1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 	switch (domain) {
72 	case POWER_DOMAIN_PIPE_A:
73 		return "PIPE_A";
74 	case POWER_DOMAIN_PIPE_B:
75 		return "PIPE_B";
76 	case POWER_DOMAIN_PIPE_C:
77 		return "PIPE_C";
78 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 		return "PIPE_A_PANEL_FITTER";
80 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 		return "PIPE_B_PANEL_FITTER";
82 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 		return "PIPE_C_PANEL_FITTER";
84 	case POWER_DOMAIN_TRANSCODER_A:
85 		return "TRANSCODER_A";
86 	case POWER_DOMAIN_TRANSCODER_B:
87 		return "TRANSCODER_B";
88 	case POWER_DOMAIN_TRANSCODER_C:
89 		return "TRANSCODER_C";
90 	case POWER_DOMAIN_TRANSCODER_EDP:
91 		return "TRANSCODER_EDP";
92 	case POWER_DOMAIN_TRANSCODER_DSI_A:
93 		return "TRANSCODER_DSI_A";
94 	case POWER_DOMAIN_TRANSCODER_DSI_C:
95 		return "TRANSCODER_DSI_C";
96 	case POWER_DOMAIN_PORT_DDI_A_LANES:
97 		return "PORT_DDI_A_LANES";
98 	case POWER_DOMAIN_PORT_DDI_B_LANES:
99 		return "PORT_DDI_B_LANES";
100 	case POWER_DOMAIN_PORT_DDI_C_LANES:
101 		return "PORT_DDI_C_LANES";
102 	case POWER_DOMAIN_PORT_DDI_D_LANES:
103 		return "PORT_DDI_D_LANES";
104 	case POWER_DOMAIN_PORT_DDI_E_LANES:
105 		return "PORT_DDI_E_LANES";
106 	case POWER_DOMAIN_PORT_DSI:
107 		return "PORT_DSI";
108 	case POWER_DOMAIN_PORT_CRT:
109 		return "PORT_CRT";
110 	case POWER_DOMAIN_PORT_OTHER:
111 		return "PORT_OTHER";
112 	case POWER_DOMAIN_VGA:
113 		return "VGA";
114 	case POWER_DOMAIN_AUDIO:
115 		return "AUDIO";
116 	case POWER_DOMAIN_PLLS:
117 		return "PLLS";
118 	case POWER_DOMAIN_AUX_A:
119 		return "AUX_A";
120 	case POWER_DOMAIN_AUX_B:
121 		return "AUX_B";
122 	case POWER_DOMAIN_AUX_C:
123 		return "AUX_C";
124 	case POWER_DOMAIN_AUX_D:
125 		return "AUX_D";
126 	case POWER_DOMAIN_GMBUS:
127 		return "GMBUS";
128 	case POWER_DOMAIN_INIT:
129 		return "INIT";
130 	case POWER_DOMAIN_MODESET:
131 		return "MODESET";
132 	default:
133 		MISSING_CASE(domain);
134 		return "?";
135 	}
136 }
137 
138 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
139 				    struct i915_power_well *power_well)
140 {
141 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
142 	power_well->ops->enable(dev_priv, power_well);
143 	power_well->hw_enabled = true;
144 }
145 
146 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
147 				     struct i915_power_well *power_well)
148 {
149 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
150 	power_well->hw_enabled = false;
151 	power_well->ops->disable(dev_priv, power_well);
152 }
153 
154 /*
155  * We should only use the power well if we explicitly asked the hardware to
156  * enable it, so check if it's enabled and also check if we've requested it to
157  * be enabled.
158  */
159 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
160 				   struct i915_power_well *power_well)
161 {
162 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
163 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
164 }
165 
166 /**
167  * __intel_display_power_is_enabled - unlocked check for a power domain
168  * @dev_priv: i915 device instance
169  * @domain: power domain to check
170  *
171  * This is the unlocked version of intel_display_power_is_enabled() and should
172  * only be used from error capture and recovery code where deadlocks are
173  * possible.
174  *
175  * Returns:
176  * True when the power domain is enabled, false otherwise.
177  */
178 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
179 				      enum intel_display_power_domain domain)
180 {
181 	struct i915_power_domains *power_domains;
182 	struct i915_power_well *power_well;
183 	bool is_enabled;
184 	int i;
185 
186 	if (dev_priv->pm.suspended)
187 		return false;
188 
189 	power_domains = &dev_priv->power_domains;
190 
191 	is_enabled = true;
192 
193 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
194 		if (power_well->always_on)
195 			continue;
196 
197 		if (!power_well->hw_enabled) {
198 			is_enabled = false;
199 			break;
200 		}
201 	}
202 
203 	return is_enabled;
204 }
205 
206 /**
207  * intel_display_power_is_enabled - check for a power domain
208  * @dev_priv: i915 device instance
209  * @domain: power domain to check
210  *
211  * This function can be used to check the hw power domain state. It is mostly
212  * used in hardware state readout functions. Everywhere else code should rely
213  * upon explicit power domain reference counting to ensure that the hardware
214  * block is powered up before accessing it.
215  *
216  * Callers must hold the relevant modesetting locks to ensure that concurrent
217  * threads can't disable the power well while the caller tries to read a few
218  * registers.
219  *
220  * Returns:
221  * True when the power domain is enabled, false otherwise.
222  */
223 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
224 				    enum intel_display_power_domain domain)
225 {
226 	struct i915_power_domains *power_domains;
227 	bool ret;
228 
229 	power_domains = &dev_priv->power_domains;
230 
231 	mutex_lock(&power_domains->lock);
232 	ret = __intel_display_power_is_enabled(dev_priv, domain);
233 	mutex_unlock(&power_domains->lock);
234 
235 	return ret;
236 }
237 
238 /**
239  * intel_display_set_init_power - set the initial power domain state
240  * @dev_priv: i915 device instance
241  * @enable: whether to enable or disable the initial power domain state
242  *
243  * For simplicity our driver load/unload and system suspend/resume code assumes
244  * that all power domains are always enabled. This functions controls the state
245  * of this little hack. While the initial power domain state is enabled runtime
246  * pm is effectively disabled.
247  */
248 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
249 				  bool enable)
250 {
251 	if (dev_priv->power_domains.init_power_on == enable)
252 		return;
253 
254 	if (enable)
255 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
256 	else
257 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
258 
259 	dev_priv->power_domains.init_power_on = enable;
260 }
261 
262 /*
263  * Starting with Haswell, we have a "Power Down Well" that can be turned off
264  * when not needed anymore. We have 4 registers that can request the power well
265  * to be enabled, and it will only be disabled if none of the registers is
266  * requesting it to be enabled.
267  */
268 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
269 {
270 	struct drm_device *dev = dev_priv->dev;
271 
272 	/*
273 	 * After we re-enable the power well, if we touch VGA register 0x3d5
274 	 * we'll get unclaimed register interrupts. This stops after we write
275 	 * anything to the VGA MSR register. The vgacon module uses this
276 	 * register all the time, so if we unbind our driver and, as a
277 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
278 	 * console_unlock(). So make here we touch the VGA MSR register, making
279 	 * sure vgacon can keep working normally without triggering interrupts
280 	 * and error messages.
281 	 */
282 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
283 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
284 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
285 
286 	if (IS_BROADWELL(dev))
287 		gen8_irq_power_well_post_enable(dev_priv,
288 						1 << PIPE_C | 1 << PIPE_B);
289 }
290 
291 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
292 {
293 	if (IS_BROADWELL(dev_priv))
294 		gen8_irq_power_well_pre_disable(dev_priv,
295 						1 << PIPE_C | 1 << PIPE_B);
296 }
297 
298 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
299 				       struct i915_power_well *power_well)
300 {
301 	struct drm_device *dev = dev_priv->dev;
302 
303 	/*
304 	 * After we re-enable the power well, if we touch VGA register 0x3d5
305 	 * we'll get unclaimed register interrupts. This stops after we write
306 	 * anything to the VGA MSR register. The vgacon module uses this
307 	 * register all the time, so if we unbind our driver and, as a
308 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
309 	 * console_unlock(). So make here we touch the VGA MSR register, making
310 	 * sure vgacon can keep working normally without triggering interrupts
311 	 * and error messages.
