1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct drm_device *dev = &dev_priv->drm;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
303 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
305 
306 	if (IS_BROADWELL(dev))
307 		gen8_irq_power_well_post_enable(dev_priv,
308 						1 << PIPE_C | 1 << PIPE_B);
309 }
310 
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 	if (IS_BROADWELL(dev_priv))
314 		gen8_irq_power_well_pre_disable(dev_priv,
315 						1 << PIPE_C | 1 << PIPE_B);
316 }
317 
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 				       struct i915_power_well *power_well)
320 {
321 	struct drm_device *dev = &dev_priv->drm;
322 
323 	/*
324 	 * After we re-enable the power well, if we touch VGA register 0x3d5
325 	 * we'll get unclaimed register interrupts. This stops after we write
326 	 * anything to the VGA MSR register. The vgacon module uses this
327 	 * register all the time, so if we unbind our driver and, as a
328 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 	 * console_unlock(). So make here we touch the VGA MSR register, making
330 	 * sure vgacon can keep working normally without triggering interrupts
331 	 * and error messages.
332 	 */
333 	if (power_well->data == SKL_DISP_PW_2) {
334 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
335 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
337 
338 		gen8_irq_power_well_post_enable(dev_priv,
339 						1 << PIPE_C | 1 << PIPE_B);
340 	}
341 }
342 
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 				       struct i915_power_well *power_well)
345 {
346 	if (power_well->data == SKL_DISP_PW_2)
347 		gen8_irq_power_well_pre_disable(dev_priv,
348 						1 << PIPE_C | 1 << PIPE_B);
349 }
350 
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 			       struct i915_power_well *power_well, bool enable)
353 {
354 	bool is_enabled, enable_requested;
355 	uint32_t tmp;
356 
357 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360 
361 	if (enable) {
362 		if (!enable_requested)
363 			I915_WRITE(HSW_PWR_WELL_DRIVER,
364 				   HSW_PWR_WELL_ENABLE_REQUEST);
365 
366 		if (!is_enabled) {
367 			DRM_DEBUG_KMS("Enabling power well\n");
368 			if (intel_wait_for_register(dev_priv,
369 						    HSW_PWR_WELL_DRIVER,
370 						    HSW_PWR_WELL_STATE_ENABLED,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    20))
373 				DRM_ERROR("Timeout enabling power well\n");
374 			hsw_power_well_post_enable(dev_priv);
375 		}
376 
377 	} else {
378 		if (enable_requested) {
379 			hsw_power_well_pre_disable(dev_priv);
380 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 			POSTING_READ(HSW_PWR_WELL_DRIVER);
382 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 		}
384 	}
385 }
386 
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
388 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
389 	BIT(POWER_DOMAIN_PIPE_B) |			\
390 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
391 	BIT(POWER_DOMAIN_PIPE_C) |			\
392 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
393 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
394 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
399 	BIT(POWER_DOMAIN_AUX_B) |                       \
400 	BIT(POWER_DOMAIN_AUX_C) |			\
401 	BIT(POWER_DOMAIN_AUX_D) |			\
402 	BIT(POWER_DOMAIN_AUDIO) |			\
403 	BIT(POWER_DOMAIN_VGA) |				\
404 	BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
406 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
407 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
408 	BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
410 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
411 	BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
413 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
414 	BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
416 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
417 	BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
419 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
420 	BIT(POWER_DOMAIN_MODESET) |			\
421 	BIT(POWER_DOMAIN_AUX_A) |			\
422 	BIT(POWER_DOMAIN_INIT))
423 
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
425 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
426 	BIT(POWER_DOMAIN_PIPE_B) |			\
427 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
428 	BIT(POWER_DOMAIN_PIPE_C) |			\
429 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
430 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
431 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
434 	BIT(POWER_DOMAIN_AUX_B) |			\
435 	BIT(POWER_DOMAIN_AUX_C) |			\
436 	BIT(POWER_DOMAIN_AUDIO) |			\
437 	BIT(POWER_DOMAIN_VGA) |				\
438 	BIT(POWER_DOMAIN_GMBUS) |			\
439 	BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
441 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
442 	BIT(POWER_DOMAIN_MODESET) |			\
443 	BIT(POWER_DOMAIN_AUX_A) |			\
444 	BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
446 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
447 	BIT(POWER_DOMAIN_AUX_A) |			\
448 	BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
450 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
451 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
452 	BIT(POWER_DOMAIN_AUX_B) |			\
453 	BIT(POWER_DOMAIN_AUX_C) |			\
454 	BIT(POWER_DOMAIN_INIT))
455 
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 		  "DC9 already programmed to be enabled.\n");
460 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 		  "DC5 still not disabled to enable DC9.\n");
462 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 	WARN_ONCE(intel_irqs_enabled(dev_priv),
464 		  "Interrupts not disabled yet.\n");
465 
466 	 /*
467 	  * TODO: check for the following to verify the conditions to enter DC9
468 	  * state are satisfied:
469 	  * 1] Check relevant display engine registers to verify if mode set
470 	  * disable sequence was followed.
471 	  * 2] Check if display uninitialize sequence is initialized.
472 	  */
473 }
474 
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 	WARN_ONCE(intel_irqs_enabled(dev_priv),
478 		  "Interrupts not disabled yet.\n");
479 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 		  "DC5 still not disabled.\n");
481 
482 	 /*
483 	  * TODO: check for the following to verify DC9 state was indeed
484 	  * entered before programming to disable it:
485 	  * 1] Check relevant display engine registers to verify if mode
486 	  *  set disable sequence was followed.
487 	  * 2] Check if display uninitialize sequence is initialized.
488 	  */
489 }
490 
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 				u32 state)
493 {
494 	int rewrites = 0;
495 	int rereads = 0;
496 	u32 v;
497 
498 	I915_WRITE(DC_STATE_EN, state);
499 
500 	/* It has been observed that disabling the dc6 state sometimes
501 	 * doesn't stick and dmc keeps returning old value. Make sure
502 	 * the write really sticks enough times and also force rewrite until
503 	 * we are confident that state is exactly what we want.
504 	 */
505 	do  {
506 		v = I915_READ(DC_STATE_EN);
507 
508 		if (v != state) {
509 			I915_WRITE(DC_STATE_EN, state);
510 			rewrites++;
511 			rereads = 0;
512 		} else if (rereads++ > 5) {
513 			break;
514 		}
515 
516 	} while (rewrites < 100);
517 
518 	if (v != state)
519 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 			  state, v);
521 
522 	/* Most of the times we need one retry, avoid spam */
523 	if (rewrites > 1)
524 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 			      state, rewrites);
526 }
527 
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 	u32 mask;
531 
532 	mask = DC_STATE_EN_UPTO_DC5;
533 	if (IS_BROXTON(dev_priv))
534 		mask |= DC_STATE_EN_DC9;
535 	else
536 		mask |= DC_STATE_EN_UPTO_DC6;
537 
538 	return mask;
539 }
540 
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 	u32 val;
544 
545 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546 
547 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 		      dev_priv->csr.dc_state, val);
549 	dev_priv->csr.dc_state = val;
550 }
551 
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 	uint32_t val;
555 	uint32_t mask;
556 
557 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 		state &= dev_priv->csr.allowed_dc_mask;
559 
560 	val = I915_READ(DC_STATE_EN);
561 	mask = gen9_dc_mask(dev_priv);
562 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 		      val & mask, state);
564 
565 	/* Check if DMC is ignoring our DC state requests */
566 	if ((val & mask) != dev_priv->csr.dc_state)
567 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 			  dev_priv->csr.dc_state, val & mask);
569 
570 	val &= ~mask;
571 	val |= state;
572 
573 	gen9_write_dc_state(dev_priv, val);
574 
575 	dev_priv->csr.dc_state = val & mask;
576 }
577 
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 	assert_can_enable_dc9(dev_priv);
581 
582 	DRM_DEBUG_KMS("Enabling DC9\n");
583 
584 	intel_power_sequencer_reset(dev_priv);
585 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587 
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 	assert_can_disable_dc9(dev_priv);
591 
592 	DRM_DEBUG_KMS("Disabling DC9\n");
593 
594 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595 }
596 
597 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
598 {
599 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
600 		  "CSR program storage start is NULL\n");
601 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
602 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
603 }
604 
605 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
606 {
607 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
608 					SKL_DISP_PW_2);
609 
610 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
611 
612 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
613 		  "DC5 already programmed to be enabled.\n");
614 	assert_rpm_wakelock_held(dev_priv);
615 
616 	assert_csr_loaded(dev_priv);
617 }
618 
619 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
620 {
621 	assert_can_enable_dc5(dev_priv);
622 
623 	DRM_DEBUG_KMS("Enabling DC5\n");
624 
625 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
626 }
627 
628 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
629 {
630 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
631 		  "Backlight is not disabled.\n");
632 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
633 		  "DC6 already programmed to be enabled.\n");
634 
635 	assert_csr_loaded(dev_priv);
636 }
637 
638 void skl_enable_dc6(struct drm_i915_private *dev_priv)
639 {
640 	assert_can_enable_dc6(dev_priv);
641 
642 	DRM_DEBUG_KMS("Enabling DC6\n");
643 
644 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
645 
646 }
647 
648 void skl_disable_dc6(struct drm_i915_private *dev_priv)
649 {
650 	DRM_DEBUG_KMS("Disabling DC6\n");
651 
652 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
653 }
654 
655 static void
656 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
657 				  struct i915_power_well *power_well)
658 {
659 	enum skl_disp_power_wells power_well_id = power_well->data;
660 	u32 val;
661 	u32 mask;
662 
663 	mask = SKL_POWER_WELL_REQ(power_well_id);
664 
665 	val = I915_READ(HSW_PWR_WELL_KVMR);
666 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
667 		      power_well->name))
668 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
669 
670 	val = I915_READ(HSW_PWR_WELL_BIOS);
671 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
672 
673 	if (!(val & mask))
674 		return;
675 
676 	/*
677 	 * DMC is known to force on the request bits for power well 1 on SKL
678 	 * and BXT and the misc IO power well on SKL but we don't expect any
679 	 * other request bits to be set, so WARN for those.
