1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 	switch (domain) {
72 	case POWER_DOMAIN_PIPE_A:
73 		return "PIPE_A";
74 	case POWER_DOMAIN_PIPE_B:
75 		return "PIPE_B";
76 	case POWER_DOMAIN_PIPE_C:
77 		return "PIPE_C";
78 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 		return "PIPE_A_PANEL_FITTER";
80 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 		return "PIPE_B_PANEL_FITTER";
82 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 		return "PIPE_C_PANEL_FITTER";
84 	case POWER_DOMAIN_TRANSCODER_A:
85 		return "TRANSCODER_A";
86 	case POWER_DOMAIN_TRANSCODER_B:
87 		return "TRANSCODER_B";
88 	case POWER_DOMAIN_TRANSCODER_C:
89 		return "TRANSCODER_C";
90 	case POWER_DOMAIN_TRANSCODER_EDP:
91 		return "TRANSCODER_EDP";
92 	case POWER_DOMAIN_PORT_DDI_A_LANES:
93 		return "PORT_DDI_A_LANES";
94 	case POWER_DOMAIN_PORT_DDI_B_LANES:
95 		return "PORT_DDI_B_LANES";
96 	case POWER_DOMAIN_PORT_DDI_C_LANES:
97 		return "PORT_DDI_C_LANES";
98 	case POWER_DOMAIN_PORT_DDI_D_LANES:
99 		return "PORT_DDI_D_LANES";
100 	case POWER_DOMAIN_PORT_DDI_E_LANES:
101 		return "PORT_DDI_E_LANES";
102 	case POWER_DOMAIN_PORT_DSI:
103 		return "PORT_DSI";
104 	case POWER_DOMAIN_PORT_CRT:
105 		return "PORT_CRT";
106 	case POWER_DOMAIN_PORT_OTHER:
107 		return "PORT_OTHER";
108 	case POWER_DOMAIN_VGA:
109 		return "VGA";
110 	case POWER_DOMAIN_AUDIO:
111 		return "AUDIO";
112 	case POWER_DOMAIN_PLLS:
113 		return "PLLS";
114 	case POWER_DOMAIN_AUX_A:
115 		return "AUX_A";
116 	case POWER_DOMAIN_AUX_B:
117 		return "AUX_B";
118 	case POWER_DOMAIN_AUX_C:
119 		return "AUX_C";
120 	case POWER_DOMAIN_AUX_D:
121 		return "AUX_D";
122 	case POWER_DOMAIN_GMBUS:
123 		return "GMBUS";
124 	case POWER_DOMAIN_INIT:
125 		return "INIT";
126 	case POWER_DOMAIN_MODESET:
127 		return "MODESET";
128 	default:
129 		MISSING_CASE(domain);
130 		return "?";
131 	}
132 }
133 
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 				    struct i915_power_well *power_well)
136 {
137 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 	power_well->ops->enable(dev_priv, power_well);
139 	power_well->hw_enabled = true;
140 }
141 
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 				     struct i915_power_well *power_well)
144 {
145 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 	power_well->hw_enabled = false;
147 	power_well->ops->disable(dev_priv, power_well);
148 }
149 
150 /*
151  * We should only use the power well if we explicitly asked the hardware to
152  * enable it, so check if it's enabled and also check if we've requested it to
153  * be enabled.
154  */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 				   struct i915_power_well *power_well)
157 {
158 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161 
162 /**
163  * __intel_display_power_is_enabled - unlocked check for a power domain
164  * @dev_priv: i915 device instance
165  * @domain: power domain to check
166  *
167  * This is the unlocked version of intel_display_power_is_enabled() and should
168  * only be used from error capture and recovery code where deadlocks are
169  * possible.
170  *
171  * Returns:
172  * True when the power domain is enabled, false otherwise.
173  */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 				      enum intel_display_power_domain domain)
176 {
177 	struct i915_power_domains *power_domains;
178 	struct i915_power_well *power_well;
179 	bool is_enabled;
180 	int i;
181 
182 	if (dev_priv->pm.suspended)
183 		return false;
184 
185 	power_domains = &dev_priv->power_domains;
186 
187 	is_enabled = true;
188 
189 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 		if (power_well->always_on)
191 			continue;
192 
193 		if (!power_well->hw_enabled) {
194 			is_enabled = false;
195 			break;
196 		}
197 	}
198 
199 	return is_enabled;
200 }
201 
202 /**
203  * intel_display_power_is_enabled - check for a power domain
204  * @dev_priv: i915 device instance
205  * @domain: power domain to check
206  *
207  * This function can be used to check the hw power domain state. It is mostly
208  * used in hardware state readout functions. Everywhere else code should rely
209  * upon explicit power domain reference counting to ensure that the hardware
210  * block is powered up before accessing it.
211  *
212  * Callers must hold the relevant modesetting locks to ensure that concurrent
213  * threads can't disable the power well while the caller tries to read a few
214  * registers.
215  *
216  * Returns:
217  * True when the power domain is enabled, false otherwise.
218  */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 				    enum intel_display_power_domain domain)
221 {
222 	struct i915_power_domains *power_domains;
223 	bool ret;
224 
225 	power_domains = &dev_priv->power_domains;
226 
227 	mutex_lock(&power_domains->lock);
228 	ret = __intel_display_power_is_enabled(dev_priv, domain);
229 	mutex_unlock(&power_domains->lock);
230 
231 	return ret;
232 }
233 
234 /**
235  * intel_display_set_init_power - set the initial power domain state
236  * @dev_priv: i915 device instance
237  * @enable: whether to enable or disable the initial power domain state
238  *
239  * For simplicity our driver load/unload and system suspend/resume code assumes
240  * that all power domains are always enabled. This functions controls the state
241  * of this little hack. While the initial power domain state is enabled runtime
242  * pm is effectively disabled.
243  */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 				  bool enable)
246 {
247 	if (dev_priv->power_domains.init_power_on == enable)
248 		return;
249 
250 	if (enable)
251 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 	else
253 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254 
255 	dev_priv->power_domains.init_power_on = enable;
256 }
257 
258 /*
259  * Starting with Haswell, we have a "Power Down Well" that can be turned off
260  * when not needed anymore. We have 4 registers that can request the power well
261  * to be enabled, and it will only be disabled if none of the registers is
262  * requesting it to be enabled.
263  */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 	struct drm_device *dev = dev_priv->dev;
267 
268 	/*
269 	 * After we re-enable the power well, if we touch VGA register 0x3d5
270 	 * we'll get unclaimed register interrupts. This stops after we write
271 	 * anything to the VGA MSR register. The vgacon module uses this
272 	 * register all the time, so if we unbind our driver and, as a
273 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 	 * console_unlock(). So make here we touch the VGA MSR register, making
275 	 * sure vgacon can keep working normally without triggering interrupts
276 	 * and error messages.
277 	 */
278 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281 
282 	if (IS_BROADWELL(dev))
283 		gen8_irq_power_well_post_enable(dev_priv,
284 						1 << PIPE_C | 1 << PIPE_B);
285 }
286 
287 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
288 {
289 	if (IS_BROADWELL(dev_priv))
290 		gen8_irq_power_well_pre_disable(dev_priv,
291 						1 << PIPE_C | 1 << PIPE_B);
292 }
293 
294 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
295 				       struct i915_power_well *power_well)
296 {
297 	struct drm_device *dev = dev_priv->dev;
298 
299 	/*
300 	 * After we re-enable the power well, if we touch VGA register 0x3d5
301 	 * we'll get unclaimed register interrupts. This stops after we write
302 	 * anything to the VGA MSR register. The vgacon module uses this
303 	 * register all the time, so if we unbind our driver and, as a
304 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
305 	 * console_unlock(). So make here we touch the VGA MSR register, making
306 	 * sure vgacon can keep working normally without triggering interrupts
307 	 * and error messages.