312 	 */
313 	if (power_well->data == SKL_DISP_PW_2) {
314 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
315 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
316 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
317 
318 		gen8_irq_power_well_post_enable(dev_priv,
319 						1 << PIPE_C | 1 << PIPE_B);
320 	}
321 }
322 
323 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
324 				       struct i915_power_well *power_well)
325 {
326 	if (power_well->data == SKL_DISP_PW_2)
327 		gen8_irq_power_well_pre_disable(dev_priv,
328 						1 << PIPE_C | 1 << PIPE_B);
329 }
330 
331 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
332 			       struct i915_power_well *power_well, bool enable)
333 {
334 	bool is_enabled, enable_requested;
335 	uint32_t tmp;
336 
337 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
338 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
339 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
340 
341 	if (enable) {
342 		if (!enable_requested)
343 			I915_WRITE(HSW_PWR_WELL_DRIVER,
344 				   HSW_PWR_WELL_ENABLE_REQUEST);
345 
346 		if (!is_enabled) {
347 			DRM_DEBUG_KMS("Enabling power well\n");
348 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
349 				      HSW_PWR_WELL_STATE_ENABLED), 20))
350 				DRM_ERROR("Timeout enabling power well\n");
351 			hsw_power_well_post_enable(dev_priv);
352 		}
353 
354 	} else {
355 		if (enable_requested) {
356 			hsw_power_well_pre_disable(dev_priv);
357 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
358 			POSTING_READ(HSW_PWR_WELL_DRIVER);
359 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
360 		}
361 	}
362 }
363 
364 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
365 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
366 	BIT(POWER_DOMAIN_PIPE_B) |			\
367 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
368 	BIT(POWER_DOMAIN_PIPE_C) |			\
369 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
370 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
371 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
372 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
373 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
374 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
375 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
376 	BIT(POWER_DOMAIN_AUX_B) |                       \
377 	BIT(POWER_DOMAIN_AUX_C) |			\
378 	BIT(POWER_DOMAIN_AUX_D) |			\
379 	BIT(POWER_DOMAIN_AUDIO) |			\
380 	BIT(POWER_DOMAIN_VGA) |				\
381 	BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
383 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
384 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
385 	BIT(POWER_DOMAIN_INIT))
386 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
387 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
388 	BIT(POWER_DOMAIN_INIT))
389 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
390 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
391 	BIT(POWER_DOMAIN_INIT))
392 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
393 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
394 	BIT(POWER_DOMAIN_INIT))
395 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
396 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
397 	BIT(POWER_DOMAIN_MODESET) |			\
398 	BIT(POWER_DOMAIN_AUX_A) |			\
399 	BIT(POWER_DOMAIN_INIT))
400 
401 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
402 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
403 	BIT(POWER_DOMAIN_PIPE_B) |			\
404 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
405 	BIT(POWER_DOMAIN_PIPE_C) |			\
406 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
407 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
408 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
409 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
410 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
411 	BIT(POWER_DOMAIN_AUX_B) |			\
412 	BIT(POWER_DOMAIN_AUX_C) |			\
413 	BIT(POWER_DOMAIN_AUDIO) |			\
414 	BIT(POWER_DOMAIN_VGA) |				\
415 	BIT(POWER_DOMAIN_GMBUS) |			\
416 	BIT(POWER_DOMAIN_INIT))
417 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
418 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
419 	BIT(POWER_DOMAIN_MODESET) |			\
420 	BIT(POWER_DOMAIN_AUX_A) |			\
421 	BIT(POWER_DOMAIN_INIT))
422 
423 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
424 {
425 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
426 		  "DC9 already programmed to be enabled.\n");
427 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
428 		  "DC5 still not disabled to enable DC9.\n");
429 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
430 	WARN_ONCE(intel_irqs_enabled(dev_priv),
431 		  "Interrupts not disabled yet.\n");
432 
433 	 /*
434 	  * TODO: check for the following to verify the conditions to enter DC9
435 	  * state are satisfied:
436 	  * 1] Check relevant display engine registers to verify if mode set
437 	  * disable sequence was followed.
438 	  * 2] Check if display uninitialize sequence is initialized.
439 	  */
440 }
441 
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 	WARN_ONCE(intel_irqs_enabled(dev_priv),
445 		  "Interrupts not disabled yet.\n");
446 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
447 		  "DC5 still not disabled.\n");
448 
449 	 /*
450 	  * TODO: check for the following to verify DC9 state was indeed
451 	  * entered before programming to disable it:
452 	  * 1] Check relevant display engine registers to verify if mode
453 	  *  set disable sequence was followed.
454 	  * 2] Check if display uninitialize sequence is initialized.
455 	  */
456 }
457 
458 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
459 				u32 state)
460 {
461 	int rewrites = 0;
462 	int rereads = 0;
463 	u32 v;
464 
465 	I915_WRITE(DC_STATE_EN, state);
466 
467 	/* It has been observed that disabling the dc6 state sometimes
468 	 * doesn't stick and dmc keeps returning old value. Make sure
469 	 * the write really sticks enough times and also force rewrite until
470 	 * we are confident that state is exactly what we want.
471 	 */
472 	do  {
473 		v = I915_READ(DC_STATE_EN);
474 
475 		if (v != state) {
476 			I915_WRITE(DC_STATE_EN, state);
477 			rewrites++;
478 			rereads = 0;
479 		} else if (rereads++ > 5) {
480 			break;
481 		}
482 
483 	} while (rewrites < 100);
484 
485 	if (v != state)
486 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
487 			  state, v);
488 
489 	/* Most of the times we need one retry, avoid spam */
490 	if (rewrites > 1)
491 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
492 			      state, rewrites);
493 }
494 
495 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
496 {
497 	u32 mask;
498 
499 	mask = DC_STATE_EN_UPTO_DC5;
500 	if (IS_BROXTON(dev_priv))
501 		mask |= DC_STATE_EN_DC9;
502 	else
503 		mask |= DC_STATE_EN_UPTO_DC6;
504 
505 	return mask;
506 }
507 
508 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
509 {
510 	u32 val;
511 
512 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
513 
514 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
515 		      dev_priv->csr.dc_state, val);
516 	dev_priv->csr.dc_state = val;
517 }
518 
519 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
520 {
521 	uint32_t val;
522 	uint32_t mask;
523 
524 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
525 		state &= dev_priv->csr.allowed_dc_mask;
526 
527 	val = I915_READ(DC_STATE_EN);
528 	mask = gen9_dc_mask(dev_priv);
529 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
530 		      val & mask, state);
531 
532 	/* Check if DMC is ignoring our DC state requests */
533 	if ((val & mask) != dev_priv->csr.dc_state)
534 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
535 			  dev_priv->csr.dc_state, val & mask);
536 
537 	val &= ~mask;
538 	val |= state;
539 
540 	gen9_write_dc_state(dev_priv, val);
541 
542 	dev_priv->csr.dc_state = val & mask;
543 }
544 
545 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
546 {
547 	assert_can_enable_dc9(dev_priv);
548 
549 	DRM_DEBUG_KMS("Enabling DC9\n");
550 
551 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
552 }
553 
554 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
555 {
556 	assert_can_disable_dc9(dev_priv);
557 
558 	DRM_DEBUG_KMS("Disabling DC9\n");
559 
560 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
561 }
562 
563 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
564 {
565 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
566 		  "CSR program storage start is NULL\n");
567 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
568 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
569 }
570 
571 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
572 {
573 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
574 					SKL_DISP_PW_2);
575 
576 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
577 
578 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
579 		  "DC5 already programmed to be enabled.\n");
580 	assert_rpm_wakelock_held(dev_priv);
581 
582 	assert_csr_loaded(dev_priv);
583 }
584 
585 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
586 {
587 	assert_can_enable_dc5(dev_priv);
588 
589 	DRM_DEBUG_KMS("Enabling DC5\n");
590 
591 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
592 }
593 
594 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
595 {
596 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
597 		  "Backlight is not disabled.\n");
598 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
599 		  "DC6 already programmed to be enabled.\n");
600 
601 	assert_csr_loaded(dev_priv);
602 }
603 
604 void skl_enable_dc6(struct drm_i915_private *dev_priv)
605 {
606 	assert_can_enable_dc6(dev_priv);
607 
608 	DRM_DEBUG_KMS("Enabling DC6\n");
609 
610 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
611 
612 }
613 
614 void skl_disable_dc6(struct drm_i915_private *dev_priv)
615 {
616 	DRM_DEBUG_KMS("Disabling DC6\n");
617 
618 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
619 }
620 
621 static void
622 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
623 				  struct i915_power_well *power_well)
624 {
625 	enum skl_disp_power_wells power_well_id = power_well->data;
626 	u32 val;
627 	u32 mask;
628 
629 	mask = SKL_POWER_WELL_REQ(power_well_id);
630 
631 	val = I915_READ(HSW_PWR_WELL_KVMR);
632 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
633 		      power_well->name))
634 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
635 
636 	val = I915_READ(HSW_PWR_WELL_BIOS);
637 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
638 
639 	if (!(val & mask))
640 		return;
641 
642 	/*
643 	 * DMC is known to force on the request bits for power well 1 on SKL
644 	 * and BXT and the misc IO power well on SKL but we don't expect any
645 	 * other request bits to be set, so WARN for those.
