1 /* 2 * Copyright © 2012-2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eugeni Dodonov <eugeni.dodonov@intel.com> 25 * Daniel Vetter <daniel.vetter@ffwll.ch> 26 * 27 */ 28 29 #include <linux/pm_runtime.h> 30 31 #include <drm/drm_print.h> 32 33 #include "i915_drv.h" 34 #include "i915_trace.h" 35 36 /** 37 * DOC: runtime pm 38 * 39 * The i915 driver supports dynamic enabling and disabling of entire hardware 40 * blocks at runtime. This is especially important on the display side where 41 * software is supposed to control many power gates manually on recent hardware, 42 * since on the GT side a lot of the power management is done by the hardware. 43 * But even there some manual control at the device level is required. 44 * 45 * Since i915 supports a diverse set of platforms with a unified codebase and 46 * hardware engineers just love to shuffle functionality around between power 47 * domains there's a sizeable amount of indirection required. This file provides 48 * generic functions to the driver for grabbing and releasing references for 49 * abstract power domains. It then maps those to the actual power wells 50 * present for a given platform. 51 */ 52 53 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 54 55 #include <linux/sort.h> 56 57 #define STACKDEPTH 8 58 59 static noinline depot_stack_handle_t __save_depot_stack(void) 60 { 61 unsigned long entries[STACKDEPTH]; 62 unsigned int n; 63 64 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 65 return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN); 66 } 67 68 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) 69 { 70 spin_lock_init(&rpm->debug.lock); 71 } 72 73 static noinline depot_stack_handle_t 74 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) 75 { 76 depot_stack_handle_t stack, *stacks; 77 unsigned long flags; 78 79 if (!rpm->available) 80 return -1; 81 82 stack = __save_depot_stack(); 83 if (!stack) 84 return -1; 85 86 spin_lock_irqsave(&rpm->debug.lock, flags); 87 88 if (!rpm->debug.count) 89 rpm->debug.last_acquire = stack; 90 91 stacks = krealloc(rpm->debug.owners, 92 (rpm->debug.count + 1) * sizeof(*stacks), 93 GFP_NOWAIT | __GFP_NOWARN); 94 if (stacks) { 95 stacks[rpm->debug.count++] = stack; 96 rpm->debug.owners = stacks; 97 } else { 98 stack = -1; 99 } 100 101 spin_unlock_irqrestore(&rpm->debug.lock, flags); 102 103 return stack; 104 } 105 106 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, 107 depot_stack_handle_t stack) 108 { 109 struct drm_i915_private *i915 = container_of(rpm, 110 struct drm_i915_private, 111 runtime_pm); 112 unsigned long flags, n; 113 bool found = false; 114 115 if (unlikely(stack == -1)) 116 return; 117 118 spin_lock_irqsave(&rpm->debug.lock, flags); 119 for (n = rpm->debug.count; n--; ) { 120 if (rpm->debug.owners[n] == stack) { 121 memmove(rpm->debug.owners + n, 122 rpm->debug.owners + n + 1, 123 (--rpm->debug.count - n) * sizeof(stack)); 124 found = true; 125 break; 126 } 127 } 128 spin_unlock_irqrestore(&rpm->debug.lock, flags); 129 130 if (drm_WARN(&i915->drm, !found, 131 "Unmatched wakeref (tracking %lu), count %u\n", 132 rpm->debug.count, atomic_read(&rpm->wakeref_count))) { 133 char *buf; 134 135 buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN); 136 if (!buf) 137 return; 138 139 stack_depot_snprint(stack, buf, PAGE_SIZE, 2); 140 DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf); 141 142 stack = READ_ONCE(rpm->debug.last_release); 143 if (stack) { 144 stack_depot_snprint(stack, buf, PAGE_SIZE, 2); 145 DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf); 146 } 147 148 kfree(buf); 149 } 150 } 151 152 static int cmphandle(const void *_a, const void *_b) 153 { 154 const depot_stack_handle_t * const a = _a, * const b = _b; 155 156 if (*a < *b) 157 return -1; 158 else if (*a > *b) 159 return 1; 160 else 161 return 0; 162 } 163 164 static void 