308 	 */
309 	if (power_well->data == SKL_DISP_PW_2) {
310 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
311 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
312 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
313 
314 		gen8_irq_power_well_post_enable(dev_priv,
315 						1 << PIPE_C | 1 << PIPE_B);
316 	}
317 }
318 
319 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
320 				       struct i915_power_well *power_well)
321 {
322 	if (power_well->data == SKL_DISP_PW_2)
323 		gen8_irq_power_well_pre_disable(dev_priv,
324 						1 << PIPE_C | 1 << PIPE_B);
325 }
326 
327 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
328 			       struct i915_power_well *power_well, bool enable)
329 {
330 	bool is_enabled, enable_requested;
331 	uint32_t tmp;
332 
333 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
334 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
335 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
336 
337 	if (enable) {
338 		if (!enable_requested)
339 			I915_WRITE(HSW_PWR_WELL_DRIVER,
340 				   HSW_PWR_WELL_ENABLE_REQUEST);
341 
342 		if (!is_enabled) {
343 			DRM_DEBUG_KMS("Enabling power well\n");
344 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
345 				      HSW_PWR_WELL_STATE_ENABLED), 20))
346 				DRM_ERROR("Timeout enabling power well\n");
347 			hsw_power_well_post_enable(dev_priv);
348 		}
349 
350 	} else {
351 		if (enable_requested) {
352 			hsw_power_well_pre_disable(dev_priv);
353 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
354 			POSTING_READ(HSW_PWR_WELL_DRIVER);
355 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
356 		}
357 	}
358 }
359 
360 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
361 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
362 	BIT(POWER_DOMAIN_PIPE_B) |			\
363 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
364 	BIT(POWER_DOMAIN_PIPE_C) |			\
365 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
366 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
367 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
368 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
369 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
370 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
371 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
372 	BIT(POWER_DOMAIN_AUX_B) |                       \
373 	BIT(POWER_DOMAIN_AUX_C) |			\
374 	BIT(POWER_DOMAIN_AUX_D) |			\
375 	BIT(POWER_DOMAIN_AUDIO) |			\
376 	BIT(POWER_DOMAIN_VGA) |				\
377 	BIT(POWER_DOMAIN_INIT))
378 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
379 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
380 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
381 	BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
383 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
384 	BIT(POWER_DOMAIN_INIT))
385 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
386 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
387 	BIT(POWER_DOMAIN_INIT))
388 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
389 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
390 	BIT(POWER_DOMAIN_INIT))
391 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
392 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
393 	BIT(POWER_DOMAIN_MODESET) |			\
394 	BIT(POWER_DOMAIN_AUX_A) |			\
395 	BIT(POWER_DOMAIN_INIT))
396 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
397 	(POWER_DOMAIN_MASK & ~(				\
398 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
399 	SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) |		\
400 	BIT(POWER_DOMAIN_INIT))
401 
402 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
403 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
404 	BIT(POWER_DOMAIN_PIPE_B) |			\
405 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
406 	BIT(POWER_DOMAIN_PIPE_C) |			\
407 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
408 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
409 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
410 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
411 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
412 	BIT(POWER_DOMAIN_AUX_B) |			\
413 	BIT(POWER_DOMAIN_AUX_C) |			\
414 	BIT(POWER_DOMAIN_AUDIO) |			\
415 	BIT(POWER_DOMAIN_VGA) |				\
416 	BIT(POWER_DOMAIN_GMBUS) |			\
417 	BIT(POWER_DOMAIN_INIT))
418 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
419 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
420 	BIT(POWER_DOMAIN_PIPE_A) |			\
421 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
422 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
423 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
424 	BIT(POWER_DOMAIN_AUX_A) |			\
425 	BIT(POWER_DOMAIN_PLLS) |			\
426 	BIT(POWER_DOMAIN_INIT))
427 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
428 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
429 	BIT(POWER_DOMAIN_MODESET) |			\
430 	BIT(POWER_DOMAIN_AUX_A) |			\
431 	BIT(POWER_DOMAIN_INIT))
432 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
433 	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
434 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
435 	BIT(POWER_DOMAIN_INIT))
436 
437 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
438 {
439 	struct drm_device *dev = dev_priv->dev;
440 
441 	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
442 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
443 		"DC9 already programmed to be enabled.\n");
444 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
445 		"DC5 still not disabled to enable DC9.\n");
446 	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
447 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
448 
449 	 /*
450 	  * TODO: check for the following to verify the conditions to enter DC9
451 	  * state are satisfied:
452 	  * 1] Check relevant display engine registers to verify if mode set
453 	  * disable sequence was followed.
454 	  * 2] Check if display uninitialize sequence is initialized.
455 	  */
456 }
457 
458 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
459 {
460 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
461 	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
462 		"DC9 already programmed to be disabled.\n");
463 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
464 		"DC5 still not disabled.\n");
465 
466 	 /*
467 	  * TODO: check for the following to verify DC9 state was indeed
468 	  * entered before programming to disable it:
469 	  * 1] Check relevant display engine registers to verify if mode
470 	  *  set disable sequence was followed.
471 	  * 2] Check if display uninitialize sequence is initialized.
472 	  */
473 }
474 
475 static void gen9_set_dc_state_debugmask(struct drm_i915_private *dev_priv)
476 {
477 	uint32_t val, mask;
478 
479 	mask = DC_STATE_DEBUG_MASK_MEMORY_UP;
480 
481 	if (IS_BROXTON(dev_priv))
482 		mask |= DC_STATE_DEBUG_MASK_CORES;
483 
484 	/* The below bit doesn't need to be cleared ever afterwards */
485 	val = I915_READ(DC_STATE_DEBUG);
486 	if ((val & mask) != mask) {
487 		val |= mask;
488 		I915_WRITE(DC_STATE_DEBUG, val);
489 		POSTING_READ(DC_STATE_DEBUG);
490 	}
491 }
492 
493 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
494 				u32 state)
495 {
496 	int rewrites = 0;
497 	int rereads = 0;
498 	u32 v;
499 
500 	I915_WRITE(DC_STATE_EN, state);
501 
502 	/* It has been observed that disabling the dc6 state sometimes
503 	 * doesn't stick and dmc keeps returning old value. Make sure
504 	 * the write really sticks enough times and also force rewrite until
505 	 * we are confident that state is exactly what we want.
506 	 */
507 	do  {
508 		v = I915_READ(DC_STATE_EN);
509 
510 		if (v != state) {
511 			I915_WRITE(DC_STATE_EN, state);
512 			rewrites++;
513 			rereads = 0;
514 		} else if (rereads++ > 5) {
515 			break;
516 		}
517 
518 	} while (rewrites < 100);
519 
520 	if (v != state)
521 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
522 			  state, v);
523 
524 	/* Most of the times we need one retry, avoid spam */
525 	if (rewrites > 1)
526 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
527 			      state, rewrites);
528 }
529 
530 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
531 {
532 	uint32_t val;
533 	uint32_t mask;
534 
535 	mask = DC_STATE_EN_UPTO_DC5;
536 	if (IS_BROXTON(dev_priv))
537 		mask |= DC_STATE_EN_DC9;
538 	else
539 		mask |= DC_STATE_EN_UPTO_DC6;
540 
541 	WARN_ON_ONCE(state & ~mask);
542 
543 	if (i915.enable_dc == 0)
544 		state = DC_STATE_DISABLE;
545 	else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
546 		state = DC_STATE_EN_UPTO_DC5;
547 
548 	val = I915_READ(DC_STATE_EN);
549 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
550 		      val & mask, state);
551 
552 	/* Check if DMC is ignoring our DC state requests */
553 	if ((val & mask) != dev_priv->csr.dc_state)
554 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
555 			  dev_priv->csr.dc_state, val & mask);
556 
557 	val &= ~mask;
558 	val |= state;
559 
560 	gen9_write_dc_state(dev_priv, val);
561 
562 	dev_priv->csr.dc_state = val & mask;
563 }
564 
565 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
566 {
567 	assert_can_enable_dc9(dev_priv);
568 
569 	DRM_DEBUG_KMS("Enabling DC9\n");
570 
571 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
572 }
573 
574 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
575 {
576 	assert_can_disable_dc9(dev_priv);
577 
578 	DRM_DEBUG_KMS("Disabling DC9\n");
579 
580 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
581 }
582 
583 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
584 {
585 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
586 		  "CSR program storage start is NULL\n");
587 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
588 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
589 }
590 
591 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
592 {
593 	struct drm_device *dev = dev_priv->dev;
594 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
595 					SKL_DISP_PW_2);
596 
597 	WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
598 		  "Platform doesn't support DC5.\n");
599 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
600 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
601 
602 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
603 		  "DC5 already programmed to be enabled.\n");
604 	assert_rpm_wakelock_held(dev_priv);
605 
606 	assert_csr_loaded(dev_priv);
607 }
608 
609 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
610 {
611 	/*
612 	 * During initialization, the firmware may not be loaded yet.
613 	 * We still want to make sure that the DC enabling flag is cleared.
614 	 */
615 	if (dev_priv->power_domains.initializing)
616 		return;
617 
618 	assert_rpm_wakelock_held(dev_priv);
619 }
620 
621 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622 {
623 	assert_can_enable_dc5(dev_priv);
624 
625 	DRM_DEBUG_KMS("Enabling DC5\n");
626 
627 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628 }
629 
630 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631 {
632 	struct drm_device *dev = dev_priv->dev;
633 
634 	WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
635 		  "Platform doesn't support DC6.\n");
636 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
637 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
638 		  "Backlight is not disabled.\n");
639 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
640 		  "DC6 already programmed to be enabled.\n");
641 
642 	assert_csr_loaded(dev_priv);
643 }
644 
645 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
646 {
647 	/*
648 	 * During initialization, the firmware may not be loaded yet.