646 	 */
647 	if (power_well_id == SKL_DISP_PW_1 ||
648 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
649 	     power_well_id == SKL_DISP_PW_MISC_IO))
650 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
651 				 "by DMC\n", power_well->name);
652 	else
653 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
654 			  power_well->name);
655 
656 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
657 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
658 }
659 
660 static void skl_set_power_well(struct drm_i915_private *dev_priv,
661 			struct i915_power_well *power_well, bool enable)
662 {
663 	uint32_t tmp, fuse_status;
664 	uint32_t req_mask, state_mask;
665 	bool is_enabled, enable_requested, check_fuse_status = false;
666 
667 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
668 	fuse_status = I915_READ(SKL_FUSE_STATUS);
669 
670 	switch (power_well->data) {
671 	case SKL_DISP_PW_1:
672 		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
673 			SKL_FUSE_PG0_DIST_STATUS), 1)) {
674 			DRM_ERROR("PG0 not enabled\n");
675 			return;
676 		}
677 		break;
678 	case SKL_DISP_PW_2:
679 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
680 			DRM_ERROR("PG1 in disabled state\n");
681 			return;
682 		}
683 		break;
684 	case SKL_DISP_PW_DDI_A_E:
685 	case SKL_DISP_PW_DDI_B:
686 	case SKL_DISP_PW_DDI_C:
687 	case SKL_DISP_PW_DDI_D:
688 	case SKL_DISP_PW_MISC_IO:
689 		break;
690 	default:
691 		WARN(1, "Unknown power well %lu\n", power_well->data);
692 		return;
693 	}
694 
695 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
696 	enable_requested = tmp & req_mask;
697 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
698 	is_enabled = tmp & state_mask;
699 
700 	if (!enable && enable_requested)
701 		skl_power_well_pre_disable(dev_priv, power_well);
702 
703 	if (enable) {
704 		if (!enable_requested) {
705 			WARN((tmp & state_mask) &&
706 				!I915_READ(HSW_PWR_WELL_BIOS),
707 				"Invalid for power well status to be enabled, unless done by the BIOS, \
708 				when request is to disable!\n");
709 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
710 		}
711 
712 		if (!is_enabled) {
713 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
714 			check_fuse_status = true;
715 		}
716 	} else {
717 		if (enable_requested) {
718 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
719 			POSTING_READ(HSW_PWR_WELL_DRIVER);
720 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
721 		}
722 
723 		if (IS_GEN9(dev_priv))
724 			gen9_sanitize_power_well_requests(dev_priv, power_well);
725 	}
726 
727 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
728 		     1))
729 		DRM_ERROR("%s %s timeout\n",
730 			  power_well->name, enable ? "enable" : "disable");
731 
732 	if (check_fuse_status) {
733 		if (power_well->data == SKL_DISP_PW_1) {
734 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
735 				SKL_FUSE_PG1_DIST_STATUS), 1))
736 				DRM_ERROR("PG1 distributing status timeout\n");
737 		} else if (power_well->data == SKL_DISP_PW_2) {
738 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
739 				SKL_FUSE_PG2_DIST_STATUS), 1))
740 				DRM_ERROR("PG2 distributing status timeout\n");
741 		}
742 	}
743 
744 	if (enable && !is_enabled)
745 		skl_power_well_post_enable(dev_priv, power_well);
746 }
747 
748 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
749 				   struct i915_power_well *power_well)
750 {
751 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
752 
753 	/*
754 	 * We're taking over the BIOS, so clear any requests made by it since
755 	 * the driver is in charge now.
756 	 */
757 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
758 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
759 }
760 
761 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
762 				  struct i915_power_well *power_well)
763 {
764 	hsw_set_power_well(dev_priv, power_well, true);
765 }
766 
767 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
768 				   struct i915_power_well *power_well)
769 {
770 	hsw_set_power_well(dev_priv, power_well, false);
771 }
772 
773 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
774 					struct i915_power_well *power_well)
775 {
776 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
777 		SKL_POWER_WELL_STATE(power_well->data);
778 
779 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
780 }
781 
782 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
783 				struct i915_power_well *power_well)
784 {
785 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
786 
787 	/* Clear any request made by BIOS as driver is taking over */
788 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
789 }
790 
791 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
792 				struct i915_power_well *power_well)
793 {
794 	skl_set_power_well(dev_priv, power_well, true);
795 }
796 
797 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
798 				struct i915_power_well *power_well)
799 {
800 	skl_set_power_well(dev_priv, power_well, false);
801 }
802 
803 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
804 					   struct i915_power_well *power_well)
805 {
806 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
807 }
808 
809 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
810 					  struct i915_power_well *power_well)
811 {
812 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
813 
814 	if (IS_BROXTON(dev_priv)) {
815 		broxton_cdclk_verify_state(dev_priv);
816 		broxton_ddi_phy_verify_state(dev_priv);
817 	}
818 }
819 
820 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
821 					   struct i915_power_well *power_well)
822 {
823 	if (!dev_priv->csr.dmc_payload)
824 		return;
825 
826 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
827 		skl_enable_dc6(dev_priv);
828 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
829 		gen9_enable_dc5(dev_priv);
830 }
831 
832 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
833 					   struct i915_power_well *power_well)
834 {
835 	if (power_well->count > 0)
836 		gen9_dc_off_power_well_enable(dev_priv, power_well);
837 	else
838 		gen9_dc_off_power_well_disable(dev_priv, power_well);
839 }
840 
841 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
842 					   struct i915_power_well *power_well)
843 {
844 }
845 
846 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
847 					     struct i915_power_well *power_well)
848 {
849 	return true;
850 }
851 
852 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
853 			       struct i915_power_well *power_well, bool enable)
854 {
855 	enum punit_power_well power_well_id = power_well->data;
856 	u32 mask;
857 	u32 state;
858 	u32 ctrl;
859 
860 	mask = PUNIT_PWRGT_MASK(power_well_id);
861 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
862 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
863 
864 	mutex_lock(&dev_priv->rps.hw_lock);
865 
866 #define COND \
867 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
868 
869 	if (COND)
870 		goto out;
871 
872 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
873 	ctrl &= ~mask;
874 	ctrl |= state;
875 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
876 
877 	if (wait_for(COND, 100))
878 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
879 			  state,
880 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
881 
882 #undef COND
883 
884 out:
885 	mutex_unlock(&dev_priv->rps.hw_lock);
886 }
887 
888 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
889 				   struct i915_power_well *power_well)
890 {
891 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
892 }
893 
894 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
895 				  struct i915_power_well *power_well)
896 {
897 	vlv_set_power_well(dev_priv, power_well, true);
898 }
899 
900 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
901 				   struct i915_power_well *power_well)
902 {
903 	vlv_set_power_well(dev_priv, power_well, false);
904 }
905 
906 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
907 				   struct i915_power_well *power_well)
908 {
909 	int power_well_id = power_well->data;
910 	bool enabled = false;
911 	u32 mask;
912 	u32 state;
913 	u32 ctrl;
914 
915 	mask = PUNIT_PWRGT_MASK(power_well_id);
916 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
917 
918 	mutex_lock(&dev_priv->rps.hw_lock);
919 
920 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
921 	/*
922 	 * We only ever set the power-on and power-gate states, anything
923 	 * else is unexpected.
924 	 */
925 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
926 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
927 	if (state == ctrl)
928 		enabled = true;
929 
930 	/*
931 	 * A transient state at this point would mean some unexpected party
932 	 * is poking at the power controls too.
933 	 */
934 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
935 	WARN_ON(ctrl != state);
936 
937 	mutex_unlock(&dev_priv->rps.hw_lock);
938 
939 	return enabled;
940 }
941 
942 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
943 {
944 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
945 
946 	/*
947 	 * Disable trickle feed and enable pnd deadline calculation
948 	 */
949 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
950 	I915_WRITE(CBR1_VLV, 0);
951 }
952 
953 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
954 {
955 	enum pipe pipe;
956 
957 	/*
958 	 * Enable the CRI clock source so we can get at the
959 	 * display and the reference clock for VGA
960 	 * hotplug / manual detection. Supposedly DSI also
961 	 * needs the ref clock up and running.
962 	 *
963 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
964 	 */
965 	for_each_pipe(dev_priv->dev, pipe) {
966 		u32 val = I915_READ(DPLL(pipe));
967 
968 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
969 		if (pipe != PIPE_A)
970 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
971 
972 		I915_WRITE(DPLL(pipe), val);
973 	}
974 
975 	vlv_init_display_clock_gating(dev_priv);
976 
977 	spin_lock_irq(&dev_priv->irq_lock);
978 	valleyview_enable_display_irqs(dev_priv);
979 	spin_unlock_irq(&dev_priv->irq_lock);
980 
981 	/*
982 	 * During driver initialization/resume we can avoid restoring the
983 	 * part of the HW/SW state that will be inited anyway explicitly.
984 	 */
985 	if (dev_priv->power_domains.initializing)
986 		return;
987 
988 	intel_hpd_init(dev_priv);
989 
990 	i915_redisable_vga_power_on(dev_priv->dev);
991 }
992 
993 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
994 {
995 	spin_lock_irq(&dev_priv->irq_lock);
996 	valleyview_disable_display_irqs(dev_priv);
997 	spin_unlock_irq(&dev_priv->irq_lock);
998 
999 	/* make sure we're done processing display irqs */
1000 	synchronize_irq(dev_priv->dev->irq);
1001 
1002 	vlv_power_sequencer_reset(dev_priv);
1003 }
1004 
1005 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1006 					  struct i915_power_well *power_well)
1007 {
1008 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1009 
1010 	vlv_set_power_well(dev_priv, power_well, true);
1011 
1012 	vlv_display_power_well_init(dev_priv);
1013 }
1014 
1015 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1016 					   struct i915_power_well *power_well)
1017 {
1018 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1019 
1020 	vlv_display_power_well_deinit(dev_priv);
1021 
1022 	vlv_set_power_well(dev_priv, power_well, false);
1023 }
1024 
1025 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1026 					   struct i915_power_well *power_well)
1027 {
1028 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1029 
1030 	/* since ref/cri clock was enabled */
1031 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1032 
1033 	vlv_set_power_well(dev_priv, power_well, true);
1034 
1035 	/*
1036 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1037 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1038 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1039 	 *   b.	The other bits such as sfr settings / modesel may all
1040 	 *	be set to 0.
