	 * domain during system suspend.
551 	 */
552 	dev_pm_set_driver_flags(kdev, DPM_FLAG_NO_DIRECT_COMPLETE);
553 
554 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
555 	pm_runtime_mark_last_busy(kdev);
556 
557 	/*
558 	 * Take a permanent reference to disable the RPM functionality and drop
559 	 * it only when unloading the driver. Use the low level get/put helpers,
560 	 * so the driver's own RPM reference tracking asserts also work on
561 	 * platforms without RPM support.
562 	 */
563 	if (!rpm->available) {
564 		int ret;
565 
566 		pm_runtime_dont_use_autosuspend(kdev);
567 		ret = pm_runtime_get_sync(kdev);
568 		WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
569 	} else {
570 		pm_runtime_use_autosuspend(kdev);
571 	}
572 
573 	/*
574 	 * The core calls the driver load handler with an RPM reference held.
575 	 * We drop that here and will reacquire it during unloading in
576 	 * intel_power_domains_fini().
577 	 */
578 	pm_runtime_put_autosuspend(kdev);
579 }
580 
581 void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
582 {
583 	struct device *kdev = rpm->kdev;
584 
585 	/* Transfer rpm ownership back to core */
586 	WARN(pm_runtime_get_sync(kdev) < 0,
587 	     "Failed to pass rpm ownership back to core\n");
588 
589 	pm_runtime_dont_use_autosuspend(kdev);
590 
591 	if (!rpm->available)
592 		pm_runtime_put(kdev);
593 }
594 
595 void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm)
596 {
597 	int count = atomic_read(&rpm->wakeref_count);
598 
599 	WARN(count,
600 	     "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
601 	     intel_rpm_raw_wakeref_count(count),
602 	     intel_rpm_wakelock_count(count));
603 
604 	untrack_all_intel_runtime_pm_wakerefs(rpm);
605 }
606 
607 void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
608 {
609 	struct drm_i915_private *i915 =
610 			container_of(rpm, struct drm_i915_private, runtime_pm);
611 	struct pci_dev *pdev = i915->drm.pdev;
612 	struct device *kdev = &pdev->dev;
613 
614 	rpm->kdev = kdev;
615 	rpm->available = HAS_RUNTIME_PM(i915);
616 
617 	init_intel_runtime_pm_wakeref(rpm);
618 }
619