680 	 */
681 	if (power_well_id == SKL_DISP_PW_1 ||
682 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
683 	     power_well_id == SKL_DISP_PW_MISC_IO))
684 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
685 				 "by DMC\n", power_well->name);
686 	else
687 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
688 			  power_well->name);
689 
690 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
691 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
692 }
693 
694 static void skl_set_power_well(struct drm_i915_private *dev_priv,
695 			struct i915_power_well *power_well, bool enable)
696 {
697 	uint32_t tmp, fuse_status;
698 	uint32_t req_mask, state_mask;
699 	bool is_enabled, enable_requested, check_fuse_status = false;
700 
701 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
702 	fuse_status = I915_READ(SKL_FUSE_STATUS);
703 
704 	switch (power_well->data) {
705 	case SKL_DISP_PW_1:
706 		if (intel_wait_for_register(dev_priv,
707 					    SKL_FUSE_STATUS,
708 					    SKL_FUSE_PG0_DIST_STATUS,
709 					    SKL_FUSE_PG0_DIST_STATUS,
710 					    1)) {
711 			DRM_ERROR("PG0 not enabled\n");
712 			return;
713 		}
714 		break;
715 	case SKL_DISP_PW_2:
716 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
717 			DRM_ERROR("PG1 in disabled state\n");
718 			return;
719 		}
720 		break;
721 	case SKL_DISP_PW_DDI_A_E:
722 	case SKL_DISP_PW_DDI_B:
723 	case SKL_DISP_PW_DDI_C:
724 	case SKL_DISP_PW_DDI_D:
725 	case SKL_DISP_PW_MISC_IO:
726 		break;
727 	default:
728 		WARN(1, "Unknown power well %lu\n", power_well->data);
729 		return;
730 	}
731 
732 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
733 	enable_requested = tmp & req_mask;
734 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
735 	is_enabled = tmp & state_mask;
736 
737 	if (!enable && enable_requested)
738 		skl_power_well_pre_disable(dev_priv, power_well);
739 
740 	if (enable) {
741 		if (!enable_requested) {
742 			WARN((tmp & state_mask) &&
743 				!I915_READ(HSW_PWR_WELL_BIOS),
744 				"Invalid for power well status to be enabled, unless done by the BIOS, \
745 				when request is to disable!\n");
746 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
747 		}
748 
749 		if (!is_enabled) {
750 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
751 			check_fuse_status = true;
752 		}
753 	} else {
754 		if (enable_requested) {
755 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
756 			POSTING_READ(HSW_PWR_WELL_DRIVER);
757 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
758 		}
759 
760 		if (IS_GEN9(dev_priv))
761 			gen9_sanitize_power_well_requests(dev_priv, power_well);
762 	}
763 
764 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
765 		     1))
766 		DRM_ERROR("%s %s timeout\n",
767 			  power_well->name, enable ? "enable" : "disable");
768 
769 	if (check_fuse_status) {
770 		if (power_well->data == SKL_DISP_PW_1) {
771 			if (intel_wait_for_register(dev_priv,
772 						    SKL_FUSE_STATUS,
773 						    SKL_FUSE_PG1_DIST_STATUS,
774 						    SKL_FUSE_PG1_DIST_STATUS,
775 						    1))
776 				DRM_ERROR("PG1 distributing status timeout\n");
777 		} else if (power_well->data == SKL_DISP_PW_2) {
778 			if (intel_wait_for_register(dev_priv,
779 						    SKL_FUSE_STATUS,
780 						    SKL_FUSE_PG2_DIST_STATUS,
781 						    SKL_FUSE_PG2_DIST_STATUS,
782 						    1))
783 				DRM_ERROR("PG2 distributing status timeout\n");
784 		}
785 	}
786 
787 	if (enable && !is_enabled)
788 		skl_power_well_post_enable(dev_priv, power_well);
789 }
790 
791 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
792 				   struct i915_power_well *power_well)
793 {
794 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
795 
796 	/*
797 	 * We're taking over the BIOS, so clear any requests made by it since
798 	 * the driver is in charge now.
799 	 */
800 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
801 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
802 }
803 
804 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
805 				  struct i915_power_well *power_well)
806 {
807 	hsw_set_power_well(dev_priv, power_well, true);
808 }
809 
810 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
811 				   struct i915_power_well *power_well)
812 {
813 	hsw_set_power_well(dev_priv, power_well, false);
814 }
815 
816 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
817 					struct i915_power_well *power_well)
818 {
819 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
820 		SKL_POWER_WELL_STATE(power_well->data);
821 
822 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
823 }
824 
825 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
826 				struct i915_power_well *power_well)
827 {
828 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
829 
830 	/* Clear any request made by BIOS as driver is taking over */
831 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
832 }
833 
834 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
835 				struct i915_power_well *power_well)
836 {
837 	skl_set_power_well(dev_priv, power_well, true);
838 }
839 
840 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
841 				struct i915_power_well *power_well)
842 {
843 	skl_set_power_well(dev_priv, power_well, false);
844 }
845 
846 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
847 {
848 	enum skl_disp_power_wells power_well_id = power_well->data;
849 
850 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
851 }
852 
853 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
854 					   struct i915_power_well *power_well)
855 {
856 	enum skl_disp_power_wells power_well_id = power_well->data;
857 	struct i915_power_well *cmn_a_well;
858 
859 	if (power_well_id == BXT_DPIO_CMN_BC) {
860 		/*
861 		 * We need to copy the GRC calibration value from the eDP PHY,
862 		 * so make sure it's powered up.
863 		 */
864 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
865 		intel_power_well_get(dev_priv, cmn_a_well);
866 	}
867 
868 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
869 
870 	if (power_well_id == BXT_DPIO_CMN_BC)
871 		intel_power_well_put(dev_priv, cmn_a_well);
872 }
873 
874 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
875 					    struct i915_power_well *power_well)
876 {
877 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
878 }
879 
880 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
881 					    struct i915_power_well *power_well)
882 {
883 	return bxt_ddi_phy_is_enabled(dev_priv,
884 				      bxt_power_well_to_phy(power_well));
885 }
886 
887 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
888 					    struct i915_power_well *power_well)
889 {
890 	if (power_well->count > 0)
891 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
892 	else
893 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
894 }
895 
896 
897 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
898 {
899 	struct i915_power_well *power_well;
900 
901 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
902 	if (power_well->count > 0)
903 		bxt_ddi_phy_verify_state(dev_priv,
904 					 bxt_power_well_to_phy(power_well));
905 
906 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
907 	if (power_well->count > 0)
908 		bxt_ddi_phy_verify_state(dev_priv,
909 					 bxt_power_well_to_phy(power_well));
910 }
911 
912 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
913 					   struct i915_power_well *power_well)
914 {
915 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
916 }
917 
918 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
919 {
920 	u32 tmp = I915_READ(DBUF_CTL);
921 
922 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
923 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
924 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
925 }
926 
927 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
928 					  struct i915_power_well *power_well)
929 {
930 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
931 
932 	WARN_ON(dev_priv->cdclk_freq !=
933 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
934 
935 	gen9_assert_dbuf_enabled(dev_priv);
936 
937 	if (IS_BROXTON(dev_priv))
938 		bxt_verify_ddi_phy_power_wells(dev_priv);
939 }
940 
941 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
942 					   struct i915_power_well *power_well)
943 {
944 	if (!dev_priv->csr.dmc_payload)
945 		return;
946 
947 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
948 		skl_enable_dc6(dev_priv);
949 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
950 		gen9_enable_dc5(dev_priv);
951 }
952 
953 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
954 					   struct i915_power_well *power_well)
955 {
956 	if (power_well->count > 0)
957 		gen9_dc_off_power_well_enable(dev_priv, power_well);
958 	else
959 		gen9_dc_off_power_well_disable(dev_priv, power_well);
960 }
961 
962 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
963 					   struct i915_power_well *power_well)
964 {
965 }
966 
967 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
968 					     struct i915_power_well *power_well)
969 {
970 	return true;
971 }
972 
973 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
974 			       struct i915_power_well *power_well, bool enable)
975 {
976 	enum punit_power_well power_well_id = power_well->data;
977 	u32 mask;
978 	u32 state;
979 	u32 ctrl;
980 
981 	mask = PUNIT_PWRGT_MASK(power_well_id);
982 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
983 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
984 
985 	mutex_lock(&dev_priv->rps.hw_lock);
986 
987 #define COND \
988 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
989 
990 	if (COND)
991 		goto out;
992 
993 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
994 	ctrl &= ~mask;
995 	ctrl |= state;
996 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
997 
998 	if (wait_for(COND, 100))
999 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1000 			  state,
1001 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1002 
1003 #undef COND
1004 
1005 out:
1006 	mutex_unlock(&dev_priv->rps.hw_lock);
1007 }
1008 
1009 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1010 				   struct i915_power_well *power_well)
1011 {
1012 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1013 }
1014 
1015 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1016 				  struct i915_power_well *power_well)
1017 {
1018 	vlv_set_power_well(dev_priv, power_well, true);
1019 }
1020 
1021 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1022 				   struct i915_power_well *power_well)
1023 {
1024 	vlv_set_power_well(dev_priv, power_well, false);
1025 }
1026 
1027 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1028 				   struct i915_power_well *power_well)
1029 {
1030 	int power_well_id = power_well->data;
1031 	bool enabled = false;
1032 	u32 mask;
1033 	u32 state;
1034 	u32 ctrl;
1035 
1036 	mask = PUNIT_PWRGT_MASK(power_well_id);
1037 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1038 
1039 	mutex_lock(&dev_priv->rps.hw_lock);
1040 
1041 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1042 	/*
1043 	 * We only ever set the power-on and power-gate states, anything
1044 	 * else is unexpected.