1041 	 *
1042 	 * This should only be done on init and resume from S3 with
1043 	 * both PLLs disabled, or we risk losing DPIO and PLL
1044 	 * synchronization.
1045 	 */
1046 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1047 }
1048 
1049 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1050 					    struct i915_power_well *power_well)
1051 {
1052 	enum pipe pipe;
1053 
1054 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1055 
1056 	for_each_pipe(dev_priv, pipe)
1057 		assert_pll_disabled(dev_priv, pipe);
1058 
1059 	/* Assert common reset */
1060 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1061 
1062 	vlv_set_power_well(dev_priv, power_well, false);
1063 }
1064 
1065 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1066 
1067 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1068 						 int power_well_id)
1069 {
1070 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1071 	int i;
1072 
1073 	for (i = 0; i < power_domains->power_well_count; i++) {
1074 		struct i915_power_well *power_well;
1075 
1076 		power_well = &power_domains->power_wells[i];
1077 		if (power_well->data == power_well_id)
1078 			return power_well;
1079 	}
1080 
1081 	return NULL;
1082 }
1083 
1084 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1085 
1086 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1087 {
1088 	struct i915_power_well *cmn_bc =
1089 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1090 	struct i915_power_well *cmn_d =
1091 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1092 	u32 phy_control = dev_priv->chv_phy_control;
1093 	u32 phy_status = 0;
1094 	u32 phy_status_mask = 0xffffffff;
1095 	u32 tmp;
1096 
1097 	/*
1098 	 * The BIOS can leave the PHY is some weird state
1099 	 * where it doesn't fully power down some parts.
1100 	 * Disable the asserts until the PHY has been fully
1101 	 * reset (ie. the power well has been disabled at
1102 	 * least once).
1103 	 */
1104 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1105 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1106 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1107 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1108 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1109 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1110 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1111 
1112 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1113 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1114 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1115 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1116 
1117 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1118 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1119 
1120 		/* this assumes override is only used to enable lanes */
1121 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1122 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1123 
1124 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1125 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1126 
1127 		/* CL1 is on whenever anything is on in either channel */
1128 		if (BITS_SET(phy_control,
1129 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1130 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1131 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1132 
1133 		/*
1134 		 * The DPLLB check accounts for the pipe B + port A usage
1135 		 * with CL2 powered up but all the lanes in the second channel
1136 		 * powered down.
1137 		 */
1138 		if (BITS_SET(phy_control,
1139 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1140 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1141 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1142 
1143 		if (BITS_SET(phy_control,
1144 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1145 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1146 		if (BITS_SET(phy_control,
1147 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1148 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1149 
1150 		if (BITS_SET(phy_control,
1151 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1152 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1153 		if (BITS_SET(phy_control,
1154 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1155 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1156 	}
1157 
1158 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1159 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1160 
1161 		/* this assumes override is only used to enable lanes */
1162 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1163 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1164 
1165 		if (BITS_SET(phy_control,
1166 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1167 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1168 
1169 		if (BITS_SET(phy_control,
1170 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1171 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1172 		if (BITS_SET(phy_control,
1173 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1174 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1175 	}
1176 
1177 	phy_status &= phy_status_mask;
1178 
1179 	/*
1180 	 * The PHY may be busy with some initial calibration and whatnot,
1181 	 * so the power state can take a while to actually change.
1182 	 */
1183 	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1184 		WARN(phy_status != tmp,
1185 		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1186 		     tmp, phy_status, dev_priv->chv_phy_control);
1187 }
1188 
1189 #undef BITS_SET
1190 
1191 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1192 					   struct i915_power_well *power_well)
1193 {
1194 	enum dpio_phy phy;
1195 	enum pipe pipe;
1196 	uint32_t tmp;
1197 
1198 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1199 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1200 
1201 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1202 		pipe = PIPE_A;
1203 		phy = DPIO_PHY0;
1204 	} else {
1205 		pipe = PIPE_C;
1206 		phy = DPIO_PHY1;
1207 	}
1208 
1209 	/* since ref/cri clock was enabled */
1210 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1211 	vlv_set_power_well(dev_priv, power_well, true);
1212 
1213 	/* Poll for phypwrgood signal */
1214 	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1215 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1216 
1217 	mutex_lock(&dev_priv->sb_lock);
1218 
1219 	/* Enable dynamic power down */
1220 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1221 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1222 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1223 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1224 
1225 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1226 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1227 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1228 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1229 	} else {
1230 		/*
1231 		 * Force the non-existing CL2 off. BXT does this
1232 		 * too, so maybe it saves some power even though
1233 		 * CL2 doesn't exist?
1234 		 */
1235 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1236 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1237 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1238 	}
1239 
1240 	mutex_unlock(&dev_priv->sb_lock);
1241 
1242 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1243 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1244 
1245 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1246 		      phy, dev_priv->chv_phy_control);
1247 
1248 	assert_chv_phy_status(dev_priv);
1249 }
1250 
1251 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1252 					    struct i915_power_well *power_well)
1253 {
1254 	enum dpio_phy phy;
1255 
1256 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1257 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1258 
1259 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1260 		phy = DPIO_PHY0;
1261 		assert_pll_disabled(dev_priv, PIPE_A);
1262 		assert_pll_disabled(dev_priv, PIPE_B);
1263 	} else {
1264 		phy = DPIO_PHY1;
1265 		assert_pll_disabled(dev_priv, PIPE_C);
1266 	}
1267 
1268 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1269 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1270 
1271 	vlv_set_power_well(dev_priv, power_well, false);
1272 
1273 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1274 		      phy, dev_priv->chv_phy_control);
1275 
1276 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1277 	dev_priv->chv_phy_assert[phy] = true;
1278 
1279 	assert_chv_phy_status(dev_priv);
1280 }
1281 
1282 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1283 				     enum dpio_channel ch, bool override, unsigned int mask)
1284 {
1285 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1286 	u32 reg, val, expected, actual;
1287 
1288 	/*
1289 	 * The BIOS can leave the PHY is some weird state
1290 	 * where it doesn't fully power down some parts.
1291 	 * Disable the asserts until the PHY has been fully
1292 	 * reset (ie. the power well has been disabled at
1293 	 * least once).
1294 	 */
1295 	if (!dev_priv->chv_phy_assert[phy])
1296 		return;
1297 
1298 	if (ch == DPIO_CH0)
1299 		reg = _CHV_CMN_DW0_CH0;
1300 	else
1301 		reg = _CHV_CMN_DW6_CH1;
1302 
1303 	mutex_lock(&dev_priv->sb_lock);
1304 	val = vlv_dpio_read(dev_priv, pipe, reg);
1305 	mutex_unlock(&dev_priv->sb_lock);
1306 
1307 	/*
1308 	 * This assumes !override is only used when the port is disabled.
1309 	 * All lanes should power down even without the override when
1310 	 * the port is disabled.
1311 	 */
1312 	if (!override || mask == 0xf) {
1313 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1314 		/*
1315 		 * If CH1 common lane is not active anymore
1316 		 * (eg. for pipe B DPLL) the entire channel will
1317 		 * shut down, which causes the common lane registers
1318 		 * to read as 0. That means we can't actually check
1319 		 * the lane power down status bits, but as the entire
1320 		 * register reads as 0 it's a good indication that the
1321 		 * channel is indeed entirely powered down.
1322 		 */
1323 		if (ch == DPIO_CH1 && val == 0)
1324 			expected = 0;
1325 	} else if (mask != 0x0) {
1326 		expected = DPIO_ANYDL_POWERDOWN;
1327 	} else {
1328 		expected = 0;
1329 	}
1330 
1331 	if (ch == DPIO_CH0)
1332 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1333 	else
1334 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1335 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1336 
1337 	WARN(actual != expected,
1338 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1339 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1340 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1341 	     reg, val);
1342 }
1343 
1344 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1345 			  enum dpio_channel ch, bool override)
1346 {
1347 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1348 	bool was_override;
1349 
1350 	mutex_lock(&power_domains->lock);
1351 
1352 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1353 
1354 	if (override == was_override)
1355 		goto out;
1356 
1357 	if (override)
1358 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1359 	else
1360 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1361 
1362 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1363 
1364 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1365 		      phy, ch, dev_priv->chv_phy_control);
1366 
1367 	assert_chv_phy_status(dev_priv);
1368 
1369 out:
1370 	mutex_unlock(&power_domains->lock);
1371 
1372 	return was_override;
1373 }
1374 
1375 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1376 			     bool override, unsigned int mask)
1377 {
1378 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1379 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1380 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1381 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1382 
1383 	mutex_lock(&power_domains->lock);
1384 
1385 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1386 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1387 
1388 	if (override)
1389 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1390 	else
1391 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1392 
1393 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1394 
1395 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1396 		      phy, ch, mask, dev_priv->chv_phy_control);
1397 
1398 	assert_chv_phy_status(dev_priv);
1399 
1400 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1401 
1402 	mutex_unlock(&power_domains->lock);
1403 }
1404 
1405 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1406 					struct i915_power_well *power_well)
1407 {
1408 	enum pipe pipe = power_well->data;
1409 	bool enabled;
1410 	u32 state, ctrl;
1411 
1412 	mutex_lock(&dev_priv->rps.hw_lock);
1413 
1414 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1415 	/*
1416 	 * We only ever set the power-on and power-gate states, anything
1417 	 * else is unexpected.