649 	 * We still want to make sure that the DC enabling flag is cleared.
650 	 */
651 	if (dev_priv->power_domains.initializing)
652 		return;
653 
654 	WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
655 		  "DC6 already programmed to be disabled.\n");
656 }
657 
658 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
659 {
660 	assert_can_disable_dc5(dev_priv);
661 
662 	if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
663 	    i915.enable_dc != 0 && i915.enable_dc != 1)
664 		assert_can_disable_dc6(dev_priv);
665 
666 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
667 }
668 
669 void skl_enable_dc6(struct drm_i915_private *dev_priv)
670 {
671 	assert_can_enable_dc6(dev_priv);
672 
673 	DRM_DEBUG_KMS("Enabling DC6\n");
674 
675 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
676 
677 }
678 
679 void skl_disable_dc6(struct drm_i915_private *dev_priv)
680 {
681 	assert_can_disable_dc6(dev_priv);
682 
683 	DRM_DEBUG_KMS("Disabling DC6\n");
684 
685 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
686 }
687 
688 static void skl_set_power_well(struct drm_i915_private *dev_priv,
689 			struct i915_power_well *power_well, bool enable)
690 {
691 	uint32_t tmp, fuse_status;
692 	uint32_t req_mask, state_mask;
693 	bool is_enabled, enable_requested, check_fuse_status = false;
694 
695 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
696 	fuse_status = I915_READ(SKL_FUSE_STATUS);
697 
698 	switch (power_well->data) {
699 	case SKL_DISP_PW_1:
700 		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
701 			SKL_FUSE_PG0_DIST_STATUS), 1)) {
702 			DRM_ERROR("PG0 not enabled\n");
703 			return;
704 		}
705 		break;
706 	case SKL_DISP_PW_2:
707 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
708 			DRM_ERROR("PG1 in disabled state\n");
709 			return;
710 		}
711 		break;
712 	case SKL_DISP_PW_DDI_A_E:
713 	case SKL_DISP_PW_DDI_B:
714 	case SKL_DISP_PW_DDI_C:
715 	case SKL_DISP_PW_DDI_D:
716 	case SKL_DISP_PW_MISC_IO:
717 		break;
718 	default:
719 		WARN(1, "Unknown power well %lu\n", power_well->data);
720 		return;
721 	}
722 
723 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
724 	enable_requested = tmp & req_mask;
725 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
726 	is_enabled = tmp & state_mask;
727 
728 	if (!enable && enable_requested)
729 		skl_power_well_pre_disable(dev_priv, power_well);
730 
731 	if (enable) {
732 		if (!enable_requested) {
733 			WARN((tmp & state_mask) &&
734 				!I915_READ(HSW_PWR_WELL_BIOS),
735 				"Invalid for power well status to be enabled, unless done by the BIOS, \
736 				when request is to disable!\n");
737 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
738 		}
739 
740 		if (!is_enabled) {
741 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
742 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
743 				state_mask), 1))
744 				DRM_ERROR("%s enable timeout\n",
745 					power_well->name);
746 			check_fuse_status = true;
747 		}
748 	} else {
749 		if (enable_requested) {
750 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
751 			POSTING_READ(HSW_PWR_WELL_DRIVER);
752 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
753 		}
754 	}
755 
756 	if (check_fuse_status) {
757 		if (power_well->data == SKL_DISP_PW_1) {
758 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
759 				SKL_FUSE_PG1_DIST_STATUS), 1))
760 				DRM_ERROR("PG1 distributing status timeout\n");
761 		} else if (power_well->data == SKL_DISP_PW_2) {
762 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
763 				SKL_FUSE_PG2_DIST_STATUS), 1))
764 				DRM_ERROR("PG2 distributing status timeout\n");
765 		}
766 	}
767 
768 	if (enable && !is_enabled)
769 		skl_power_well_post_enable(dev_priv, power_well);
770 }
771 
772 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
773 				   struct i915_power_well *power_well)
774 {
775 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
776 
777 	/*
778 	 * We're taking over the BIOS, so clear any requests made by it since
779 	 * the driver is in charge now.
780 	 */
781 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
782 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
783 }
784 
785 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
786 				  struct i915_power_well *power_well)
787 {
788 	hsw_set_power_well(dev_priv, power_well, true);
789 }
790 
791 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
792 				   struct i915_power_well *power_well)
793 {
794 	hsw_set_power_well(dev_priv, power_well, false);
795 }
796 
797 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
798 					struct i915_power_well *power_well)
799 {
800 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
801 		SKL_POWER_WELL_STATE(power_well->data);
802 
803 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
804 }
805 
806 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
807 				struct i915_power_well *power_well)
808 {
809 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
810 
811 	/* Clear any request made by BIOS as driver is taking over */
812 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
813 }
814 
815 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
816 				struct i915_power_well *power_well)
817 {
818 	skl_set_power_well(dev_priv, power_well, true);
819 }
820 
821 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
822 				struct i915_power_well *power_well)
823 {
824 	skl_set_power_well(dev_priv, power_well, false);
825 }
826 
827 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
828 					   struct i915_power_well *power_well)
829 {
830 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
831 }
832 
833 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
834 					  struct i915_power_well *power_well)
835 {
836 	gen9_disable_dc5_dc6(dev_priv);
837 }
838 
839 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
840 					   struct i915_power_well *power_well)
841 {
842 	if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
843 	    i915.enable_dc != 0 && i915.enable_dc != 1)
844 		skl_enable_dc6(dev_priv);
845 	else
846 		gen9_enable_dc5(dev_priv);
847 }
848 
849 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
850 					   struct i915_power_well *power_well)
851 {
852 	if (power_well->count > 0) {
853 		gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
854 	} else {
855 		if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
856 		    i915.enable_dc != 0 &&
857 		    i915.enable_dc != 1)
858 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
859 		else
860 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
861 	}
862 }
863 
864 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
865 					   struct i915_power_well *power_well)
866 {
867 }
868 
869 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
870 					     struct i915_power_well *power_well)
871 {
872 	return true;
873 }
874 
875 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
876 			       struct i915_power_well *power_well, bool enable)
877 {
878 	enum punit_power_well power_well_id = power_well->data;
879 	u32 mask;
880 	u32 state;
881 	u32 ctrl;
882 
883 	mask = PUNIT_PWRGT_MASK(power_well_id);
884 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
885 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
886 
887 	mutex_lock(&dev_priv->rps.hw_lock);
888 
889 #define COND \
890 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
891 
892 	if (COND)
893 		goto out;
894 
895 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
896 	ctrl &= ~mask;
897 	ctrl |= state;
898 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
899 
900 	if (wait_for(COND, 100))
901 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
902 			  state,
903 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
904 
905 #undef COND
906 
907 out:
908 	mutex_unlock(&dev_priv->rps.hw_lock);
909 }
910 
911 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
912 				   struct i915_power_well *power_well)
913 {
914 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
915 }
916 
917 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
918 				  struct i915_power_well *power_well)
919 {
920 	vlv_set_power_well(dev_priv, power_well, true);
921 }
922 
923 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
924 				   struct i915_power_well *power_well)
925 {
926 	vlv_set_power_well(dev_priv, power_well, false);
927 }
928 
929 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
930 				   struct i915_power_well *power_well)
931 {
932 	int power_well_id = power_well->data;
933 	bool enabled = false;
934 	u32 mask;
935 	u32 state;
936 	u32 ctrl;
937 
938 	mask = PUNIT_PWRGT_MASK(power_well_id);
939 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
940 
941 	mutex_lock(&dev_priv->rps.hw_lock);
942 
943 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
944 	/*
945 	 * We only ever set the power-on and power-gate states, anything
946 	 * else is unexpected.
947 	 */
948 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
949 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
950 	if (state == ctrl)
951 		enabled = true;
952 
953 	/*
954 	 * A transient state at this point would mean some unexpected party
955 	 * is poking at the power controls too.
956 	 */
957 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
958 	WARN_ON(ctrl != state);
959 
960 	mutex_unlock(&dev_priv->rps.hw_lock);
961 
962 	return enabled;
963 }
964 
965 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
966 {
967 	enum pipe pipe;
968 
969 	/*
970 	 * Enable the CRI clock source so we can get at the
971 	 * display and the reference clock for VGA
972 	 * hotplug / manual detection. Supposedly DSI also
973 	 * needs the ref clock up and running.