1045 	 */
1046 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1047 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1048 	if (state == ctrl)
1049 		enabled = true;
1050 
1051 	/*
1052 	 * A transient state at this point would mean some unexpected party
1053 	 * is poking at the power controls too.
1054 	 */
1055 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1056 	WARN_ON(ctrl != state);
1057 
1058 	mutex_unlock(&dev_priv->rps.hw_lock);
1059 
1060 	return enabled;
1061 }
1062 
1063 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1064 {
1065 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1066 
1067 	/*
1068 	 * Disable trickle feed and enable pnd deadline calculation
1069 	 */
1070 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1071 	I915_WRITE(CBR1_VLV, 0);
1072 
1073 	WARN_ON(dev_priv->rawclk_freq == 0);
1074 
1075 	I915_WRITE(RAWCLK_FREQ_VLV,
1076 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1077 }
1078 
1079 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1080 {
1081 	struct intel_encoder *encoder;
1082 	enum pipe pipe;
1083 
1084 	/*
1085 	 * Enable the CRI clock source so we can get at the
1086 	 * display and the reference clock for VGA
1087 	 * hotplug / manual detection. Supposedly DSI also
1088 	 * needs the ref clock up and running.
1089 	 *
1090 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1091 	 */
1092 	for_each_pipe(&dev_priv->drm, pipe) {
1093 		u32 val = I915_READ(DPLL(pipe));
1094 
1095 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1096 		if (pipe != PIPE_A)
1097 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1098 
1099 		I915_WRITE(DPLL(pipe), val);
1100 	}
1101 
1102 	vlv_init_display_clock_gating(dev_priv);
1103 
1104 	spin_lock_irq(&dev_priv->irq_lock);
1105 	valleyview_enable_display_irqs(dev_priv);
1106 	spin_unlock_irq(&dev_priv->irq_lock);
1107 
1108 	/*
1109 	 * During driver initialization/resume we can avoid restoring the
1110 	 * part of the HW/SW state that will be inited anyway explicitly.
1111 	 */
1112 	if (dev_priv->power_domains.initializing)
1113 		return;
1114 
1115 	intel_hpd_init(dev_priv);
1116 
1117 	/* Re-enable the ADPA, if we have one */
1118 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1119 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1120 			intel_crt_reset(&encoder->base);
1121 	}
1122 
1123 	i915_redisable_vga_power_on(&dev_priv->drm);
1124 }
1125 
1126 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1127 {
1128 	spin_lock_irq(&dev_priv->irq_lock);
1129 	valleyview_disable_display_irqs(dev_priv);
1130 	spin_unlock_irq(&dev_priv->irq_lock);
1131 
1132 	/* make sure we're done processing display irqs */
1133 	synchronize_irq(dev_priv->drm.irq);
1134 
1135 	intel_power_sequencer_reset(dev_priv);
1136 
1137 	intel_hpd_poll_init(dev_priv);
1138 }
1139 
1140 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1141 					  struct i915_power_well *power_well)
1142 {
1143 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1144 
1145 	vlv_set_power_well(dev_priv, power_well, true);
1146 
1147 	vlv_display_power_well_init(dev_priv);
1148 }
1149 
1150 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1151 					   struct i915_power_well *power_well)
1152 {
1153 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1154 
1155 	vlv_display_power_well_deinit(dev_priv);
1156 
1157 	vlv_set_power_well(dev_priv, power_well, false);
1158 }
1159 
1160 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1161 					   struct i915_power_well *power_well)
1162 {
1163 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1164 
1165 	/* since ref/cri clock was enabled */
1166 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1167 
1168 	vlv_set_power_well(dev_priv, power_well, true);
1169 
1170 	/*
1171 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1172 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1173 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1174 	 *   b.	The other bits such as sfr settings / modesel may all
1175 	 *	be set to 0.
1176 	 *
1177 	 * This should only be done on init and resume from S3 with
1178 	 * both PLLs disabled, or we risk losing DPIO and PLL
1179 	 * synchronization.
1180 	 */
1181 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1182 }
1183 
1184 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1185 					    struct i915_power_well *power_well)
1186 {
1187 	enum pipe pipe;
1188 
1189 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1190 
1191 	for_each_pipe(dev_priv, pipe)
1192 		assert_pll_disabled(dev_priv, pipe);
1193 
1194 	/* Assert common reset */
1195 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1196 
1197 	vlv_set_power_well(dev_priv, power_well, false);
1198 }
1199 
1200 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1201 
1202 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1203 						 int power_well_id)
1204 {
1205 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1206 	int i;
1207 
1208 	for (i = 0; i < power_domains->power_well_count; i++) {
1209 		struct i915_power_well *power_well;
1210 
1211 		power_well = &power_domains->power_wells[i];
1212 		if (power_well->data == power_well_id)
1213 			return power_well;
1214 	}
1215 
1216 	return NULL;
1217 }
1218 
1219 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1220 
1221 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1222 {
1223 	struct i915_power_well *cmn_bc =
1224 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1225 	struct i915_power_well *cmn_d =
1226 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1227 	u32 phy_control = dev_priv->chv_phy_control;
1228 	u32 phy_status = 0;
1229 	u32 phy_status_mask = 0xffffffff;
1230 
1231 	/*
1232 	 * The BIOS can leave the PHY is some weird state
1233 	 * where it doesn't fully power down some parts.
1234 	 * Disable the asserts until the PHY has been fully
1235 	 * reset (ie. the power well has been disabled at
1236 	 * least once).
1237 	 */
1238 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1239 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1240 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1241 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1242 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1243 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1244 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1245 
1246 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1247 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1248 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1249 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1250 
1251 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1252 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1253 
1254 		/* this assumes override is only used to enable lanes */
1255 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1256 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1257 
1258 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1259 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1260 
1261 		/* CL1 is on whenever anything is on in either channel */
1262 		if (BITS_SET(phy_control,
1263 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1264 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1265 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1266 
1267 		/*
1268 		 * The DPLLB check accounts for the pipe B + port A usage
1269 		 * with CL2 powered up but all the lanes in the second channel
1270 		 * powered down.
1271 		 */
1272 		if (BITS_SET(phy_control,
1273 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1274 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1275 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1276 
1277 		if (BITS_SET(phy_control,
1278 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1279 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1280 		if (BITS_SET(phy_control,
1281 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1282 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1283 
1284 		if (BITS_SET(phy_control,
1285 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1286 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1287 		if (BITS_SET(phy_control,
1288 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1289 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1290 	}
1291 
1292 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1293 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1294 
1295 		/* this assumes override is only used to enable lanes */
1296 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1297 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1298 
1299 		if (BITS_SET(phy_control,
1300 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1301 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1302 
1303 		if (BITS_SET(phy_control,
1304 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1305 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1306 		if (BITS_SET(phy_control,
1307 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1308 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1309 	}
1310 
1311 	phy_status &= phy_status_mask;
1312 
1313 	/*
1314 	 * The PHY may be busy with some initial calibration and whatnot,
1315 	 * so the power state can take a while to actually change.