1418 	 */
1419 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1420 	enabled = state == DP_SSS_PWR_ON(pipe);
1421 
1422 	/*
1423 	 * A transient state at this point would mean some unexpected party
1424 	 * is poking at the power controls too.
1425 	 */
1426 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1427 	WARN_ON(ctrl << 16 != state);
1428 
1429 	mutex_unlock(&dev_priv->rps.hw_lock);
1430 
1431 	return enabled;
1432 }
1433 
1434 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1435 				    struct i915_power_well *power_well,
1436 				    bool enable)
1437 {
1438 	enum pipe pipe = power_well->data;
1439 	u32 state;
1440 	u32 ctrl;
1441 
1442 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1443 
1444 	mutex_lock(&dev_priv->rps.hw_lock);
1445 
1446 #define COND \
1447 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1448 
1449 	if (COND)
1450 		goto out;
1451 
1452 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1453 	ctrl &= ~DP_SSC_MASK(pipe);
1454 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1455 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1456 
1457 	if (wait_for(COND, 100))
1458 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1459 			  state,
1460 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1461 
1462 #undef COND
1463 
1464 out:
1465 	mutex_unlock(&dev_priv->rps.hw_lock);
1466 }
1467 
1468 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1469 					struct i915_power_well *power_well)
1470 {
1471 	WARN_ON_ONCE(power_well->data != PIPE_A);
1472 
1473 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1474 }
1475 
1476 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1477 				       struct i915_power_well *power_well)
1478 {
1479 	WARN_ON_ONCE(power_well->data != PIPE_A);
1480 
1481 	chv_set_pipe_power_well(dev_priv, power_well, true);
1482 
1483 	vlv_display_power_well_init(dev_priv);
1484 }
1485 
1486 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1487 					struct i915_power_well *power_well)
1488 {
1489 	WARN_ON_ONCE(power_well->data != PIPE_A);
1490 
1491 	vlv_display_power_well_deinit(dev_priv);
1492 
1493 	chv_set_pipe_power_well(dev_priv, power_well, false);
1494 }
1495 
1496 static void
1497 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1498 				 enum intel_display_power_domain domain)
1499 {
1500 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1501 	struct i915_power_well *power_well;
1502 	int i;
1503 
1504 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1505 		if (!power_well->count++)
1506 			intel_power_well_enable(dev_priv, power_well);
1507 	}
1508 
1509 	power_domains->domain_use_count[domain]++;
1510 }
1511 
1512 /**
1513  * intel_display_power_get - grab a power domain reference
1514  * @dev_priv: i915 device instance
1515  * @domain: power domain to reference
1516  *
1517  * This function grabs a power domain reference for @domain and ensures that the
1518  * power domain and all its parents are powered up. Therefore users should only
1519  * grab a reference to the innermost power domain they need.
1520  *
1521  * Any power domain reference obtained by this function must have a symmetric
1522  * call to intel_display_power_put() to release the reference again.
1523  */
1524 void intel_display_power_get(struct drm_i915_private *dev_priv,
1525 			     enum intel_display_power_domain domain)
1526 {
1527 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1528 
1529 	intel_runtime_pm_get(dev_priv);
1530 
1531 	mutex_lock(&power_domains->lock);
1532 
1533 	__intel_display_power_get_domain(dev_priv, domain);
1534 
1535 	mutex_unlock(&power_domains->lock);
1536 }
1537 
1538 /**
1539  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1540  * @dev_priv: i915 device instance
1541  * @domain: power domain to reference
1542  *
1543  * This function grabs a power domain reference for @domain and ensures that the
1544  * power domain and all its parents are powered up. Therefore users should only
1545  * grab a reference to the innermost power domain they need.
1546  *
1547  * Any power domain reference obtained by this function must have a symmetric
1548  * call to intel_display_power_put() to release the reference again.
1549  */
1550 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1551 					enum intel_display_power_domain domain)
1552 {
1553 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1554 	bool is_enabled;
1555 
1556 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1557 		return false;
1558 
1559 	mutex_lock(&power_domains->lock);
1560 
1561 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1562 		__intel_display_power_get_domain(dev_priv, domain);
1563 		is_enabled = true;
1564 	} else {
1565 		is_enabled = false;
1566 	}
1567 
1568 	mutex_unlock(&power_domains->lock);
1569 
1570 	if (!is_enabled)
1571 		intel_runtime_pm_put(dev_priv);
1572 
1573 	return is_enabled;
1574 }
1575 
1576 /**
1577  * intel_display_power_put - release a power domain reference
1578  * @dev_priv: i915 device instance
1579  * @domain: power domain to reference
1580  *
1581  * This function drops the power domain reference obtained by
1582  * intel_display_power_get() and might power down the corresponding hardware
1583  * block right away if this is the last reference.
1584  */
1585 void intel_display_power_put(struct drm_i915_private *dev_priv,
1586 			     enum intel_display_power_domain domain)
1587 {
1588 	struct i915_power_domains *power_domains;
1589 	struct i915_power_well *power_well;
1590 	int i;
1591 
1592 	power_domains = &dev_priv->power_domains;
1593 
1594 	mutex_lock(&power_domains->lock);
1595 
1596 	WARN(!power_domains->domain_use_count[domain],
1597 	     "Use count on domain %s is already zero\n",
1598 	     intel_display_power_domain_str(domain));
1599 	power_domains->domain_use_count[domain]--;
1600 
1601 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1602 		WARN(!power_well->count,
1603 		     "Use count on power well %s is already zero",
1604 		     power_well->name);
1605 
1606 		if (!--power_well->count)
1607 			intel_power_well_disable(dev_priv, power_well);
1608 	}
1609 
1610 	mutex_unlock(&power_domains->lock);
1611 
1612 	intel_runtime_pm_put(dev_priv);
1613 }
1614 
1615 #define HSW_DISPLAY_POWER_DOMAINS (			\
1616 	BIT(POWER_DOMAIN_PIPE_B) |			\
1617 	BIT(POWER_DOMAIN_PIPE_C) |			\
1618 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1619 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1620 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1621 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1622 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1623 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1624 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1625 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1626 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1627 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1628 	BIT(POWER_DOMAIN_VGA) |				\
1629 	BIT(POWER_DOMAIN_AUDIO) |			\
1630 	BIT(POWER_DOMAIN_INIT))
1631 
1632 #define BDW_DISPLAY_POWER_DOMAINS (			\
1633 	BIT(POWER_DOMAIN_PIPE_B) |			\
1634 	BIT(POWER_DOMAIN_PIPE_C) |			\
1635 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1636 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1637 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1638 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1639 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1640 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1641 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1642 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1643 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1644 	BIT(POWER_DOMAIN_VGA) |				\
1645 	BIT(POWER_DOMAIN_AUDIO) |			\
1646 	BIT(POWER_DOMAIN_INIT))
1647 
1648 #define VLV_DISPLAY_POWER_DOMAINS (		\
1649 	BIT(POWER_DOMAIN_PIPE_A) |		\
1650 	BIT(POWER_DOMAIN_PIPE_B) |		\
1651 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1652 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1653 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1654 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1655 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1656 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1657 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1658 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1659 	BIT(POWER_DOMAIN_VGA) |			\
1660 	BIT(POWER_DOMAIN_AUDIO) |		\
1661 	BIT(POWER_DOMAIN_AUX_B) |		\
1662 	BIT(POWER_DOMAIN_AUX_C) |		\
1663 	BIT(POWER_DOMAIN_GMBUS) |		\
1664 	BIT(POWER_DOMAIN_INIT))
1665 
1666 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1667 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1668 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1669 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1670 	BIT(POWER_DOMAIN_AUX_B) |		\
1671 	BIT(POWER_DOMAIN_AUX_C) |		\
1672 	BIT(POWER_DOMAIN_INIT))
1673 
1674 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1675 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1676 	BIT(POWER_DOMAIN_AUX_B) |		\
1677 	BIT(POWER_DOMAIN_INIT))
1678 
1679 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1680 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1681 	BIT(POWER_DOMAIN_AUX_B) |		\
1682 	BIT(POWER_DOMAIN_INIT))
1683 
1684 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1685 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1686 	BIT(POWER_DOMAIN_AUX_C) |		\
1687 	BIT(POWER_DOMAIN_INIT))
1688 
1689 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1690 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1691 	BIT(POWER_DOMAIN_AUX_C) |		\
1692 	BIT(POWER_DOMAIN_INIT))
1693 
1694 #define CHV_DISPLAY_POWER_DOMAINS (		\
1695 	BIT(POWER_DOMAIN_PIPE_A) |		\
1696 	BIT(POWER_DOMAIN_PIPE_B) |		\
1697 	BIT(POWER_DOMAIN_PIPE_C) |		\
1698 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1699 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1700 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1701 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1702 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1703 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1704 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1705 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1706 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1707 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1708 	BIT(POWER_DOMAIN_VGA) |			\
1709 	BIT(POWER_DOMAIN_AUDIO) |		\
1710 	BIT(POWER_DOMAIN_AUX_B) |		\