974 	 *
975 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
976 	 */
977 	for_each_pipe(dev_priv->dev, pipe) {
978 		u32 val = I915_READ(DPLL(pipe));
979 
980 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
981 		if (pipe != PIPE_A)
982 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
983 
984 		I915_WRITE(DPLL(pipe), val);
985 	}
986 
987 	spin_lock_irq(&dev_priv->irq_lock);
988 	valleyview_enable_display_irqs(dev_priv);
989 	spin_unlock_irq(&dev_priv->irq_lock);
990 
991 	/*
992 	 * During driver initialization/resume we can avoid restoring the
993 	 * part of the HW/SW state that will be inited anyway explicitly.
994 	 */
995 	if (dev_priv->power_domains.initializing)
996 		return;
997 
998 	intel_hpd_init(dev_priv);
999 
1000 	i915_redisable_vga_power_on(dev_priv->dev);
1001 }
1002 
1003 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1004 {
1005 	spin_lock_irq(&dev_priv->irq_lock);
1006 	valleyview_disable_display_irqs(dev_priv);
1007 	spin_unlock_irq(&dev_priv->irq_lock);
1008 
1009 	/* make sure we're done processing display irqs */
1010 	synchronize_irq(dev_priv->dev->irq);
1011 
1012 	vlv_power_sequencer_reset(dev_priv);
1013 }
1014 
1015 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1016 					  struct i915_power_well *power_well)
1017 {
1018 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1019 
1020 	vlv_set_power_well(dev_priv, power_well, true);
1021 
1022 	vlv_display_power_well_init(dev_priv);
1023 }
1024 
1025 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1026 					   struct i915_power_well *power_well)
1027 {
1028 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1029 
1030 	vlv_display_power_well_deinit(dev_priv);
1031 
1032 	vlv_set_power_well(dev_priv, power_well, false);
1033 }
1034 
1035 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1036 					   struct i915_power_well *power_well)
1037 {
1038 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1039 
1040 	/* since ref/cri clock was enabled */
1041 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1042 
1043 	vlv_set_power_well(dev_priv, power_well, true);
1044 
1045 	/*
1046 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1047 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1048 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1049 	 *   b.	The other bits such as sfr settings / modesel may all
1050 	 *	be set to 0.
1051 	 *
1052 	 * This should only be done on init and resume from S3 with
1053 	 * both PLLs disabled, or we risk losing DPIO and PLL
1054 	 * synchronization.
1055 	 */
1056 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1057 }
1058 
1059 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1060 					    struct i915_power_well *power_well)
1061 {
1062 	enum pipe pipe;
1063 
1064 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1065 
1066 	for_each_pipe(dev_priv, pipe)
1067 		assert_pll_disabled(dev_priv, pipe);
1068 
1069 	/* Assert common reset */
1070 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1071 
1072 	vlv_set_power_well(dev_priv, power_well, false);
1073 }
1074 
1075 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1076 
1077 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1078 						 int power_well_id)
1079 {
1080 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1081 	int i;
1082 
1083 	for (i = 0; i < power_domains->power_well_count; i++) {
1084 		struct i915_power_well *power_well;
1085 
1086 		power_well = &power_domains->power_wells[i];
1087 		if (power_well->data == power_well_id)
1088 			return power_well;
1089 	}
1090 
1091 	return NULL;
1092 }
1093 
1094 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1095 
1096 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1097 {
1098 	struct i915_power_well *cmn_bc =
1099 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1100 	struct i915_power_well *cmn_d =
1101 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1102 	u32 phy_control = dev_priv->chv_phy_control;
1103 	u32 phy_status = 0;
1104 	u32 phy_status_mask = 0xffffffff;
1105 	u32 tmp;
1106 
1107 	/*
1108 	 * The BIOS can leave the PHY is some weird state
1109 	 * where it doesn't fully power down some parts.
1110 	 * Disable the asserts until the PHY has been fully
1111 	 * reset (ie. the power well has been disabled at
1112 	 * least once).
1113 	 */
1114 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1115 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1116 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1117 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1118 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1119 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1120 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1121 
1122 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1123 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1124 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1125 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1126 
1127 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1128 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1129 
1130 		/* this assumes override is only used to enable lanes */
1131 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1132 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1133 
1134 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1135 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1136 
1137 		/* CL1 is on whenever anything is on in either channel */
1138 		if (BITS_SET(phy_control,
1139 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1140 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1141 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1142 
1143 		/*
1144 		 * The DPLLB check accounts for the pipe B + port A usage
1145 		 * with CL2 powered up but all the lanes in the second channel
1146 		 * powered down.
1147 		 */
1148 		if (BITS_SET(phy_control,
1149 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1150 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1151 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1152 
1153 		if (BITS_SET(phy_control,
1154 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1155 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1156 		if (BITS_SET(phy_control,
1157 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1158 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1159 
1160 		if (BITS_SET(phy_control,
1161 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1162 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1163 		if (BITS_SET(phy_control,
1164 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1165 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1166 	}
1167 
1168 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1169 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1170 
1171 		/* this assumes override is only used to enable lanes */
1172 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1173 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1174 
1175 		if (BITS_SET(phy_control,
1176 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1177 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1178 
1179 		if (BITS_SET(phy_control,
1180 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1181 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1182 		if (BITS_SET(phy_control,
1183 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1184 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1185 	}
1186 
1187 	phy_status &= phy_status_mask;
1188 
1189 	/*
1190 	 * The PHY may be busy with some initial calibration and whatnot,
1191 	 * so the power state can take a while to actually change.
1192 	 */
1193 	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1194 		WARN(phy_status != tmp,
1195 		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1196 		     tmp, phy_status, dev_priv->chv_phy_control);
1197 }
1198 
1199 #undef BITS_SET
1200 
1201 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1202 					   struct i915_power_well *power_well)
1203 {
1204 	enum dpio_phy phy;
1205 	enum pipe pipe;
1206 	uint32_t tmp;
1207 
1208 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1209 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1210 
1211 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1212 		pipe = PIPE_A;
1213 		phy = DPIO_PHY0;
1214 	} else {
1215 		pipe = PIPE_C;
1216 		phy = DPIO_PHY1;
1217 	}
1218 
1219 	/* since ref/cri clock was enabled */
1220 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1221 	vlv_set_power_well(dev_priv, power_well, true);
1222 
1223 	/* Poll for phypwrgood signal */
1224 	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1225 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1226 
1227 	mutex_lock(&dev_priv->sb_lock);
1228 
1229 	/* Enable dynamic power down */
1230 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1231 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1232 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1233 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1234 
1235 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1236 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1237 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1238 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1239 	} else {
1240 		/*
1241 		 * Force the non-existing CL2 off. BXT does this
1242 		 * too, so maybe it saves some power even though
1243 		 * CL2 doesn't exist?
1244 		 */
1245 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1246 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1247 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1248 	}
1249 
1250 	mutex_unlock(&dev_priv->sb_lock);
1251 
1252 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1253 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1254 
1255 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1256 		      phy, dev_priv->chv_phy_control);
1257 
1258 	assert_chv_phy_status(dev_priv);
1259 }
1260 
1261 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1262 					    struct i915_power_well *power_well)
1263 {
1264 	enum dpio_phy phy;
1265 
1266 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1267 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1268 
1269 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1270 		phy = DPIO_PHY0;
1271 		assert_pll_disabled(dev_priv, PIPE_A);
1272 		assert_pll_disabled(dev_priv, PIPE_B);
1273 	} else {
1274 		phy = DPIO_PHY1;
1275 		assert_pll_disabled(dev_priv, PIPE_C);
1276 	}
1277 
1278 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1279 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1280 
1281 	vlv_set_power_well(dev_priv, power_well, false);
1282 
1283 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1284 		      phy, dev_priv->chv_phy_control);
1285 
1286 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1287 	dev_priv->chv_phy_assert[phy] = true;
1288 
1289 	assert_chv_phy_status(dev_priv);
1290 }
1291 
1292 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1293 				     enum dpio_channel ch, bool override, unsigned int mask)
1294 {
1295 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1296 	u32 reg, val, expected, actual;
1297 
1298 	/*
1299 	 * The BIOS can leave the PHY is some weird state
1300 	 * where it doesn't fully power down some parts.
1301 	 * Disable the asserts until the PHY has been fully
1302 	 * reset (ie. the power well has been disabled at
1303 	 * least once).
1304 	 */
1305 	if (!dev_priv->chv_phy_assert[phy])
1306 		return;
1307 
1308 	if (ch == DPIO_CH0)
1309 		reg = _CHV_CMN_DW0_CH0;
1310 	else
1311 		reg = _CHV_CMN_DW6_CH1;
1312 
1313 	mutex_lock(&dev_priv->sb_lock);
1314 	val = vlv_dpio_read(dev_priv, pipe, reg);
1315 	mutex_unlock(&dev_priv->sb_lock);
1316 
1317 	/*
1318 	 * This assumes !override is only used when the port is disabled.