1316 	 */
1317 	if (intel_wait_for_register(dev_priv,
1318 				    DISPLAY_PHY_STATUS,
1319 				    phy_status_mask,
1320 				    phy_status,
1321 				    10))
1322 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1323 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1324 			   phy_status, dev_priv->chv_phy_control);
1325 }
1326 
1327 #undef BITS_SET
1328 
1329 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1330 					   struct i915_power_well *power_well)
1331 {
1332 	enum dpio_phy phy;
1333 	enum pipe pipe;
1334 	uint32_t tmp;
1335 
1336 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1337 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1338 
1339 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1340 		pipe = PIPE_A;
1341 		phy = DPIO_PHY0;
1342 	} else {
1343 		pipe = PIPE_C;
1344 		phy = DPIO_PHY1;
1345 	}
1346 
1347 	/* since ref/cri clock was enabled */
1348 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1349 	vlv_set_power_well(dev_priv, power_well, true);
1350 
1351 	/* Poll for phypwrgood signal */
1352 	if (intel_wait_for_register(dev_priv,
1353 				    DISPLAY_PHY_STATUS,
1354 				    PHY_POWERGOOD(phy),
1355 				    PHY_POWERGOOD(phy),
1356 				    1))
1357 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1358 
1359 	mutex_lock(&dev_priv->sb_lock);
1360 
1361 	/* Enable dynamic power down */
1362 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1363 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1364 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1365 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1366 
1367 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1368 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1369 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1370 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1371 	} else {
1372 		/*
1373 		 * Force the non-existing CL2 off. BXT does this
1374 		 * too, so maybe it saves some power even though
1375 		 * CL2 doesn't exist?
1376 		 */
1377 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1378 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1379 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1380 	}
1381 
1382 	mutex_unlock(&dev_priv->sb_lock);
1383 
1384 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1385 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1386 
1387 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1388 		      phy, dev_priv->chv_phy_control);
1389 
1390 	assert_chv_phy_status(dev_priv);
1391 }
1392 
1393 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1394 					    struct i915_power_well *power_well)
1395 {
1396 	enum dpio_phy phy;
1397 
1398 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1399 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1400 
1401 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1402 		phy = DPIO_PHY0;
1403 		assert_pll_disabled(dev_priv, PIPE_A);
1404 		assert_pll_disabled(dev_priv, PIPE_B);
1405 	} else {
1406 		phy = DPIO_PHY1;
1407 		assert_pll_disabled(dev_priv, PIPE_C);
1408 	}
1409 
1410 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1411 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1412 
1413 	vlv_set_power_well(dev_priv, power_well, false);
1414 
1415 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1416 		      phy, dev_priv->chv_phy_control);
1417 
1418 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1419 	dev_priv->chv_phy_assert[phy] = true;
1420 
1421 	assert_chv_phy_status(dev_priv);
1422 }
1423 
1424 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1425 				     enum dpio_channel ch, bool override, unsigned int mask)
1426 {
1427 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1428 	u32 reg, val, expected, actual;
1429 
1430 	/*
1431 	 * The BIOS can leave the PHY is some weird state
1432 	 * where it doesn't fully power down some parts.
1433 	 * Disable the asserts until the PHY has been fully
1434 	 * reset (ie. the power well has been disabled at
1435 	 * least once).
1436 	 */
1437 	if (!dev_priv->chv_phy_assert[phy])
1438 		return;
1439 
1440 	if (ch == DPIO_CH0)
1441 		reg = _CHV_CMN_DW0_CH0;
1442 	else
1443 		reg = _CHV_CMN_DW6_CH1;
1444 
1445 	mutex_lock(&dev_priv->sb_lock);
1446 	val = vlv_dpio_read(dev_priv, pipe, reg);
1447 	mutex_unlock(&dev_priv->sb_lock);
1448 
1449 	/*
1450 	 * This assumes !override is only used when the port is disabled.
1451 	 * All lanes should power down even without the override when
1452 	 * the port is disabled.
1453 	 */
1454 	if (!override || mask == 0xf) {
1455 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1456 		/*
1457 		 * If CH1 common lane is not active anymore
1458 		 * (eg. for pipe B DPLL) the entire channel will
1459 		 * shut down, which causes the common lane registers
1460 		 * to read as 0. That means we can't actually check
1461 		 * the lane power down status bits, but as the entire
1462 		 * register reads as 0 it's a good indication that the
1463 		 * channel is indeed entirely powered down.
1464 		 */
1465 		if (ch == DPIO_CH1 && val == 0)
1466 			expected = 0;
1467 	} else if (mask != 0x0) {
1468 		expected = DPIO_ANYDL_POWERDOWN;
1469 	} else {
1470 		expected = 0;
1471 	}
1472 
1473 	if (ch == DPIO_CH0)
1474 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1475 	else
1476 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1477 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1478 
1479 	WARN(actual != expected,
1480 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1481 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1482 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1483 	     reg, val);
1484 }
1485 
1486 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1487 			  enum dpio_channel ch, bool override)
1488 {
1489 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1490 	bool was_override;
1491 
1492 	mutex_lock(&power_domains->lock);
1493 
1494 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1495 
1496 	if (override == was_override)
1497 		goto out;
1498 
1499 	if (override)
1500 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1501 	else
1502 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1503 
1504 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1505 
1506 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1507 		      phy, ch, dev_priv->chv_phy_control);
1508 
1509 	assert_chv_phy_status(dev_priv);
1510 
1511 out:
1512 	mutex_unlock(&power_domains->lock);
1513 
1514 	return was_override;
1515 }
1516 
1517 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1518 			     bool override, unsigned int mask)
1519 {
1520 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1521 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1522 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1523 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1524 
1525 	mutex_lock(&power_domains->lock);
1526 
1527 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1528 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1529 
1530 	if (override)
1531 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1532 	else
1533 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1534 
1535 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1536 
1537 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1538 		      phy, ch, mask, dev_priv->chv_phy_control);
1539 
1540 	assert_chv_phy_status(dev_priv);
1541 
1542 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1543 
1544 	mutex_unlock(&power_domains->lock);
1545 }
1546 
1547 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1548 					struct i915_power_well *power_well)
1549 {
1550 	enum pipe pipe = power_well->data;
1551 	bool enabled;
1552 	u32 state, ctrl;
1553 
1554 	mutex_lock(&dev_priv->rps.hw_lock);
1555 
1556 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1557 	/*
1558 	 * We only ever set the power-on and power-gate states, anything
1559 	 * else is unexpected.
1560 	 */
1561 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1562 	enabled = state == DP_SSS_PWR_ON(pipe);
1563 
1564 	/*
1565 	 * A transient state at this point would mean some unexpected party
1566 	 * is poking at the power controls too.
1567 	 */
1568 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1569 	WARN_ON(ctrl << 16 != state);
1570 
1571 	mutex_unlock(&dev_priv->rps.hw_lock);
1572 
1573 	return enabled;
1574 }
1575 
1576 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1577 				    struct i915_power_well *power_well,
1578 				    bool enable)
1579 {
1580 	enum pipe pipe = power_well->data;
1581 	u32 state;
1582 	u32 ctrl;
1583 
1584 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1585 
1586 	mutex_lock(&dev_priv->rps.hw_lock);
1587 
1588 #define COND \
1589 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1590 
1591 	if (COND)
1592 		goto out;
1593 
1594 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1595 	ctrl &= ~DP_SSC_MASK(pipe);
1596 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1597 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1598 
1599 	if (wait_for(COND, 100))
1600 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1601 			  state,
1602 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1603 
1604 #undef COND
1605 
1606 out:
1607 	mutex_unlock(&dev_priv->rps.hw_lock);
1608 }
1609 
1610 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1611 					struct i915_power_well *power_well)
1612 {
1613 	WARN_ON_ONCE(power_well->data != PIPE_A);
1614 
1615 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1616 }
1617 
1618 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1619 				       struct i915_power_well *power_well)
1620 {
1621 	WARN_ON_ONCE(power_well->data != PIPE_A);
1622 
1623 	chv_set_pipe_power_well(dev_priv, power_well, true);
1624 
1625 	vlv_display_power_well_init(dev_priv);
1626 }
1627 
1628 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1629 					struct i915_power_well *power_well)
1630 {
1631 	WARN_ON_ONCE(power_well->data != PIPE_A);
1632 
1633 	vlv_display_power_well_deinit(dev_priv);
1634 
1635 	chv_set_pipe_power_well(dev_priv, power_well, false);
1636 }
1637 
1638 static void
1639 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1640 				 enum intel_display_power_domain domain)
1641 {
1642 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1643 	struct i915_power_well *power_well;
1644 	int i;
1645 
1646 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1647 		intel_power_well_get(dev_priv, power_well);
1648 
1649 	power_domains->domain_use_count[domain]++;
1650 }
1651 
1652 /**
1653  * intel_display_power_get - grab a power domain reference
1654  * @dev_priv: i915 device instance
1655  * @domain: power domain to reference
1656  *
1657  * This function grabs a power domain reference for @domain and ensures that the
1658  * power domain and all its parents are powered up. Therefore users should only
1659  * grab a reference to the innermost power domain they need.