1711 	BIT(POWER_DOMAIN_AUX_C) |		\
1712 	BIT(POWER_DOMAIN_AUX_D) |		\
1713 	BIT(POWER_DOMAIN_GMBUS) |		\
1714 	BIT(POWER_DOMAIN_INIT))
1715 
1716 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1717 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1718 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1719 	BIT(POWER_DOMAIN_AUX_B) |		\
1720 	BIT(POWER_DOMAIN_AUX_C) |		\
1721 	BIT(POWER_DOMAIN_INIT))
1722 
1723 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1724 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1725 	BIT(POWER_DOMAIN_AUX_D) |		\
1726 	BIT(POWER_DOMAIN_INIT))
1727 
1728 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1729 	.sync_hw = i9xx_always_on_power_well_noop,
1730 	.enable = i9xx_always_on_power_well_noop,
1731 	.disable = i9xx_always_on_power_well_noop,
1732 	.is_enabled = i9xx_always_on_power_well_enabled,
1733 };
1734 
1735 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1736 	.sync_hw = chv_pipe_power_well_sync_hw,
1737 	.enable = chv_pipe_power_well_enable,
1738 	.disable = chv_pipe_power_well_disable,
1739 	.is_enabled = chv_pipe_power_well_enabled,
1740 };
1741 
1742 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1743 	.sync_hw = vlv_power_well_sync_hw,
1744 	.enable = chv_dpio_cmn_power_well_enable,
1745 	.disable = chv_dpio_cmn_power_well_disable,
1746 	.is_enabled = vlv_power_well_enabled,
1747 };
1748 
1749 static struct i915_power_well i9xx_always_on_power_well[] = {
1750 	{
1751 		.name = "always-on",
1752 		.always_on = 1,
1753 		.domains = POWER_DOMAIN_MASK,
1754 		.ops = &i9xx_always_on_power_well_ops,
1755 	},
1756 };
1757 
1758 static const struct i915_power_well_ops hsw_power_well_ops = {
1759 	.sync_hw = hsw_power_well_sync_hw,
1760 	.enable = hsw_power_well_enable,
1761 	.disable = hsw_power_well_disable,
1762 	.is_enabled = hsw_power_well_enabled,
1763 };
1764 
1765 static const struct i915_power_well_ops skl_power_well_ops = {
1766 	.sync_hw = skl_power_well_sync_hw,
1767 	.enable = skl_power_well_enable,
1768 	.disable = skl_power_well_disable,
1769 	.is_enabled = skl_power_well_enabled,
1770 };
1771 
1772 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1773 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1774 	.enable = gen9_dc_off_power_well_enable,
1775 	.disable = gen9_dc_off_power_well_disable,
1776 	.is_enabled = gen9_dc_off_power_well_enabled,
1777 };
1778 
1779 static struct i915_power_well hsw_power_wells[] = {
1780 	{
1781 		.name = "always-on",
1782 		.always_on = 1,
1783 		.domains = POWER_DOMAIN_MASK,
1784 		.ops = &i9xx_always_on_power_well_ops,
1785 	},
1786 	{
1787 		.name = "display",
1788 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1789 		.ops = &hsw_power_well_ops,
1790 	},
1791 };
1792 
1793 static struct i915_power_well bdw_power_wells[] = {
1794 	{
1795 		.name = "always-on",
1796 		.always_on = 1,
1797 		.domains = POWER_DOMAIN_MASK,
1798 		.ops = &i9xx_always_on_power_well_ops,
1799 	},
1800 	{
1801 		.name = "display",
1802 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1803 		.ops = &hsw_power_well_ops,
1804 	},
1805 };
1806 
1807 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1808 	.sync_hw = vlv_power_well_sync_hw,
1809 	.enable = vlv_display_power_well_enable,
1810 	.disable = vlv_display_power_well_disable,
1811 	.is_enabled = vlv_power_well_enabled,
1812 };
1813 
1814 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1815 	.sync_hw = vlv_power_well_sync_hw,
1816 	.enable = vlv_dpio_cmn_power_well_enable,
1817 	.disable = vlv_dpio_cmn_power_well_disable,
1818 	.is_enabled = vlv_power_well_enabled,
1819 };
1820 
1821 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1822 	.sync_hw = vlv_power_well_sync_hw,
1823 	.enable = vlv_power_well_enable,
1824 	.disable = vlv_power_well_disable,
1825 	.is_enabled = vlv_power_well_enabled,
1826 };
1827 
1828 static struct i915_power_well vlv_power_wells[] = {
1829 	{
1830 		.name = "always-on",
1831 		.always_on = 1,
1832 		.domains = POWER_DOMAIN_MASK,
1833 		.ops = &i9xx_always_on_power_well_ops,
1834 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1835 	},
1836 	{
1837 		.name = "display",
1838 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1839 		.data = PUNIT_POWER_WELL_DISP2D,
1840 		.ops = &vlv_display_power_well_ops,
1841 	},
1842 	{
1843 		.name = "dpio-tx-b-01",
1844 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1845 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1846 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1847 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1848 		.ops = &vlv_dpio_power_well_ops,
1849 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1850 	},
1851 	{
1852 		.name = "dpio-tx-b-23",
1853 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1854 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1855 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1856 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1857 		.ops = &vlv_dpio_power_well_ops,
1858 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1859 	},
1860 	{
1861 		.name = "dpio-tx-c-01",
1862 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1863 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1864 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1865 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1866 		.ops = &vlv_dpio_power_well_ops,
1867 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1868 	},
1869 	{
1870 		.name = "dpio-tx-c-23",
1871 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1872 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1873 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1874 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1875 		.ops = &vlv_dpio_power_well_ops,
1876 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1877 	},
1878 	{
1879 		.name = "dpio-common",
1880 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1881 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1882 		.ops = &vlv_dpio_cmn_power_well_ops,
1883 	},
1884 };
1885 
1886 static struct i915_power_well chv_power_wells[] = {
1887 	{
1888 		.name = "always-on",
1889 		.always_on = 1,
1890 		.domains = POWER_DOMAIN_MASK,
1891 		.ops = &i9xx_always_on_power_well_ops,
1892 	},
1893 	{
1894 		.name = "display",
1895 		/*
1896 		 * Pipe A power well is the new disp2d well. Pipe B and C
1897 		 * power wells don't actually exist. Pipe A power well is
1898 		 * required for any pipe to work.
1899 		 */
1900 		.domains = CHV_DISPLAY_POWER_DOMAINS,
1901 		.data = PIPE_A,
1902 		.ops = &chv_pipe_power_well_ops,
1903 	},
1904 	{
1905 		.name = "dpio-common-bc",
1906 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1907 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1908 		.ops = &chv_dpio_cmn_power_well_ops,
1909 	},
1910 	{
1911 		.name = "dpio-common-d",
1912 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1913 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
1914 		.ops = &chv_dpio_cmn_power_well_ops,
1915 	},
1916 };
1917 
1918 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1919 				    int power_well_id)
1920 {
1921 	struct i915_power_well *power_well;
1922 	bool ret;
1923 
1924 	power_well = lookup_power_well(dev_priv, power_well_id);
1925 	ret = power_well->ops->is_enabled(dev_priv, power_well);
1926 
1927 	return ret;
1928 }
1929 
1930 static struct i915_power_well skl_power_wells[] = {
1931 	{
1932 		.name = "always-on",
1933 		.always_on = 1,
1934 		.domains = POWER_DOMAIN_MASK,
1935 		.ops = &i9xx_always_on_power_well_ops,
1936 		.data = SKL_DISP_PW_ALWAYS_ON,
1937 	},
1938 	{
1939 		.name = "power well 1",
1940 		/* Handled by the DMC firmware */
1941 		.domains = 0,
1942 		.ops = &skl_power_well_ops,
1943 		.data = SKL_DISP_PW_1,
1944 	},
1945 	{
1946 		.name = "MISC IO power well",
1947 		/* Handled by the DMC firmware */
1948 		.domains = 0,
1949 		.ops = &skl_power_well_ops,
1950 		.data = SKL_DISP_PW_MISC_IO,
1951 	},
1952 	{
1953 		.name = "DC off",
1954 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1955 		.ops = &gen9_dc_off_power_well_ops,
1956 		.data = SKL_DISP_PW_DC_OFF,
1957 	},
1958 	{
1959 		.name = "power well 2",
1960 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1961 		.ops = &skl_power_well_ops,
1962 		.data = SKL_DISP_PW_2,
1963 	},
1964 	{
1965 		.name = "DDI A/E power well",
1966 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1967 		.ops = &skl_power_well_ops,
1968 		.data = SKL_DISP_PW_DDI_A_E,
1969 	},
1970 	{
1971 		.name = "DDI B power well",
1972 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1973 		.ops = &skl_power_well_ops,
1974 		.data = SKL_DISP_PW_DDI_B,
1975 	},
1976 	{
1977 		.name = "DDI C power well",
1978 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1979 		.ops = &skl_power_well_ops,
1980 		.data = SKL_DISP_PW_DDI_C,
1981 	},
1982 	{
1983 		.name = "DDI D power well",
1984 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1985 		.ops = &skl_power_well_ops,
1986 		.data = SKL_DISP_PW_DDI_D,
1987 	},
1988 };
1989 
1990 static struct i915_power_well bxt_power_wells[] = {
1991 	{
1992 		.name = "always-on",
1993 		.always_on = 1,
1994 		.domains = POWER_DOMAIN_MASK,
1995 		.ops = &i9xx_always_on_power_well_ops,
1996 	},
1997 	{
1998 		.name = "power well 1",
1999 		.domains = 0,
2000 		.ops = &skl_power_well_ops,
2001 		.data = SKL_DISP_PW_1,
2002 	},
2003 	{
2004 		.name = "DC off",
2005 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2006 		.ops = &gen9_dc_off_power_well_ops,
2007 		.data = SKL_DISP_PW_DC_OFF,
2008 	},
2009 	{
2010 		.name = "power well 2",
2011 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2012 		.ops = &skl_power_well_ops,
2013 		.data = SKL_DISP_PW_2,
2014 	},
2015 };
2016 
2017 static int
2018 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2019 				   int disable_power_well)
2020 {
2021 	if (disable_power_well >= 0)
2022 		return !!disable_power_well;
2023 
2024 	return 1;
2025 }
2026 
2027 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2028 				    int enable_dc)
2029 {
2030 	uint32_t mask;
2031 	int requested_dc;
2032 	int max_dc;
2033 
2034 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2035 		max_dc = 2;
2036 		mask = 0;
2037 	} else if (IS_BROXTON(dev_priv)) {
2038 		max_dc = 1;
2039 		/*
2040 		 * DC9 has a separate HW flow from the rest of the DC states,
2041 		 * not depending on the DMC firmware. It's needed by system
2042 		 * suspend/resume, so allow it unconditionally.