1319 	 * All lanes should power down even without the override when
1320 	 * the port is disabled.
1321 	 */
1322 	if (!override || mask == 0xf) {
1323 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1324 		/*
1325 		 * If CH1 common lane is not active anymore
1326 		 * (eg. for pipe B DPLL) the entire channel will
1327 		 * shut down, which causes the common lane registers
1328 		 * to read as 0. That means we can't actually check
1329 		 * the lane power down status bits, but as the entire
1330 		 * register reads as 0 it's a good indication that the
1331 		 * channel is indeed entirely powered down.
1332 		 */
1333 		if (ch == DPIO_CH1 && val == 0)
1334 			expected = 0;
1335 	} else if (mask != 0x0) {
1336 		expected = DPIO_ANYDL_POWERDOWN;
1337 	} else {
1338 		expected = 0;
1339 	}
1340 
1341 	if (ch == DPIO_CH0)
1342 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1343 	else
1344 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1345 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1346 
1347 	WARN(actual != expected,
1348 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1349 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1350 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1351 	     reg, val);
1352 }
1353 
1354 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1355 			  enum dpio_channel ch, bool override)
1356 {
1357 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1358 	bool was_override;
1359 
1360 	mutex_lock(&power_domains->lock);
1361 
1362 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1363 
1364 	if (override == was_override)
1365 		goto out;
1366 
1367 	if (override)
1368 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1369 	else
1370 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1371 
1372 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1373 
1374 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1375 		      phy, ch, dev_priv->chv_phy_control);
1376 
1377 	assert_chv_phy_status(dev_priv);
1378 
1379 out:
1380 	mutex_unlock(&power_domains->lock);
1381 
1382 	return was_override;
1383 }
1384 
1385 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1386 			     bool override, unsigned int mask)
1387 {
1388 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1389 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1390 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1391 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1392 
1393 	mutex_lock(&power_domains->lock);
1394 
1395 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1396 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1397 
1398 	if (override)
1399 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1400 	else
1401 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1402 
1403 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1404 
1405 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1406 		      phy, ch, mask, dev_priv->chv_phy_control);
1407 
1408 	assert_chv_phy_status(dev_priv);
1409 
1410 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1411 
1412 	mutex_unlock(&power_domains->lock);
1413 }
1414 
1415 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1416 					struct i915_power_well *power_well)
1417 {
1418 	enum pipe pipe = power_well->data;
1419 	bool enabled;
1420 	u32 state, ctrl;
1421 
1422 	mutex_lock(&dev_priv->rps.hw_lock);
1423 
1424 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1425 	/*
1426 	 * We only ever set the power-on and power-gate states, anything
1427 	 * else is unexpected.
1428 	 */
1429 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1430 	enabled = state == DP_SSS_PWR_ON(pipe);
1431 
1432 	/*
1433 	 * A transient state at this point would mean some unexpected party
1434 	 * is poking at the power controls too.
1435 	 */
1436 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1437 	WARN_ON(ctrl << 16 != state);
1438 
1439 	mutex_unlock(&dev_priv->rps.hw_lock);
1440 
1441 	return enabled;
1442 }
1443 
1444 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1445 				    struct i915_power_well *power_well,
1446 				    bool enable)
1447 {
1448 	enum pipe pipe = power_well->data;
1449 	u32 state;
1450 	u32 ctrl;
1451 
1452 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1453 
1454 	mutex_lock(&dev_priv->rps.hw_lock);
1455 
1456 #define COND \
1457 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1458 
1459 	if (COND)
1460 		goto out;
1461 
1462 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1463 	ctrl &= ~DP_SSC_MASK(pipe);
1464 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1465 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1466 
1467 	if (wait_for(COND, 100))
1468 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1469 			  state,
1470 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1471 
1472 #undef COND
1473 
1474 out:
1475 	mutex_unlock(&dev_priv->rps.hw_lock);
1476 }
1477 
1478 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1479 					struct i915_power_well *power_well)
1480 {
1481 	WARN_ON_ONCE(power_well->data != PIPE_A);
1482 
1483 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1484 }
1485 
1486 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1487 				       struct i915_power_well *power_well)
1488 {
1489 	WARN_ON_ONCE(power_well->data != PIPE_A);
1490 
1491 	chv_set_pipe_power_well(dev_priv, power_well, true);
1492 
1493 	vlv_display_power_well_init(dev_priv);
1494 }
1495 
1496 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1497 					struct i915_power_well *power_well)
1498 {
1499 	WARN_ON_ONCE(power_well->data != PIPE_A);
1500 
1501 	vlv_display_power_well_deinit(dev_priv);
1502 
1503 	chv_set_pipe_power_well(dev_priv, power_well, false);
1504 }
1505 
1506 static void
1507 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1508 				 enum intel_display_power_domain domain)
1509 {
1510 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1511 	struct i915_power_well *power_well;
1512 	int i;
1513 
1514 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1515 		if (!power_well->count++)
1516 			intel_power_well_enable(dev_priv, power_well);
1517 	}
1518 
1519 	power_domains->domain_use_count[domain]++;
1520 }
1521 
1522 /**
1523  * intel_display_power_get - grab a power domain reference
1524  * @dev_priv: i915 device instance
1525  * @domain: power domain to reference
1526  *
1527  * This function grabs a power domain reference for @domain and ensures that the
1528  * power domain and all its parents are powered up. Therefore users should only
1529  * grab a reference to the innermost power domain they need.
1530  *
1531  * Any power domain reference obtained by this function must have a symmetric
1532  * call to intel_display_power_put() to release the reference again.
1533  */
1534 void intel_display_power_get(struct drm_i915_private *dev_priv,
1535 			     enum intel_display_power_domain domain)
1536 {
1537 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1538 
1539 	intel_runtime_pm_get(dev_priv);
1540 
1541 	mutex_lock(&power_domains->lock);
1542 
1543 	__intel_display_power_get_domain(dev_priv, domain);
1544 
1545 	mutex_unlock(&power_domains->lock);
1546 }
1547 
1548 /**
1549  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1550  * @dev_priv: i915 device instance
1551  * @domain: power domain to reference
1552  *
1553  * This function grabs a power domain reference for @domain and ensures that the
1554  * power domain and all its parents are powered up. Therefore users should only
1555  * grab a reference to the innermost power domain they need.
1556  *
1557  * Any power domain reference obtained by this function must have a symmetric
1558  * call to intel_display_power_put() to release the reference again.
1559  */
1560 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1561 					enum intel_display_power_domain domain)
1562 {
1563 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1564 	bool is_enabled;
1565 
1566 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1567 		return false;
1568 
1569 	mutex_lock(&power_domains->lock);
1570 
1571 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1572 		__intel_display_power_get_domain(dev_priv, domain);
1573 		is_enabled = true;
1574 	} else {
1575 		is_enabled = false;
1576 	}
1577 
1578 	mutex_unlock(&power_domains->lock);
1579 
1580 	if (!is_enabled)
1581 		intel_runtime_pm_put(dev_priv);
1582 
1583 	return is_enabled;
1584 }
1585 
1586 /**
1587  * intel_display_power_put - release a power domain reference
1588  * @dev_priv: i915 device instance
1589  * @domain: power domain to reference
1590  *
1591  * This function drops the power domain reference obtained by
1592  * intel_display_power_get() and might power down the corresponding hardware
1593  * block right away if this is the last reference.