1660  *
1661  * Any power domain reference obtained by this function must have a symmetric
1662  * call to intel_display_power_put() to release the reference again.
1663  */
1664 void intel_display_power_get(struct drm_i915_private *dev_priv,
1665 			     enum intel_display_power_domain domain)
1666 {
1667 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1668 
1669 	intel_runtime_pm_get(dev_priv);
1670 
1671 	mutex_lock(&power_domains->lock);
1672 
1673 	__intel_display_power_get_domain(dev_priv, domain);
1674 
1675 	mutex_unlock(&power_domains->lock);
1676 }
1677 
1678 /**
1679  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1680  * @dev_priv: i915 device instance
1681  * @domain: power domain to reference
1682  *
1683  * This function grabs a power domain reference for @domain and ensures that the
1684  * power domain and all its parents are powered up. Therefore users should only
1685  * grab a reference to the innermost power domain they need.
1686  *
1687  * Any power domain reference obtained by this function must have a symmetric
1688  * call to intel_display_power_put() to release the reference again.
1689  */
1690 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1691 					enum intel_display_power_domain domain)
1692 {
1693 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1694 	bool is_enabled;
1695 
1696 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1697 		return false;
1698 
1699 	mutex_lock(&power_domains->lock);
1700 
1701 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1702 		__intel_display_power_get_domain(dev_priv, domain);
1703 		is_enabled = true;
1704 	} else {
1705 		is_enabled = false;
1706 	}
1707 
1708 	mutex_unlock(&power_domains->lock);
1709 
1710 	if (!is_enabled)
1711 		intel_runtime_pm_put(dev_priv);
1712 
1713 	return is_enabled;
1714 }
1715 
1716 /**
1717  * intel_display_power_put - release a power domain reference
1718  * @dev_priv: i915 device instance
1719  * @domain: power domain to reference
1720  *
1721  * This function drops the power domain reference obtained by
1722  * intel_display_power_get() and might power down the corresponding hardware
1723  * block right away if this is the last reference.
1724  */
1725 void intel_display_power_put(struct drm_i915_private *dev_priv,
1726 			     enum intel_display_power_domain domain)
1727 {
1728 	struct i915_power_domains *power_domains;
1729 	struct i915_power_well *power_well;
1730 	int i;
1731 
1732 	power_domains = &dev_priv->power_domains;
1733 
1734 	mutex_lock(&power_domains->lock);
1735 
1736 	WARN(!power_domains->domain_use_count[domain],
1737 	     "Use count on domain %s is already zero\n",
1738 	     intel_display_power_domain_str(domain));
1739 	power_domains->domain_use_count[domain]--;
1740 
1741 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1742 		intel_power_well_put(dev_priv, power_well);
1743 
1744 	mutex_unlock(&power_domains->lock);
1745 
1746 	intel_runtime_pm_put(dev_priv);
1747 }
1748 
1749 #define HSW_DISPLAY_POWER_DOMAINS (			\
1750 	BIT(POWER_DOMAIN_PIPE_B) |			\
1751 	BIT(POWER_DOMAIN_PIPE_C) |			\
1752 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1753 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1754 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1755 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1756 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1757 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1758 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1759 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1760 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1761 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1762 	BIT(POWER_DOMAIN_VGA) |				\
1763 	BIT(POWER_DOMAIN_AUDIO) |			\
1764 	BIT(POWER_DOMAIN_INIT))
1765 
1766 #define BDW_DISPLAY_POWER_DOMAINS (			\
1767 	BIT(POWER_DOMAIN_PIPE_B) |			\
1768 	BIT(POWER_DOMAIN_PIPE_C) |			\
1769 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1770 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1771 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1772 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1773 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1774 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1775 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1776 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1777 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1778 	BIT(POWER_DOMAIN_VGA) |				\
1779 	BIT(POWER_DOMAIN_AUDIO) |			\
1780 	BIT(POWER_DOMAIN_INIT))
1781 
1782 #define VLV_DISPLAY_POWER_DOMAINS (		\
1783 	BIT(POWER_DOMAIN_PIPE_A) |		\
1784 	BIT(POWER_DOMAIN_PIPE_B) |		\
1785 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1786 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1787 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1788 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1789 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1790 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1791 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1792 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1793 	BIT(POWER_DOMAIN_VGA) |			\
1794 	BIT(POWER_DOMAIN_AUDIO) |		\
1795 	BIT(POWER_DOMAIN_AUX_B) |		\
1796 	BIT(POWER_DOMAIN_AUX_C) |		\
1797 	BIT(POWER_DOMAIN_GMBUS) |		\
1798 	BIT(POWER_DOMAIN_INIT))
1799 
1800 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1801 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1802 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1803 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1804 	BIT(POWER_DOMAIN_AUX_B) |		\
1805 	BIT(POWER_DOMAIN_AUX_C) |		\
1806 	BIT(POWER_DOMAIN_INIT))
1807 
1808 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1809 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1810 	BIT(POWER_DOMAIN_AUX_B) |		\
1811 	BIT(POWER_DOMAIN_INIT))
1812 
1813 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1814 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1815 	BIT(POWER_DOMAIN_AUX_B) |		\
1816 	BIT(POWER_DOMAIN_INIT))
1817 
1818 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1819 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1820 	BIT(POWER_DOMAIN_AUX_C) |		\
1821 	BIT(POWER_DOMAIN_INIT))
1822 
1823 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1824 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1825 	BIT(POWER_DOMAIN_AUX_C) |		\
1826 	BIT(POWER_DOMAIN_INIT))
1827 
1828 #define CHV_DISPLAY_POWER_DOMAINS (		\
1829 	BIT(POWER_DOMAIN_PIPE_A) |		\
1830 	BIT(POWER_DOMAIN_PIPE_B) |		\
1831 	BIT(POWER_DOMAIN_PIPE_C) |		\
1832 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1833 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1834 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1835 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1836 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1837 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1838 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1839 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1840 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1841 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1842 	BIT(POWER_DOMAIN_VGA) |			\
1843 	BIT(POWER_DOMAIN_AUDIO) |		\
1844 	BIT(POWER_DOMAIN_AUX_B) |		\
1845 	BIT(POWER_DOMAIN_AUX_C) |		\
1846 	BIT(POWER_DOMAIN_AUX_D) |		\
1847 	BIT(POWER_DOMAIN_GMBUS) |		\
1848 	BIT(POWER_DOMAIN_INIT))
1849 
1850 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1851 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1852 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1853 	BIT(POWER_DOMAIN_AUX_B) |		\
1854 	BIT(POWER_DOMAIN_AUX_C) |		\
1855 	BIT(POWER_DOMAIN_INIT))
1856 
1857 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1858 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1859 	BIT(POWER_DOMAIN_AUX_D) |		\
1860 	BIT(POWER_DOMAIN_INIT))
1861 
1862 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1863 	.sync_hw = i9xx_always_on_power_well_noop,
1864 	.enable = i9xx_always_on_power_well_noop,
1865 	.disable = i9xx_always_on_power_well_noop,
1866 	.is_enabled = i9xx_always_on_power_well_enabled,
1867 };
1868 
1869 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1870 	.sync_hw = chv_pipe_power_well_sync_hw,
1871 	.enable = chv_pipe_power_well_enable,
1872 	.disable = chv_pipe_power_well_disable,
1873 	.is_enabled = chv_pipe_power_well_enabled,
1874 };
1875 
1876 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1877 	.sync_hw = vlv_power_well_sync_hw,
1878 	.enable = chv_dpio_cmn_power_well_enable,
1879 	.disable = chv_dpio_cmn_power_well_disable,
1880 	.is_enabled = vlv_power_well_enabled,
1881 };
1882 
1883 static struct i915_power_well i9xx_always_on_power_well[] = {
1884 	{
1885 		.name = "always-on",
1886 		.always_on = 1,
1887 		.domains = POWER_DOMAIN_MASK,
1888 		.ops = &i9xx_always_on_power_well_ops,
1889 	},
1890 };
1891 
1892 static const struct i915_power_well_ops hsw_power_well_ops = {
1893 	.sync_hw = hsw_power_well_sync_hw,
1894 	.enable = hsw_power_well_enable,
1895 	.disable = hsw_power_well_disable,
1896 	.is_enabled = hsw_power_well_enabled,
1897 };
1898 
1899 static const struct i915_power_well_ops skl_power_well_ops = {