2043 		 */
2044 		mask = DC_STATE_EN_DC9;
2045 	} else {
2046 		max_dc = 0;
2047 		mask = 0;
2048 	}
2049 
2050 	if (!i915.disable_power_well)
2051 		max_dc = 0;
2052 
2053 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2054 		requested_dc = enable_dc;
2055 	} else if (enable_dc == -1) {
2056 		requested_dc = max_dc;
2057 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2058 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2059 			      enable_dc, max_dc);
2060 		requested_dc = max_dc;
2061 	} else {
2062 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2063 		requested_dc = max_dc;
2064 	}
2065 
2066 	if (requested_dc > 1)
2067 		mask |= DC_STATE_EN_UPTO_DC6;
2068 	if (requested_dc > 0)
2069 		mask |= DC_STATE_EN_UPTO_DC5;
2070 
2071 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2072 
2073 	return mask;
2074 }
2075 
2076 #define set_power_wells(power_domains, __power_wells) ({		\
2077 	(power_domains)->power_wells = (__power_wells);			\
2078 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2079 })
2080 
2081 /**
2082  * intel_power_domains_init - initializes the power domain structures
2083  * @dev_priv: i915 device instance
2084  *
2085  * Initializes the power domain structures for @dev_priv depending upon the
2086  * supported platform.
2087  */
2088 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2089 {
2090 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2091 
2092 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2093 						     i915.disable_power_well);
2094 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2095 							    i915.enable_dc);
2096 
2097 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2098 
2099 	mutex_init(&power_domains->lock);
2100 
2101 	/*
2102 	 * The enabling order will be from lower to higher indexed wells,
2103 	 * the disabling order is reversed.
2104 	 */
2105 	if (IS_HASWELL(dev_priv)) {
2106 		set_power_wells(power_domains, hsw_power_wells);
2107 	} else if (IS_BROADWELL(dev_priv)) {
2108 		set_power_wells(power_domains, bdw_power_wells);
2109 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2110 		set_power_wells(power_domains, skl_power_wells);
2111 	} else if (IS_BROXTON(dev_priv)) {
2112 		set_power_wells(power_domains, bxt_power_wells);
2113 	} else if (IS_CHERRYVIEW(dev_priv)) {
2114 		set_power_wells(power_domains, chv_power_wells);
2115 	} else if (IS_VALLEYVIEW(dev_priv)) {
2116 		set_power_wells(power_domains, vlv_power_wells);
2117 	} else {
2118 		set_power_wells(power_domains, i9xx_always_on_power_well);
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  * intel_power_domains_fini - finalizes the power domain structures
2126  * @dev_priv: i915 device instance
2127  *
2128  * Finalizes the power domain structures for @dev_priv depending upon the
2129  * supported platform. This function also disables runtime pm and ensures that
2130  * the device stays powered up so that the driver can be reloaded.
2131  */
2132 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2133 {
2134 	struct device *device = &dev_priv->dev->pdev->dev;
2135 
2136 	/*
2137 	 * The i915.ko module is still not prepared to be loaded when
2138 	 * the power well is not enabled, so just enable it in case
2139 	 * we're going to unload/reload.
2140 	 * The following also reacquires the RPM reference the core passed
2141 	 * to the driver during loading, which is dropped in
2142 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2143 	 * device to the core with this reference held.
2144 	 */
2145 	intel_display_set_init_power(dev_priv, true);
2146 
2147 	/* Remove the refcount we took to keep power well support disabled. */
2148 	if (!i915.disable_power_well)
2149 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2150 
2151 	/*
2152 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2153 	 * the platform doesn't support runtime PM.
2154 	 */
2155 	if (!HAS_RUNTIME_PM(dev_priv))
2156 		pm_runtime_put(device);
2157 }
2158 
2159 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2160 {
2161 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2162 	struct i915_power_well *power_well;
2163 	int i;
2164 
2165 	mutex_lock(&power_domains->lock);
2166 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2167 		power_well->ops->sync_hw(dev_priv, power_well);
2168 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2169 								     power_well);
2170 	}
2171 	mutex_unlock(&power_domains->lock);
2172 }
2173 
2174 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2175 				   bool resume)
2176 {
2177 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2178 	struct i915_power_well *well;
2179 	uint32_t val;
2180 
2181 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2182 
2183 	/* enable PCH reset handshake */
2184 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2185 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2186 
2187 	/* enable PG1 and Misc I/O */
2188 	mutex_lock(&power_domains->lock);
2189 
2190 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2191 	intel_power_well_enable(dev_priv, well);
2192 
2193 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2194 	intel_power_well_enable(dev_priv, well);
2195 
2196 	mutex_unlock(&power_domains->lock);
2197 
2198 	if (!resume)
2199 		return;
2200 
2201 	skl_init_cdclk(dev_priv);
2202 
2203 	if (dev_priv->csr.dmc_payload)
2204 		intel_csr_load_program(dev_priv);
2205 }
2206 
2207 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2208 {
2209 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2210 	struct i915_power_well *well;
2211 
2212 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2213 
2214 	skl_uninit_cdclk(dev_priv);
2215 
2216 	/* The spec doesn't call for removing the reset handshake flag */
2217 	/* disable PG1 and Misc I/O */
2218 
2219 	mutex_lock(&power_domains->lock);
2220 
2221 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2222 	intel_power_well_disable(dev_priv, well);
2223 
2224 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2225 	intel_power_well_disable(dev_priv, well);
2226 
2227 	mutex_unlock(&power_domains->lock);
2228 }
2229 
2230 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2231 			   bool resume)
2232 {
2233 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2234 	struct i915_power_well *well;
2235 	uint32_t val;
2236 
2237 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2238 
2239 	/*
2240 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2241 	 * or else the reset will hang because there is no PCH to respond.
2242 	 * Move the handshake programming to initialization sequence.
2243 	 * Previously was left up to BIOS.
2244 	 */
2245 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2246 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2247 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2248 
2249 	/* Enable PG1 */
2250 	mutex_lock(&power_domains->lock);
2251 
2252 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2253 	intel_power_well_enable(dev_priv, well);
2254 
2255 	mutex_unlock(&power_domains->lock);
2256 
2257 	broxton_init_cdclk(dev_priv);
2258 	broxton_ddi_phy_init(dev_priv);
2259 
2260 	broxton_cdclk_verify_state(dev_priv);
2261 	broxton_ddi_phy_verify_state(dev_priv);
2262 
2263 	if (resume && dev_priv->csr.dmc_payload)
2264 		intel_csr_load_program(dev_priv);
2265 }
2266 
2267 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2268 {
2269 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2270 	struct i915_power_well *well;
2271 
2272 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2273 
2274 	broxton_ddi_phy_uninit(dev_priv);
2275 	broxton_uninit_cdclk(dev_priv);
2276 
2277 	/* The spec doesn't call for removing the reset handshake flag */
2278 
2279 	/* Disable PG1 */
2280 	mutex_lock(&power_domains->lock);
2281 
2282 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2283 	intel_power_well_disable(dev_priv, well);
2284 
2285 	mutex_unlock(&power_domains->lock);
2286 }
2287 
2288 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2289 {
2290 	struct i915_power_well *cmn_bc =
2291 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2292 	struct i915_power_well *cmn_d =
2293 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2294 
2295 	/*
2296 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2297 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2298 	 * instead maintain a shadow copy ourselves. Use the actual
2299 	 * power well state and lane status to reconstruct the
2300 	 * expected initial value.
2301 	 */
2302 	dev_priv->chv_phy_control =
2303 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2304 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2305 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2306 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2307 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2308 
2309 	/*
2310 	 * If all lanes are disabled we leave the override disabled
2311 	 * with all power down bits cleared to match the state we
2312 	 * would use after disabling the port. Otherwise enable the
2313 	 * override and set the lane powerdown bits accding to the
2314 	 * current lane status.