1594  */
1595 void intel_display_power_put(struct drm_i915_private *dev_priv,
1596 			     enum intel_display_power_domain domain)
1597 {
1598 	struct i915_power_domains *power_domains;
1599 	struct i915_power_well *power_well;
1600 	int i;
1601 
1602 	power_domains = &dev_priv->power_domains;
1603 
1604 	mutex_lock(&power_domains->lock);
1605 
1606 	WARN(!power_domains->domain_use_count[domain],
1607 	     "Use count on domain %s is already zero\n",
1608 	     intel_display_power_domain_str(domain));
1609 	power_domains->domain_use_count[domain]--;
1610 
1611 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1612 		WARN(!power_well->count,
1613 		     "Use count on power well %s is already zero",
1614 		     power_well->name);
1615 
1616 		if (!--power_well->count)
1617 			intel_power_well_disable(dev_priv, power_well);
1618 	}
1619 
1620 	mutex_unlock(&power_domains->lock);
1621 
1622 	intel_runtime_pm_put(dev_priv);
1623 }
1624 
1625 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
1626 	BIT(POWER_DOMAIN_PIPE_A) |			\
1627 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1628 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
1629 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1630 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1631 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1632 	BIT(POWER_DOMAIN_PORT_CRT) |			\
1633 	BIT(POWER_DOMAIN_PLLS) |			\
1634 	BIT(POWER_DOMAIN_AUX_A) |			\
1635 	BIT(POWER_DOMAIN_AUX_B) |			\
1636 	BIT(POWER_DOMAIN_AUX_C) |			\
1637 	BIT(POWER_DOMAIN_AUX_D) |			\
1638 	BIT(POWER_DOMAIN_GMBUS) |			\
1639 	BIT(POWER_DOMAIN_INIT))
1640 #define HSW_DISPLAY_POWER_DOMAINS (				\
1641 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
1642 	BIT(POWER_DOMAIN_INIT))
1643 
1644 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
1645 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
1646 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1647 #define BDW_DISPLAY_POWER_DOMAINS (				\
1648 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
1649 	BIT(POWER_DOMAIN_INIT))
1650 
1651 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
1652 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
1653 
1654 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1655 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1656 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1657 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1658 	BIT(POWER_DOMAIN_AUX_B) |		\
1659 	BIT(POWER_DOMAIN_AUX_C) |		\
1660 	BIT(POWER_DOMAIN_INIT))
1661 
1662 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1663 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1664 	BIT(POWER_DOMAIN_AUX_B) |		\
1665 	BIT(POWER_DOMAIN_INIT))
1666 
1667 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1668 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1669 	BIT(POWER_DOMAIN_AUX_B) |		\
1670 	BIT(POWER_DOMAIN_INIT))
1671 
1672 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1673 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1674 	BIT(POWER_DOMAIN_AUX_C) |		\
1675 	BIT(POWER_DOMAIN_INIT))
1676 
1677 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1678 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1679 	BIT(POWER_DOMAIN_AUX_C) |		\
1680 	BIT(POWER_DOMAIN_INIT))
1681 
1682 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1683 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1684 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1685 	BIT(POWER_DOMAIN_AUX_B) |		\
1686 	BIT(POWER_DOMAIN_AUX_C) |		\
1687 	BIT(POWER_DOMAIN_INIT))
1688 
1689 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1690 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1691 	BIT(POWER_DOMAIN_AUX_D) |		\
1692 	BIT(POWER_DOMAIN_INIT))
1693 
1694 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1695 	.sync_hw = i9xx_always_on_power_well_noop,
1696 	.enable = i9xx_always_on_power_well_noop,
1697 	.disable = i9xx_always_on_power_well_noop,
1698 	.is_enabled = i9xx_always_on_power_well_enabled,
1699 };
1700 
1701 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1702 	.sync_hw = chv_pipe_power_well_sync_hw,
1703 	.enable = chv_pipe_power_well_enable,
1704 	.disable = chv_pipe_power_well_disable,
1705 	.is_enabled = chv_pipe_power_well_enabled,
1706 };
1707 
1708 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1709 	.sync_hw = vlv_power_well_sync_hw,
1710 	.enable = chv_dpio_cmn_power_well_enable,
1711 	.disable = chv_dpio_cmn_power_well_disable,
1712 	.is_enabled = vlv_power_well_enabled,
1713 };
1714 
1715 static struct i915_power_well i9xx_always_on_power_well[] = {
1716 	{
1717 		.name = "always-on",
1718 		.always_on = 1,
1719 		.domains = POWER_DOMAIN_MASK,
1720 		.ops = &i9xx_always_on_power_well_ops,
1721 	},
1722 };
1723 
1724 static const struct i915_power_well_ops hsw_power_well_ops = {
1725 	.sync_hw = hsw_power_well_sync_hw,
1726 	.enable = hsw_power_well_enable,
1727 	.disable = hsw_power_well_disable,
1728 	.is_enabled = hsw_power_well_enabled,
1729 };
1730 
1731 static const struct i915_power_well_ops skl_power_well_ops = {
1732 	.sync_hw = skl_power_well_sync_hw,
1733 	.enable = skl_power_well_enable,
1734 	.disable = skl_power_well_disable,
1735 	.is_enabled = skl_power_well_enabled,
1736 };
1737 
1738 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1739 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1740 	.enable = gen9_dc_off_power_well_enable,
1741 	.disable = gen9_dc_off_power_well_disable,
1742 	.is_enabled = gen9_dc_off_power_well_enabled,
1743 };
1744 
1745 static struct i915_power_well hsw_power_wells[] = {
1746 	{
1747 		.name = "always-on",
1748 		.always_on = 1,
1749 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1750 		.ops = &i9xx_always_on_power_well_ops,
1751 	},
1752 	{
1753 		.name = "display",
1754 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1755 		.ops = &hsw_power_well_ops,
1756 	},
1757 };
1758 
1759 static struct i915_power_well bdw_power_wells[] = {
1760 	{
1761 		.name = "always-on",
1762 		.always_on = 1,
1763 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1764 		.ops = &i9xx_always_on_power_well_ops,
1765 	},
1766 	{
1767 		.name = "display",
1768 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1769 		.ops = &hsw_power_well_ops,
1770 	},
1771 };
1772 
1773 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1774 	.sync_hw = vlv_power_well_sync_hw,
1775 	.enable = vlv_display_power_well_enable,
1776 	.disable = vlv_display_power_well_disable,
1777 	.is_enabled = vlv_power_well_enabled,
1778 };
1779 
1780 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1781 	.sync_hw = vlv_power_well_sync_hw,
1782 	.enable = vlv_dpio_cmn_power_well_enable,
1783 	.disable = vlv_dpio_cmn_power_well_disable,
1784 	.is_enabled = vlv_power_well_enabled,
1785 };
1786 
1787 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1788 	.sync_hw = vlv_power_well_sync_hw,
1789 	.enable = vlv_power_well_enable,
1790 	.disable = vlv_power_well_disable,
1791 	.is_enabled = vlv_power_well_enabled,
1792 };
1793 
1794 static struct i915_power_well vlv_power_wells[] = {
1795 	{
1796 		.name = "always-on",
1797 		.always_on = 1,
1798 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1799 		.ops = &i9xx_always_on_power_well_ops,
1800 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1801 	},
1802 	{
1803 		.name = "display",
1804 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1805 		.data = PUNIT_POWER_WELL_DISP2D,
1806 		.ops = &vlv_display_power_well_ops,
1807 	},
1808 	{
1809 		.name = "dpio-tx-b-01",
1810 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1811 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1812 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1813 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1814 		.ops = &vlv_dpio_power_well_ops,
1815 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1816 	},
1817 	{
1818 		.name = "dpio-tx-b-23",
1819 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1820 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1821 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1822 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1823 		.ops = &vlv_dpio_power_well_ops,
1824 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1825 	},
1826 	{
1827 		.name = "dpio-tx-c-01",
1828 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1829 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1830 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1831 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1832 		.ops = &vlv_dpio_power_well_ops,
1833 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1834 	},
1835 	{
1836 		.name = "dpio-tx-c-23",
1837 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1838 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1839 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1840 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1841 		.ops = &vlv_dpio_power_well_ops,
1842 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1843 	},
1844 	{
1845 		.name = "dpio-common",
1846 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1847 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1848 		.ops = &vlv_dpio_cmn_power_well_ops,
1849 	},
1850 };
1851 
1852 static struct i915_power_well chv_power_wells[] = {
1853 	{
1854 		.name = "always-on",
1855 		.always_on = 1,
1856 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1857 		.ops = &i9xx_always_on_power_well_ops,
1858 	},
1859 	{
1860 		.name = "display",
1861 		/*
1862 		 * Pipe A power well is the new disp2d well. Pipe B and C
1863 		 * power wells don't actually exist. Pipe A power well is
1864 		 * required for any pipe to work.