1900 	.sync_hw = skl_power_well_sync_hw,
1901 	.enable = skl_power_well_enable,
1902 	.disable = skl_power_well_disable,
1903 	.is_enabled = skl_power_well_enabled,
1904 };
1905 
1906 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1907 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1908 	.enable = gen9_dc_off_power_well_enable,
1909 	.disable = gen9_dc_off_power_well_disable,
1910 	.is_enabled = gen9_dc_off_power_well_enabled,
1911 };
1912 
1913 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1914 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1915 	.enable = bxt_dpio_cmn_power_well_enable,
1916 	.disable = bxt_dpio_cmn_power_well_disable,
1917 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1918 };
1919 
1920 static struct i915_power_well hsw_power_wells[] = {
1921 	{
1922 		.name = "always-on",
1923 		.always_on = 1,
1924 		.domains = POWER_DOMAIN_MASK,
1925 		.ops = &i9xx_always_on_power_well_ops,
1926 	},
1927 	{
1928 		.name = "display",
1929 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1930 		.ops = &hsw_power_well_ops,
1931 	},
1932 };
1933 
1934 static struct i915_power_well bdw_power_wells[] = {
1935 	{
1936 		.name = "always-on",
1937 		.always_on = 1,
1938 		.domains = POWER_DOMAIN_MASK,
1939 		.ops = &i9xx_always_on_power_well_ops,
1940 	},
1941 	{
1942 		.name = "display",
1943 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1944 		.ops = &hsw_power_well_ops,
1945 	},
1946 };
1947 
1948 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1949 	.sync_hw = vlv_power_well_sync_hw,
1950 	.enable = vlv_display_power_well_enable,
1951 	.disable = vlv_display_power_well_disable,
1952 	.is_enabled = vlv_power_well_enabled,
1953 };
1954 
1955 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1956 	.sync_hw = vlv_power_well_sync_hw,
1957 	.enable = vlv_dpio_cmn_power_well_enable,
1958 	.disable = vlv_dpio_cmn_power_well_disable,
1959 	.is_enabled = vlv_power_well_enabled,
1960 };
1961 
1962 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1963 	.sync_hw = vlv_power_well_sync_hw,
1964 	.enable = vlv_power_well_enable,
1965 	.disable = vlv_power_well_disable,
1966 	.is_enabled = vlv_power_well_enabled,
1967 };
1968 
1969 static struct i915_power_well vlv_power_wells[] = {
1970 	{
1971 		.name = "always-on",
1972 		.always_on = 1,
1973 		.domains = POWER_DOMAIN_MASK,
1974 		.ops = &i9xx_always_on_power_well_ops,
1975 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1976 	},
1977 	{
1978 		.name = "display",
1979 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1980 		.data = PUNIT_POWER_WELL_DISP2D,
1981 		.ops = &vlv_display_power_well_ops,
1982 	},
1983 	{
1984 		.name = "dpio-tx-b-01",
1985 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1986 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1987 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1988 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1989 		.ops = &vlv_dpio_power_well_ops,
1990 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1991 	},
1992 	{
1993 		.name = "dpio-tx-b-23",
1994 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1995 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1996 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1997 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1998 		.ops = &vlv_dpio_power_well_ops,
1999 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2000 	},
2001 	{
2002 		.name = "dpio-tx-c-01",
2003 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2004 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2005 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2006 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2007 		.ops = &vlv_dpio_power_well_ops,
2008 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2009 	},
2010 	{
2011 		.name = "dpio-tx-c-23",
2012 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2013 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2014 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2015 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2016 		.ops = &vlv_dpio_power_well_ops,
2017 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2018 	},
2019 	{
2020 		.name = "dpio-common",
2021 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2022 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2023 		.ops = &vlv_dpio_cmn_power_well_ops,
2024 	},
2025 };
2026 
2027 static struct i915_power_well chv_power_wells[] = {
2028 	{
2029 		.name = "always-on",
2030 		.always_on = 1,
2031 		.domains = POWER_DOMAIN_MASK,
2032 		.ops = &i9xx_always_on_power_well_ops,
2033 	},
2034 	{
2035 		.name = "display",
2036 		/*
2037 		 * Pipe A power well is the new disp2d well. Pipe B and C
2038 		 * power wells don't actually exist. Pipe A power well is
2039 		 * required for any pipe to work.
2040 		 */
2041 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2042 		.data = PIPE_A,
2043 		.ops = &chv_pipe_power_well_ops,
2044 	},
2045 	{
2046 		.name = "dpio-common-bc",
2047 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2048 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2049 		.ops = &chv_dpio_cmn_power_well_ops,
2050 	},
2051 	{
2052 		.name = "dpio-common-d",
2053 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2054 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2055 		.ops = &chv_dpio_cmn_power_well_ops,
2056 	},
2057 };
2058 
2059 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2060 				    int power_well_id)
2061 {
2062 	struct i915_power_well *power_well;
2063 	bool ret;
2064 
2065 	power_well = lookup_power_well(dev_priv, power_well_id);
2066 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2067 
2068 	return ret;
2069 }
2070 
2071 static struct i915_power_well skl_power_wells[] = {
2072 	{
2073 		.name = "always-on",
2074 		.always_on = 1,
2075 		.domains = POWER_DOMAIN_MASK,
2076 		.ops = &i9xx_always_on_power_well_ops,
2077 		.data = SKL_DISP_PW_ALWAYS_ON,
2078 	},
2079 	{
2080 		.name = "power well 1",
2081 		/* Handled by the DMC firmware */
2082 		.domains = 0,
2083 		.ops = &skl_power_well_ops,
2084 		.data = SKL_DISP_PW_1,
2085 	},
2086 	{
2087 		.name = "MISC IO power well",
2088 		/* Handled by the DMC firmware */
2089 		.domains = 0,
2090 		.ops = &skl_power_well_ops,
2091 		.data = SKL_DISP_PW_MISC_IO,
2092 	},
2093 	{
2094 		.name = "DC off",
2095 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2096 		.ops = &gen9_dc_off_power_well_ops,
2097 		.data = SKL_DISP_PW_DC_OFF,
2098 	},
2099 	{
2100 		.name = "power well 2",
2101 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2102 		.ops = &skl_power_well_ops,
2103 		.data = SKL_DISP_PW_2,
2104 	},
2105 	{
2106 		.name = "DDI A/E power well",
2107 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2108 		.ops = &skl_power_well_ops,
2109 		.data = SKL_DISP_PW_DDI_A_E,
2110 	},
2111 	{
2112 		.name = "DDI B power well",
2113 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2114 		.ops = &skl_power_well_ops,
2115 		.data = SKL_DISP_PW_DDI_B,
2116 	},
2117 	{
2118 		.name = "DDI C power well",
2119 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2120 		.ops = &skl_power_well_ops,
2121 		.data = SKL_DISP_PW_DDI_C,
2122 	},
2123 	{
2124 		.name = "DDI D power well",
2125 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2126 		.ops = &skl_power_well_ops,
2127 		.data = SKL_DISP_PW_DDI_D,
2128 	},
2129 };
2130 
2131 static struct i915_power_well bxt_power_wells[] = {
2132 	{
2133 		.name = "always-on",
2134 		.always_on = 1,
2135 		.domains = POWER_DOMAIN_MASK,
2136 		.ops = &i9xx_always_on_power_well_ops,
2137 	},
2138 	{
2139 		.name = "power well 1",
2140 		.domains = 0,
2141 		.ops = &skl_power_well_ops,
2142 		.data = SKL_DISP_PW_1,
2143 	},
2144 	{
2145 		.name = "DC off",
2146 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2147 		.ops = &gen9_dc_off_power_well_ops,
2148 		.data = SKL_DISP_PW_DC_OFF,
2149 	},
2150 	{
2151 		.name = "power well 2",
2152 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2153 		.ops = &skl_power_well_ops,
2154 		.data = SKL_DISP_PW_2,
2155 	},
2156 	{
2157 		.name = "dpio-common-a",
2158 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2159 		.ops = &bxt_dpio_cmn_power_well_ops,
2160 		.data = BXT_DPIO_CMN_A,
2161 	},
2162 	{
2163 		.name = "dpio-common-bc",
2164 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2165 		.ops = &bxt_dpio_cmn_power_well_ops,
2166 		.data = BXT_DPIO_CMN_BC,
2167 	},
2168 };
2169 
2170 static int
2171 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2172 				   int disable_power_well)
2173 {
2174 	if (disable_power_well >= 0)
2175 		return !!disable_power_well;
2176 
2177 	return 1;
2178 }
2179 
2180 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2181 				    int enable_dc)
2182 {
2183 	uint32_t mask;
2184 	int requested_dc;
2185 	int max_dc;
2186 
2187 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2188 		max_dc = 2;
2189 		mask = 0;
2190 	} else if (IS_BROXTON(dev_priv)) {
2191 		max_dc = 1;
2192 		/*
2193 		 * DC9 has a separate HW flow from the rest of the DC states,
2194 		 * not depending on the DMC firmware. It's needed by system
2195 		 * suspend/resume, so allow it unconditionally.