2315 	 */
2316 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2317 		uint32_t status = I915_READ(DPLL(PIPE_A));
2318 		unsigned int mask;
2319 
2320 		mask = status & DPLL_PORTB_READY_MASK;
2321 		if (mask == 0xf)
2322 			mask = 0x0;
2323 		else
2324 			dev_priv->chv_phy_control |=
2325 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2326 
2327 		dev_priv->chv_phy_control |=
2328 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2329 
2330 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2331 		if (mask == 0xf)
2332 			mask = 0x0;
2333 		else
2334 			dev_priv->chv_phy_control |=
2335 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2336 
2337 		dev_priv->chv_phy_control |=
2338 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2339 
2340 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2341 
2342 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2343 	} else {
2344 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2345 	}
2346 
2347 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2348 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2349 		unsigned int mask;
2350 
2351 		mask = status & DPLL_PORTD_READY_MASK;
2352 
2353 		if (mask == 0xf)
2354 			mask = 0x0;
2355 		else
2356 			dev_priv->chv_phy_control |=
2357 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2358 
2359 		dev_priv->chv_phy_control |=
2360 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2361 
2362 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2363 
2364 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2365 	} else {
2366 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2367 	}
2368 
2369 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2370 
2371 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2372 		      dev_priv->chv_phy_control);
2373 }
2374 
2375 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2376 {
2377 	struct i915_power_well *cmn =
2378 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2379 	struct i915_power_well *disp2d =
2380 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2381 
2382 	/* If the display might be already active skip this */
2383 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2384 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2385 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2386 		return;
2387 
2388 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2389 
2390 	/* cmnlane needs DPLL registers */
2391 	disp2d->ops->enable(dev_priv, disp2d);
2392 
2393 	/*
2394 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2395 	 * Need to assert and de-assert PHY SB reset by gating the
2396 	 * common lane power, then un-gating it.
2397 	 * Simply ungating isn't enough to reset the PHY enough to get
2398 	 * ports and lanes running.
2399 	 */
2400 	cmn->ops->disable(dev_priv, cmn);
2401 }
2402 
2403 /**
2404  * intel_power_domains_init_hw - initialize hardware power domain state
2405  * @dev_priv: i915 device instance
2406  *
2407  * This function initializes the hardware power domain state and enables all
2408  * power domains using intel_display_set_init_power().
2409  */
2410 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2411 {
2412 	struct drm_device *dev = dev_priv->dev;
2413 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2414 
2415 	power_domains->initializing = true;
2416 
2417 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2418 		skl_display_core_init(dev_priv, resume);
2419 	} else if (IS_BROXTON(dev)) {
2420 		bxt_display_core_init(dev_priv, resume);
2421 	} else if (IS_CHERRYVIEW(dev)) {
2422 		mutex_lock(&power_domains->lock);
2423 		chv_phy_control_init(dev_priv);
2424 		mutex_unlock(&power_domains->lock);
2425 	} else if (IS_VALLEYVIEW(dev)) {
2426 		mutex_lock(&power_domains->lock);
2427 		vlv_cmnlane_wa(dev_priv);
2428 		mutex_unlock(&power_domains->lock);
2429 	}
2430 
2431 	/* For now, we need the power well to be always enabled. */
2432 	intel_display_set_init_power(dev_priv, true);
2433 	/* Disable power support if the user asked so. */
2434 	if (!i915.disable_power_well)
2435 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2436 	intel_power_domains_sync_hw(dev_priv);
2437 	power_domains->initializing = false;
2438 }
2439 
2440 /**
2441  * intel_power_domains_suspend - suspend power domain state
2442  * @dev_priv: i915 device instance
2443  *
2444  * This function prepares the hardware power domain state before entering
2445  * system suspend. It must be paired with intel_power_domains_init_hw().
2446  */
2447 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2448 {
2449 	/*
2450 	 * Even if power well support was disabled we still want to disable
2451 	 * power wells while we are system suspended.
2452 	 */
2453 	if (!i915.disable_power_well)
2454 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2455 
2456 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2457 		skl_display_core_uninit(dev_priv);
2458 	else if (IS_BROXTON(dev_priv))
2459 		bxt_display_core_uninit(dev_priv);
2460 }
2461 
2462 /**
2463  * intel_runtime_pm_get - grab a runtime pm reference
2464  * @dev_priv: i915 device instance
2465  *
2466  * This function grabs a device-level runtime pm reference (mostly used for GEM
2467  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2468  *
2469  * Any runtime pm reference obtained by this function must have a symmetric
2470  * call to intel_runtime_pm_put() to release the reference again.
2471  */
2472 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2473 {
2474 	struct drm_device *dev = dev_priv->dev;
2475 	struct device *device = &dev->pdev->dev;
2476 
2477 	pm_runtime_get_sync(device);
2478 
2479 	atomic_inc(&dev_priv->pm.wakeref_count);
2480 	assert_rpm_wakelock_held(dev_priv);
2481 }
2482 
2483 /**
2484  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2485  * @dev_priv: i915 device instance
2486  *
2487  * This function grabs a device-level runtime pm reference if the device is
2488  * already in use and ensures that it is powered up.
2489  *
2490  * Any runtime pm reference obtained by this function must have a symmetric
2491  * call to intel_runtime_pm_put() to release the reference again.
2492  */
2493 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2494 {
2495 	struct drm_device *dev = dev_priv->dev;
2496 	struct device *device = &dev->pdev->dev;
2497 
2498 	if (IS_ENABLED(CONFIG_PM)) {
2499 		int ret = pm_runtime_get_if_in_use(device);
2500 
2501 		/*
2502 		 * In cases runtime PM is disabled by the RPM core and we get
2503 		 * an -EINVAL return value we are not supposed to call this
2504 		 * function, since the power state is undefined. This applies
2505 		 * atm to the late/early system suspend/resume handlers.
2506 		 */
2507 		WARN_ON_ONCE(ret < 0);
2508 		if (ret <= 0)
2509 			return false;
2510 	}
2511 
2512 	atomic_inc(&dev_priv->pm.wakeref_count);
2513 	assert_rpm_wakelock_held(dev_priv);
2514 
2515 	return true;
2516 }
2517 
2518 /**
2519  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2520  * @dev_priv: i915 device instance
2521  *
2522  * This function grabs a device-level runtime pm reference (mostly used for GEM
2523  * code to ensure the GTT or GT is on).
2524  *
2525  * It will _not_ power up the device but instead only check that it's powered
2526  * on.  Therefore it is only valid to call this functions from contexts where
2527  * the device is known to be powered up and where trying to power it up would
2528  * result in hilarity and deadlocks. That pretty much means only the system
2529  * suspend/resume code where this is used to grab runtime pm references for
2530  * delayed setup down in work items.
2531  *
2532  * Any runtime pm reference obtained by this function must have a symmetric
2533  * call to intel_runtime_pm_put() to release the reference again.
2534  */
2535 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2536 {
2537 	struct drm_device *dev = dev_priv->dev;
2538 	struct device *device = &dev->pdev->dev;
2539 
2540 	assert_rpm_wakelock_held(dev_priv);
2541 	pm_runtime_get_noresume(device);
2542 
2543 	atomic_inc(&dev_priv->pm.wakeref_count);
2544 }
2545 
2546 /**
2547  * intel_runtime_pm_put - release a runtime pm reference
2548  * @dev_priv: i915 device instance
2549  *
2550  * This function drops the device-level runtime pm reference obtained by
2551  * intel_runtime_pm_get() and might power down the corresponding
2552  * hardware block right away if this is the last reference.
2553  */
2554 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2555 {
2556 	struct drm_device *dev = dev_priv->dev;
2557 	struct device *device = &dev->pdev->dev;
2558 
2559 	assert_rpm_wakelock_held(dev_priv);
2560 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2561 		atomic_inc(&dev_priv->pm.atomic_seq);
2562 
2563 	pm_runtime_mark_last_busy(device);
2564 	pm_runtime_put_autosuspend(device);
2565 }
2566 
2567 /**
2568  * intel_runtime_pm_enable - enable runtime pm
2569  * @dev_priv: i915 device instance
2570  *
2571  * This function enables runtime pm at the end of the driver load sequence.
2572  *
2573  * Note that this function does currently not enable runtime pm for the
2574  * subordinate display power domains. That is only done on the first modeset
2575  * using intel_display_set_init_power().
2576  */
2577 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2578 {
2579 	struct drm_device *dev = dev_priv->dev;
2580 	struct device *device = &dev->pdev->dev;
2581 
2582 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2583 	pm_runtime_mark_last_busy(device);
2584 
2585 	/*
2586 	 * Take a permanent reference to disable the RPM functionality and drop
2587 	 * it only when unloading the driver. Use the low level get/put helpers,
2588 	 * so the driver's own RPM reference tracking asserts also work on
2589 	 * platforms without RPM support.
2590 	 */
2591 	if (!HAS_RUNTIME_PM(dev)) {
2592 		pm_runtime_dont_use_autosuspend(device);
2593 		pm_runtime_get_sync(device);
2594 	} else {
2595 		pm_runtime_use_autosuspend(device);
2596 	}
2597 
2598 	/*
2599 	 * The core calls the driver load handler with an RPM reference held.
2600 	 * We drop that here and will reacquire it during unloading in
2601 	 * intel_power_domains_fini().
2602 	 */
2603 	pm_runtime_put_autosuspend(device);
2604 }
2605 
2606