1865 		 */
1866 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1867 		.data = PIPE_A,
1868 		.ops = &chv_pipe_power_well_ops,
1869 	},
1870 	{
1871 		.name = "dpio-common-bc",
1872 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1873 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1874 		.ops = &chv_dpio_cmn_power_well_ops,
1875 	},
1876 	{
1877 		.name = "dpio-common-d",
1878 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1879 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
1880 		.ops = &chv_dpio_cmn_power_well_ops,
1881 	},
1882 };
1883 
1884 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1885 				    int power_well_id)
1886 {
1887 	struct i915_power_well *power_well;
1888 	bool ret;
1889 
1890 	power_well = lookup_power_well(dev_priv, power_well_id);
1891 	ret = power_well->ops->is_enabled(dev_priv, power_well);
1892 
1893 	return ret;
1894 }
1895 
1896 static struct i915_power_well skl_power_wells[] = {
1897 	{
1898 		.name = "always-on",
1899 		.always_on = 1,
1900 		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1901 		.ops = &i9xx_always_on_power_well_ops,
1902 		.data = SKL_DISP_PW_ALWAYS_ON,
1903 	},
1904 	{
1905 		.name = "power well 1",
1906 		/* Handled by the DMC firmware */
1907 		.domains = 0,
1908 		.ops = &skl_power_well_ops,
1909 		.data = SKL_DISP_PW_1,
1910 	},
1911 	{
1912 		.name = "MISC IO power well",
1913 		/* Handled by the DMC firmware */
1914 		.domains = 0,
1915 		.ops = &skl_power_well_ops,
1916 		.data = SKL_DISP_PW_MISC_IO,
1917 	},
1918 	{
1919 		.name = "DC off",
1920 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1921 		.ops = &gen9_dc_off_power_well_ops,
1922 		.data = SKL_DISP_PW_DC_OFF,
1923 	},
1924 	{
1925 		.name = "power well 2",
1926 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1927 		.ops = &skl_power_well_ops,
1928 		.data = SKL_DISP_PW_2,
1929 	},
1930 	{
1931 		.name = "DDI A/E power well",
1932 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1933 		.ops = &skl_power_well_ops,
1934 		.data = SKL_DISP_PW_DDI_A_E,
1935 	},
1936 	{
1937 		.name = "DDI B power well",
1938 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1939 		.ops = &skl_power_well_ops,
1940 		.data = SKL_DISP_PW_DDI_B,
1941 	},
1942 	{
1943 		.name = "DDI C power well",
1944 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1945 		.ops = &skl_power_well_ops,
1946 		.data = SKL_DISP_PW_DDI_C,
1947 	},
1948 	{
1949 		.name = "DDI D power well",
1950 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1951 		.ops = &skl_power_well_ops,
1952 		.data = SKL_DISP_PW_DDI_D,
1953 	},
1954 };
1955 
1956 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1957 {
1958 	struct i915_power_well *well;
1959 
1960 	if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1961 		return;
1962 
1963 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1964 	intel_power_well_enable(dev_priv, well);
1965 
1966 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1967 	intel_power_well_enable(dev_priv, well);
1968 }
1969 
1970 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1971 {
1972 	struct i915_power_well *well;
1973 
1974 	if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1975 		return;
1976 
1977 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1978 	intel_power_well_disable(dev_priv, well);
1979 
1980 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1981 	intel_power_well_disable(dev_priv, well);
1982 }
1983 
1984 static struct i915_power_well bxt_power_wells[] = {
1985 	{
1986 		.name = "always-on",
1987 		.always_on = 1,
1988 		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1989 		.ops = &i9xx_always_on_power_well_ops,
1990 	},
1991 	{
1992 		.name = "power well 1",
1993 		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1994 		.ops = &skl_power_well_ops,
1995 		.data = SKL_DISP_PW_1,
1996 	},
1997 	{
1998 		.name = "DC off",
1999 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2000 		.ops = &gen9_dc_off_power_well_ops,
2001 		.data = SKL_DISP_PW_DC_OFF,
2002 	},
2003 	{
2004 		.name = "power well 2",
2005 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2006 		.ops = &skl_power_well_ops,
2007 		.data = SKL_DISP_PW_2,
2008 	},
2009 };
2010 
2011 static int
2012 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2013 				   int disable_power_well)
2014 {
2015 	if (disable_power_well >= 0)
2016 		return !!disable_power_well;
2017 
2018 	if (IS_BROXTON(dev_priv)) {
2019 		DRM_DEBUG_KMS("Disabling display power well support\n");
2020 		return 0;
2021 	}
2022 
2023 	return 1;
2024 }
2025 
2026 #define set_power_wells(power_domains, __power_wells) ({		\
2027 	(power_domains)->power_wells = (__power_wells);			\
2028 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2029 })
2030 
2031 /**
2032  * intel_power_domains_init - initializes the power domain structures
2033  * @dev_priv: i915 device instance
2034  *
2035  * Initializes the power domain structures for @dev_priv depending upon the
2036  * supported platform.
2037  */
2038 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2039 {
2040 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2041 
2042 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2043 						     i915.disable_power_well);
2044 
2045 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2046 
2047 	mutex_init(&power_domains->lock);
2048 
2049 	/*
2050 	 * The enabling order will be from lower to higher indexed wells,
2051 	 * the disabling order is reversed.
2052 	 */
2053 	if (IS_HASWELL(dev_priv->dev)) {
2054 		set_power_wells(power_domains, hsw_power_wells);
2055 	} else if (IS_BROADWELL(dev_priv->dev)) {
2056 		set_power_wells(power_domains, bdw_power_wells);
2057 	} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
2058 		set_power_wells(power_domains, skl_power_wells);
2059 	} else if (IS_BROXTON(dev_priv->dev)) {
2060 		set_power_wells(power_domains, bxt_power_wells);
2061 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
2062 		set_power_wells(power_domains, chv_power_wells);
2063 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
2064 		set_power_wells(power_domains, vlv_power_wells);
2065 	} else {
2066 		set_power_wells(power_domains, i9xx_always_on_power_well);
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * intel_power_domains_fini - finalizes the power domain structures
2074  * @dev_priv: i915 device instance
2075  *
2076  * Finalizes the power domain structures for @dev_priv depending upon the
2077  * supported platform. This function also disables runtime pm and ensures that
2078  * the device stays powered up so that the driver can be reloaded.
2079  */
2080 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2081 {
2082 	struct device *device = &dev_priv->dev->pdev->dev;
2083 
2084 	/*
2085 	 * The i915.ko module is still not prepared to be loaded when
2086 	 * the power well is not enabled, so just enable it in case
2087 	 * we're going to unload/reload.
2088 	 * The following also reacquires the RPM reference the core passed
2089 	 * to the driver during loading, which is dropped in
2090 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2091 	 * device to the core with this reference held.
2092 	 */
2093 	intel_display_set_init_power(dev_priv, true);
2094 
2095 	/* Remove the refcount we took to keep power well support disabled. */
2096 	if (!i915.disable_power_well)
2097 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2098 
2099 	/*
2100 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2101 	 * the platform doesn't support runtime PM.
2102 	 */
2103 	if (!HAS_RUNTIME_PM(dev_priv))
2104 		pm_runtime_put(device);
2105 }
2106 
2107 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2108 {
2109 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2110 	struct i915_power_well *power_well;
2111 	int i;
2112 
2113 	mutex_lock(&power_domains->lock);
2114 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2115 		power_well->ops->sync_hw(dev_priv, power_well);
2116 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2117 								     power_well);
2118 	}
2119 	mutex_unlock(&power_domains->lock);
2120 }
2121 
2122 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2123 				  bool resume)
2124 {
2125 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2126 	uint32_t val;
2127 
2128 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2129 
2130 	/* enable PCH reset handshake */
2131 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2132 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2133 
2134 	/* enable PG1 and Misc I/O */
2135 	mutex_lock(&power_domains->lock);
2136 	skl_pw1_misc_io_init(dev_priv);
2137 	mutex_unlock(&power_domains->lock);
2138 
2139 	if (!resume)
2140 		return;
2141 
2142 	skl_init_cdclk(dev_priv);
2143 
2144 	if (dev_priv->csr.dmc_payload && intel_csr_load_program(dev_priv))
2145 		gen9_set_dc_state_debugmask(dev_priv);
2146 }
2147 
2148 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2149 {
2150 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2151 
2152 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2153 
2154 	skl_uninit_cdclk(dev_priv);
2155 
2156 	/* The spec doesn't call for removing the reset handshake flag */
2157 	/* disable PG1 and Misc I/O */
2158 	mutex_lock(&power_domains->lock);
2159 	skl_pw1_misc_io_fini(dev_priv);
2160 	mutex_unlock(&power_domains->lock);
2161 }
2162 
2163 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2164 {
2165 	struct i915_power_well *cmn_bc =
2166 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2167 	struct i915_power_well *cmn_d =
2168 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2169 
2170 	/*
2171 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2172 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2173 	 * instead maintain a shadow copy ourselves. Use the actual
2174 	 * power well state and lane status to reconstruct the
2175 	 * expected initial value.
2176 	 */
2177 	dev_priv->chv_phy_control =
2178 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2179 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2180 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2181 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2182 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2183 
2184 	/*
2185 	 * If all lanes are disabled we leave the override disabled
2186 	 * with all power down bits cleared to match the state we
2187 	 * would use after disabling the port. Otherwise enable the
2188 	 * override and set the lane powerdown bits accding to the
2189 	 * current lane status.