2196 		 */
2197 		mask = DC_STATE_EN_DC9;
2198 	} else {
2199 		max_dc = 0;
2200 		mask = 0;
2201 	}
2202 
2203 	if (!i915.disable_power_well)
2204 		max_dc = 0;
2205 
2206 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2207 		requested_dc = enable_dc;
2208 	} else if (enable_dc == -1) {
2209 		requested_dc = max_dc;
2210 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2211 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2212 			      enable_dc, max_dc);
2213 		requested_dc = max_dc;
2214 	} else {
2215 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2216 		requested_dc = max_dc;
2217 	}
2218 
2219 	if (requested_dc > 1)
2220 		mask |= DC_STATE_EN_UPTO_DC6;
2221 	if (requested_dc > 0)
2222 		mask |= DC_STATE_EN_UPTO_DC5;
2223 
2224 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2225 
2226 	return mask;
2227 }
2228 
2229 #define set_power_wells(power_domains, __power_wells) ({		\
2230 	(power_domains)->power_wells = (__power_wells);			\
2231 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2232 })
2233 
2234 /**
2235  * intel_power_domains_init - initializes the power domain structures
2236  * @dev_priv: i915 device instance
2237  *
2238  * Initializes the power domain structures for @dev_priv depending upon the
2239  * supported platform.
2240  */
2241 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2242 {
2243 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2244 
2245 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2246 						     i915.disable_power_well);
2247 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2248 							    i915.enable_dc);
2249 
2250 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2251 
2252 	mutex_init(&power_domains->lock);
2253 
2254 	/*
2255 	 * The enabling order will be from lower to higher indexed wells,
2256 	 * the disabling order is reversed.
2257 	 */
2258 	if (IS_HASWELL(dev_priv)) {
2259 		set_power_wells(power_domains, hsw_power_wells);
2260 	} else if (IS_BROADWELL(dev_priv)) {
2261 		set_power_wells(power_domains, bdw_power_wells);
2262 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2263 		set_power_wells(power_domains, skl_power_wells);
2264 	} else if (IS_BROXTON(dev_priv)) {
2265 		set_power_wells(power_domains, bxt_power_wells);
2266 	} else if (IS_CHERRYVIEW(dev_priv)) {
2267 		set_power_wells(power_domains, chv_power_wells);
2268 	} else if (IS_VALLEYVIEW(dev_priv)) {
2269 		set_power_wells(power_domains, vlv_power_wells);
2270 	} else {
2271 		set_power_wells(power_domains, i9xx_always_on_power_well);
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /**
2278  * intel_power_domains_fini - finalizes the power domain structures
2279  * @dev_priv: i915 device instance
2280  *
2281  * Finalizes the power domain structures for @dev_priv depending upon the
2282  * supported platform. This function also disables runtime pm and ensures that
2283  * the device stays powered up so that the driver can be reloaded.
2284  */
2285 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2286 {
2287 	struct device *device = &dev_priv->drm.pdev->dev;
2288 
2289 	/*
2290 	 * The i915.ko module is still not prepared to be loaded when
2291 	 * the power well is not enabled, so just enable it in case
2292 	 * we're going to unload/reload.
2293 	 * The following also reacquires the RPM reference the core passed
2294 	 * to the driver during loading, which is dropped in
2295 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2296 	 * device to the core with this reference held.
2297 	 */
2298 	intel_display_set_init_power(dev_priv, true);
2299 
2300 	/* Remove the refcount we took to keep power well support disabled. */
2301 	if (!i915.disable_power_well)
2302 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2303 
2304 	/*
2305 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2306 	 * the platform doesn't support runtime PM.
2307 	 */
2308 	if (!HAS_RUNTIME_PM(dev_priv))
2309 		pm_runtime_put(device);
2310 }
2311 
2312 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2313 {
2314 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2315 	struct i915_power_well *power_well;
2316 	int i;
2317 
2318 	mutex_lock(&power_domains->lock);
2319 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2320 		power_well->ops->sync_hw(dev_priv, power_well);
2321 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2322 								     power_well);
2323 	}
2324 	mutex_unlock(&power_domains->lock);
2325 }
2326 
2327 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2328 {
2329 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2330 	POSTING_READ(DBUF_CTL);
2331 
2332 	udelay(10);
2333 
2334 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2335 		DRM_ERROR("DBuf power enable timeout\n");
2336 }
2337 
2338 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2339 {
2340 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2341 	POSTING_READ(DBUF_CTL);
2342 
2343 	udelay(10);
2344 
2345 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2346 		DRM_ERROR("DBuf power disable timeout!\n");
2347 }
2348 
2349 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2350 				   bool resume)
2351 {
2352 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2353 	struct i915_power_well *well;
2354 	uint32_t val;
2355 
2356 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2357 
2358 	/* enable PCH reset handshake */
2359 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2360 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2361 
2362 	/* enable PG1 and Misc I/O */
2363 	mutex_lock(&power_domains->lock);
2364 
2365 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2366 	intel_power_well_enable(dev_priv, well);
2367 
2368 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2369 	intel_power_well_enable(dev_priv, well);
2370 
2371 	mutex_unlock(&power_domains->lock);
2372 
2373 	skl_init_cdclk(dev_priv);
2374 
2375 	gen9_dbuf_enable(dev_priv);
2376 
2377 	if (resume && dev_priv->csr.dmc_payload)
2378 		intel_csr_load_program(dev_priv);
2379 }
2380 
2381 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2382 {
2383 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2384 	struct i915_power_well *well;
2385 
2386 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2387 
2388 	gen9_dbuf_disable(dev_priv);
2389 
2390 	skl_uninit_cdclk(dev_priv);
2391 
2392 	/* The spec doesn't call for removing the reset handshake flag */
2393 	/* disable PG1 and Misc I/O */
2394 
2395 	mutex_lock(&power_domains->lock);
2396 
2397 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2398 	intel_power_well_disable(dev_priv, well);
2399 
2400 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2401 	intel_power_well_disable(dev_priv, well);
2402 
2403 	mutex_unlock(&power_domains->lock);
2404 }
2405 
2406 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2407 			   bool resume)
2408 {
2409 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2410 	struct i915_power_well *well;
2411 	uint32_t val;
2412 
2413 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2414 
2415 	/*
2416 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2417 	 * or else the reset will hang because there is no PCH to respond.
2418 	 * Move the handshake programming to initialization sequence.
2419 	 * Previously was left up to BIOS.
2420 	 */
2421 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2422 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2423 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2424 
2425 	/* Enable PG1 */
2426 	mutex_lock(&power_domains->lock);
2427 
2428 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2429 	intel_power_well_enable(dev_priv, well);
2430 
2431 	mutex_unlock(&power_domains->lock);
2432 
2433 	bxt_init_cdclk(dev_priv);
2434 
2435 	gen9_dbuf_enable(dev_priv);
2436 
2437 	if (resume && dev_priv->csr.dmc_payload)
2438 		intel_csr_load_program(dev_priv);
2439 }
2440 
2441 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2442 {
2443 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2444 	struct i915_power_well *well;
2445 
2446 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2447 
2448 	gen9_dbuf_disable(dev_priv);
2449 
2450 	bxt_uninit_cdclk(dev_priv);
2451 
2452 	/* The spec doesn't call for removing the reset handshake flag */
2453 
2454 	/* Disable PG1 */
2455 	mutex_lock(&power_domains->lock);
2456 
2457 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2458 	intel_power_well_disable(dev_priv, well);
2459 
2460 	mutex_unlock(&power_domains->lock);
2461 }
2462 
2463 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2464 {
2465 	struct i915_power_well *cmn_bc =
2466 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2467 	struct i915_power_well *cmn_d =
2468 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2469 
2470 	/*
2471 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2472 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2473 	 * instead maintain a shadow copy ourselves. Use the actual
2474 	 * power well state and lane status to reconstruct the
2475 	 * expected initial value.
2476 	 */
2477 	dev_priv->chv_phy_control =
2478 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2479 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2480 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2481 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2482 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2483 
2484 	/*
2485 	 * If all lanes are disabled we leave the override disabled
2486 	 * with all power down bits cleared to match the state we
2487 	 * would use after disabling the port. Otherwise enable the
2488 	 * override and set the lane powerdown bits accding to the
2489 	 * current lane status.
2490 	 */
2491 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2492 		uint32_t status = I915_READ(DPLL(PIPE_A));
2493 		unsigned int mask;
2494 
2495 		mask = status & DPLL_PORTB_READY_MASK;
2496 		if (mask == 0xf)
2497 			mask = 0x0;
2498 		else
2499 			dev_priv->chv_phy_control |=
2500 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2501 
2502 		dev_priv->chv_phy_control |=
2503 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2504 
2505 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2506 		if (mask == 0xf)
2507 			mask = 0x0;
2508 		else
2509 			dev_priv->chv_phy_control |=
2510 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2511 
2512 		dev_priv->chv_phy_control |=
2513 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2514 
2515 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2516 
2517 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2518 	} else {
2519 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2520 	}
2521 
2522 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2523 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2524 		unsigned int mask;
2525 
2526 		mask = status & DPLL_PORTD_READY_MASK;
2527 
2528 		if (mask == 0xf)
2529 			mask = 0x0;
2530 		else
2531 			dev_priv->chv_phy_control |=
2532 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2533 
2534 		dev_priv->chv_phy_control |=
2535 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2536 
2537 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2538 
2539 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2540 	} else {
2541 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2542 	}
2543 
2544 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2545 
2546 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2547 		      dev_priv->chv_phy_control);
2548 }
2549 
2550 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2551 {
2552 	struct i915_power_well *cmn =
2553 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2554 	struct i915_power_well *disp2d =
2555 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2556 
2557 	/* If the display might be already active skip this */
2558 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2559 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2560 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2561 		return;
2562 
2563 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2564 
2565 	/* cmnlane needs DPLL registers */
2566 	disp2d->ops->enable(dev_priv, disp2d);
2567 
2568 	/*
2569 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2570 	 * Need to assert and de-assert PHY SB reset by gating the
2571 	 * common lane power, then un-gating it.
2572 	 * Simply ungating isn't enough to reset the PHY enough to get
2573 	 * ports and lanes running.
2574 	 */
2575 	cmn->ops->disable(dev_priv, cmn);
2576 }
2577 
2578 /**
2579  * intel_power_domains_init_hw - initialize hardware power domain state
2580  * @dev_priv: i915 device instance
2581  * @resume: Called from resume code paths or not
2582  *
2583  * This function initializes the hardware power domain state and enables all
2584  * power domains using intel_display_set_init_power().
2585  */
2586 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2587 {
2588 	struct drm_device *dev = &dev_priv->drm;
2589 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2590 
2591 	power_domains->initializing = true;
2592 
2593 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2594 		skl_display_core_init(dev_priv, resume);
2595 	} else if (IS_BROXTON(dev)) {
2596 		bxt_display_core_init(dev_priv, resume);
2597 	} else if (IS_CHERRYVIEW(dev)) {
2598 		mutex_lock(&power_domains->lock);
2599 		chv_phy_control_init(dev_priv);
2600 		mutex_unlock(&power_domains->lock);
2601 	} else if (IS_VALLEYVIEW(dev)) {
2602 		mutex_lock(&power_domains->lock);
2603 		vlv_cmnlane_wa(dev_priv);
2604 		mutex_unlock(&power_domains->lock);
2605 	}
2606 
2607 	/* For now, we need the power well to be always enabled. */
2608 	intel_display_set_init_power(dev_priv, true);
2609 	/* Disable power support if the user asked so. */
2610 	if (!i915.disable_power_well)
2611 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2612 	intel_power_domains_sync_hw(dev_priv);
2613 	power_domains->initializing = false;
2614 }
2615 
2616 /**
2617  * intel_power_domains_suspend - suspend power domain state
2618  * @dev_priv: i915 device instance
2619  *
2620  * This function prepares the hardware power domain state before entering
2621  * system suspend. It must be paired with intel_power_domains_init_hw().
2622  */
2623 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2624 {
2625 	/*
2626 	 * Even if power well support was disabled we still want to disable
2627 	 * power wells while we are system suspended.
2628 	 */
2629 	if (!i915.disable_power_well)
2630 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2631 
2632 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2633 		skl_display_core_uninit(dev_priv);
2634 	else if (IS_BROXTON(dev_priv))
2635 		bxt_display_core_uninit(dev_priv);
2636 }
2637 
2638 /**
2639  * intel_runtime_pm_get - grab a runtime pm reference
2640  * @dev_priv: i915 device instance
2641  *
2642  * This function grabs a device-level runtime pm reference (mostly used for GEM
2643  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2644  *
2645  * Any runtime pm reference obtained by this function must have a symmetric
2646  * call to intel_runtime_pm_put() to release the reference again.
2647  */
2648 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2649 {
2650 	struct drm_device *dev = &dev_priv->drm;
2651 	struct device *device = &dev->pdev->dev;
2652 
2653 	pm_runtime_get_sync(device);
2654 
2655 	atomic_inc(&dev_priv->pm.wakeref_count);
2656 	assert_rpm_wakelock_held(dev_priv);
2657 }
2658 
2659 /**
2660  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2661  * @dev_priv: i915 device instance
2662  *
2663  * This function grabs a device-level runtime pm reference if the device is
2664  * already in use and ensures that it is powered up.
2665  *
2666  * Any runtime pm reference obtained by this function must have a symmetric
2667  * call to intel_runtime_pm_put() to release the reference again.
2668  */
2669 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2670 {
2671 	struct drm_device *dev = &dev_priv->drm;
2672 	struct device *device = &dev->pdev->dev;
2673 
2674 	if (IS_ENABLED(CONFIG_PM)) {
2675 		int ret = pm_runtime_get_if_in_use(device);
2676 
2677 		/*
2678 		 * In cases runtime PM is disabled by the RPM core and we get
2679 		 * an -EINVAL return value we are not supposed to call this
2680 		 * function, since the power state is undefined. This applies
2681 		 * atm to the late/early system suspend/resume handlers.
2682 		 */
2683 		WARN_ON_ONCE(ret < 0);
2684 		if (ret <= 0)
2685 			return false;
2686 	}
2687 
2688 	atomic_inc(&dev_priv->pm.wakeref_count);
2689 	assert_rpm_wakelock_held(dev_priv);
2690 
2691 	return true;
2692 }
2693 
2694 /**
2695  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2696  * @dev_priv: i915 device instance
2697  *
2698  * This function grabs a device-level runtime pm reference (mostly used for GEM
2699  * code to ensure the GTT or GT is on).
2700  *
2701  * It will _not_ power up the device but instead only check that it's powered
2702  * on.  Therefore it is only valid to call this functions from contexts where
2703  * the device is known to be powered up and where trying to power it up would
2704  * result in hilarity and deadlocks. That pretty much means only the system
2705  * suspend/resume code where this is used to grab runtime pm references for
2706  * delayed setup down in work items.
2707  *
2708  * Any runtime pm reference obtained by this function must have a symmetric
2709  * call to intel_runtime_pm_put() to release the reference again.
2710  */
2711 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2712 {
2713 	struct drm_device *dev = &dev_priv->drm;
2714 	struct device *device = &dev->pdev->dev;
2715 
2716 	assert_rpm_wakelock_held(dev_priv);
2717 	pm_runtime_get_noresume(device);
2718 
2719 	atomic_inc(&dev_priv->pm.wakeref_count);
2720 }
2721 
2722 /**
2723  * intel_runtime_pm_put - release a runtime pm reference
2724  * @dev_priv: i915 device instance
2725  *
2726  * This function drops the device-level runtime pm reference obtained by
2727  * intel_runtime_pm_get() and might power down the corresponding
2728  * hardware block right away if this is the last reference.
2729  */
2730 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2731 {
2732 	struct drm_device *dev = &dev_priv->drm;
2733 	struct device *device = &dev->pdev->dev;
2734 
2735 	assert_rpm_wakelock_held(dev_priv);
2736 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2737 		atomic_inc(&dev_priv->pm.atomic_seq);
2738 
2739 	pm_runtime_mark_last_busy(device);
2740 	pm_runtime_put_autosuspend(device);
2741 }
2742 
2743 /**
2744  * intel_runtime_pm_enable - enable runtime pm
2745  * @dev_priv: i915 device instance
2746  *
2747  * This function enables runtime pm at the end of the driver load sequence.
2748  *
2749  * Note that this function does currently not enable runtime pm for the
2750  * subordinate display power domains. That is only done on the first modeset
2751  * using intel_display_set_init_power().
2752  */
2753 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2754 {
2755 	struct drm_device *dev = &dev_priv->drm;
2756 	struct device *device = &dev->pdev->dev;
2757 
2758 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2759 	pm_runtime_mark_last_busy(device);
2760 
2761 	/*
2762 	 * Take a permanent reference to disable the RPM functionality and drop
2763 	 * it only when unloading the driver. Use the low level get/put helpers,
2764 	 * so the driver's own RPM reference tracking asserts also work on
2765 	 * platforms without RPM support.
2766 	 */
2767 	if (!HAS_RUNTIME_PM(dev)) {
2768 		pm_runtime_dont_use_autosuspend(device);
2769 		pm_runtime_get_sync(device);
2770 	} else {
2771 		pm_runtime_use_autosuspend(device);
2772 	}
2773 
2774 	/*
2775 	 * The core calls the driver load handler with an RPM reference held.
2776 	 * We drop that here and will reacquire it during unloading in
2777 	 * intel_power_domains_fini().
2778 	 */
2779 	pm_runtime_put_autosuspend(device);
2780 }
2781 
2782