2190 	 */
2191 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2192 		uint32_t status = I915_READ(DPLL(PIPE_A));
2193 		unsigned int mask;
2194 
2195 		mask = status & DPLL_PORTB_READY_MASK;
2196 		if (mask == 0xf)
2197 			mask = 0x0;
2198 		else
2199 			dev_priv->chv_phy_control |=
2200 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2201 
2202 		dev_priv->chv_phy_control |=
2203 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2204 
2205 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2206 		if (mask == 0xf)
2207 			mask = 0x0;
2208 		else
2209 			dev_priv->chv_phy_control |=
2210 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2211 
2212 		dev_priv->chv_phy_control |=
2213 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2214 
2215 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2216 
2217 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2218 	} else {
2219 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2220 	}
2221 
2222 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2223 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2224 		unsigned int mask;
2225 
2226 		mask = status & DPLL_PORTD_READY_MASK;
2227 
2228 		if (mask == 0xf)
2229 			mask = 0x0;
2230 		else
2231 			dev_priv->chv_phy_control |=
2232 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2233 
2234 		dev_priv->chv_phy_control |=
2235 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2236 
2237 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2238 
2239 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2240 	} else {
2241 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2242 	}
2243 
2244 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2245 
2246 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2247 		      dev_priv->chv_phy_control);
2248 }
2249 
2250 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2251 {
2252 	struct i915_power_well *cmn =
2253 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2254 	struct i915_power_well *disp2d =
2255 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2256 
2257 	/* If the display might be already active skip this */
2258 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2259 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2260 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2261 		return;
2262 
2263 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2264 
2265 	/* cmnlane needs DPLL registers */
2266 	disp2d->ops->enable(dev_priv, disp2d);
2267 
2268 	/*
2269 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2270 	 * Need to assert and de-assert PHY SB reset by gating the
2271 	 * common lane power, then un-gating it.
2272 	 * Simply ungating isn't enough to reset the PHY enough to get
2273 	 * ports and lanes running.
2274 	 */
2275 	cmn->ops->disable(dev_priv, cmn);
2276 }
2277 
2278 /**
2279  * intel_power_domains_init_hw - initialize hardware power domain state
2280  * @dev_priv: i915 device instance
2281  *
2282  * This function initializes the hardware power domain state and enables all
2283  * power domains using intel_display_set_init_power().
2284  */
2285 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2286 {
2287 	struct drm_device *dev = dev_priv->dev;
2288 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2289 
2290 	power_domains->initializing = true;
2291 
2292 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2293 		skl_display_core_init(dev_priv, resume);
2294 	} else if (IS_CHERRYVIEW(dev)) {
2295 		mutex_lock(&power_domains->lock);
2296 		chv_phy_control_init(dev_priv);
2297 		mutex_unlock(&power_domains->lock);
2298 	} else if (IS_VALLEYVIEW(dev)) {
2299 		mutex_lock(&power_domains->lock);
2300 		vlv_cmnlane_wa(dev_priv);
2301 		mutex_unlock(&power_domains->lock);
2302 	}
2303 
2304 	/* For now, we need the power well to be always enabled. */
2305 	intel_display_set_init_power(dev_priv, true);
2306 	/* Disable power support if the user asked so. */
2307 	if (!i915.disable_power_well)
2308 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2309 	intel_power_domains_sync_hw(dev_priv);
2310 	power_domains->initializing = false;
2311 }
2312 
2313 /**
2314  * intel_power_domains_suspend - suspend power domain state
2315  * @dev_priv: i915 device instance
2316  *
2317  * This function prepares the hardware power domain state before entering
2318  * system suspend. It must be paired with intel_power_domains_init_hw().
2319  */
2320 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2321 {
2322 	/*
2323 	 * Even if power well support was disabled we still want to disable
2324 	 * power wells while we are system suspended.
2325 	 */
2326 	if (!i915.disable_power_well)
2327 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2328 
2329 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2330 		skl_display_core_uninit(dev_priv);
2331 }
2332 
2333 /**
2334  * intel_runtime_pm_get - grab a runtime pm reference
2335  * @dev_priv: i915 device instance
2336  *
2337  * This function grabs a device-level runtime pm reference (mostly used for GEM
2338  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2339  *
2340  * Any runtime pm reference obtained by this function must have a symmetric
2341  * call to intel_runtime_pm_put() to release the reference again.
2342  */
2343 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2344 {
2345 	struct drm_device *dev = dev_priv->dev;
2346 	struct device *device = &dev->pdev->dev;
2347 
2348 	pm_runtime_get_sync(device);
2349 
2350 	atomic_inc(&dev_priv->pm.wakeref_count);
2351 	assert_rpm_wakelock_held(dev_priv);
2352 }
2353 
2354 /**
2355  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2356  * @dev_priv: i915 device instance
2357  *
2358  * This function grabs a device-level runtime pm reference if the device is
2359  * already in use and ensures that it is powered up.
2360  *
2361  * Any runtime pm reference obtained by this function must have a symmetric
2362  * call to intel_runtime_pm_put() to release the reference again.
2363  */
2364 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2365 {
2366 	struct drm_device *dev = dev_priv->dev;
2367 	struct device *device = &dev->pdev->dev;
2368 
2369 	if (IS_ENABLED(CONFIG_PM)) {
2370 		int ret = pm_runtime_get_if_in_use(device);
2371 
2372 		/*
2373 		 * In cases runtime PM is disabled by the RPM core and we get
2374 		 * an -EINVAL return value we are not supposed to call this
2375 		 * function, since the power state is undefined. This applies
2376 		 * atm to the late/early system suspend/resume handlers.
2377 		 */
2378 		WARN_ON_ONCE(ret < 0);
2379 		if (ret <= 0)
2380 			return false;
2381 	}
2382 
2383 	atomic_inc(&dev_priv->pm.wakeref_count);
2384 	assert_rpm_wakelock_held(dev_priv);
2385 
2386 	return true;
2387 }
2388 
2389 /**
2390  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2391  * @dev_priv: i915 device instance
2392  *
2393  * This function grabs a device-level runtime pm reference (mostly used for GEM
2394  * code to ensure the GTT or GT is on).
2395  *
2396  * It will _not_ power up the device but instead only check that it's powered
2397  * on.  Therefore it is only valid to call this functions from contexts where
2398  * the device is known to be powered up and where trying to power it up would
2399  * result in hilarity and deadlocks. That pretty much means only the system
2400  * suspend/resume code where this is used to grab runtime pm references for
2401  * delayed setup down in work items.
2402  *
2403  * Any runtime pm reference obtained by this function must have a symmetric
2404  * call to intel_runtime_pm_put() to release the reference again.
2405  */
2406 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2407 {
2408 	struct drm_device *dev = dev_priv->dev;
2409 	struct device *device = &dev->pdev->dev;
2410 
2411 	assert_rpm_wakelock_held(dev_priv);
2412 	pm_runtime_get_noresume(device);
2413 
2414 	atomic_inc(&dev_priv->pm.wakeref_count);
2415 }
2416 
2417 /**
2418  * intel_runtime_pm_put - release a runtime pm reference
2419  * @dev_priv: i915 device instance
2420  *
2421  * This function drops the device-level runtime pm reference obtained by
2422  * intel_runtime_pm_get() and might power down the corresponding
2423  * hardware block right away if this is the last reference.
2424  */
2425 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2426 {
2427 	struct drm_device *dev = dev_priv->dev;
2428 	struct device *device = &dev->pdev->dev;
2429 
2430 	assert_rpm_wakelock_held(dev_priv);
2431 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2432 		atomic_inc(&dev_priv->pm.atomic_seq);
2433 
2434 	pm_runtime_mark_last_busy(device);
2435 	pm_runtime_put_autosuspend(device);
2436 }
2437 
2438 /**
2439  * intel_runtime_pm_enable - enable runtime pm
2440  * @dev_priv: i915 device instance
2441  *
2442  * This function enables runtime pm at the end of the driver load sequence.
2443  *
2444  * Note that this function does currently not enable runtime pm for the
2445  * subordinate display power domains. That is only done on the first modeset
2446  * using intel_display_set_init_power().
2447  */
2448 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2449 {
2450 	struct drm_device *dev = dev_priv->dev;
2451 	struct device *device = &dev->pdev->dev;
2452 
2453 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2454 	pm_runtime_mark_last_busy(device);
2455 
2456 	/*
2457 	 * Take a permanent reference to disable the RPM functionality and drop
2458 	 * it only when unloading the driver. Use the low level get/put helpers,
2459 	 * so the driver's own RPM reference tracking asserts also work on
2460 	 * platforms without RPM support.
2461 	 */
2462 	if (!HAS_RUNTIME_PM(dev)) {
2463 		pm_runtime_dont_use_autosuspend(device);
2464 		pm_runtime_get_sync(device);
2465 	} else {
2466 		pm_runtime_use_autosuspend(device);
2467 	}
2468 
2469 	/*
2470 	 * The core calls the driver load handler with an RPM reference held.
2471 	 * We drop that here and will reacquire it during unloading in
2472 	 * intel_power_domains_fini().
2473 	 */
2474 	pm_runtime_put_autosuspend(device);
2475 }
2476 
2477