165 __print_intel_runtime_pm_wakeref(struct drm_printer *p, 166 const struct intel_runtime_pm_debug *dbg) 167 { 168 unsigned long i; 169 char *buf; 170 171 buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN); 172 if (!buf) 173 return; 174 175 if (dbg->last_acquire) { 176 stack_depot_snprint(dbg->last_acquire, buf, PAGE_SIZE, 2); 177 drm_printf(p, "Wakeref last acquired:\n%s", buf); 178 } 179 180 if (dbg->last_release) { 181 stack_depot_snprint(dbg->last_release, buf, PAGE_SIZE, 2); 182 drm_printf(p, "Wakeref last released:\n%s", buf); 183 } 184 185 drm_printf(p, "Wakeref count: %lu\n", dbg->count); 186 187 sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL); 188 189 for (i = 0; i < dbg->count; i++) { 190 depot_stack_handle_t stack = dbg->owners[i]; 191 unsigned long rep; 192 193 rep = 1; 194 while (i + 1 < dbg->count && dbg->owners[i + 1] == stack) 195 rep++, i++; 196 stack_depot_snprint(stack, buf, PAGE_SIZE, 2); 197 drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf); 198 } 199 200 kfree(buf); 201 } 202 203 static noinline void 204 __untrack_all_wakerefs(struct intel_runtime_pm_debug *debug, 205 struct intel_runtime_pm_debug *saved) 206 { 207 *saved = *debug; 208 209 debug->owners = NULL; 210 debug->count = 0; 211 debug->last_release = __save_depot_stack(); 212 } 213 214 static void 215 dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug) 216 { 217 if (debug->count) { 218 struct drm_printer p = drm_debug_printer("i915"); 219 220 __print_intel_runtime_pm_wakeref(&p, debug); 221 } 222 223 kfree(debug->owners); 224 } 225 226 static noinline void 227 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) 228 { 229 struct intel_runtime_pm_debug dbg = {}; 230 unsigned long flags; 231 232 if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count, 233 &rpm->debug.lock, 234 flags)) 235 return; 236 237 __untrack_all_wakerefs(&rpm->debug, &dbg); 238 spin_unlock_irqrestore(&rpm->debug.lock, flags); 239 240 dump_and_free_wakeref_tracking(&dbg); 241 } 242 243 static noinline void 244 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) 245 { 246 struct intel_runtime_pm_debug dbg = {}; 247 unsigned long flags; 248 249 spin_lock_irqsave(&rpm->debug.lock, flags); 250 __untrack_all_wakerefs(&rpm->debug, &dbg); 251 spin_unlock_irqrestore(&rpm->debug.lock, flags); 252 253 dump_and_free_wakeref_tracking(&dbg); 254 } 255 256 void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, 257 struct drm_printer *p) 258 { 259 struct intel_runtime_pm_debug dbg = {}; 260 261 do { 262 unsigned long alloc = dbg.count; 263 depot_stack_handle_t *s; 264 265 spin_lock_irq(&rpm->debug.lock); 266 dbg.count = rpm->debug.count; 267 if (dbg.count <= alloc) { 268 memcpy(dbg.owners, 269 rpm->debug.owners, 270 dbg.count * sizeof(*s)); 271 } 272 dbg.last_acquire = rpm->debug.last_acquire; 273 dbg.last_release = rpm->debug.last_release; 274 spin_unlock_irq(&rpm->debug.lock); 275 if (dbg.count <= alloc) 276 break; 277 278 s = krealloc(dbg.owners, 279 dbg.count * sizeof(*s), 280 GFP_NOWAIT | __GFP_NOWARN); 281 if (!s) 282 goto out; 283 284 dbg.owners = s; 285 } while (1); 286 287 __print_intel_runtime_pm_wakeref(p, &dbg); 288 289 out: 290 kfree(dbg.owners); 291 } 292 293 #else 294 295 static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) 296 { 297 } 298 299 static depot_stack_handle_t 300 track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) 301 { 302 return -1; 303 } 304 305 static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, 306 intel_wakeref_t wref) 307 { 308 } 309 310 static void 311 __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) 312 { 313 atomic_dec(&rpm->wakeref_count); 314 } 315 316 static void 317 untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) 318 { 319 } 320 321 #endif 322 323 static void 324 intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock) 325 { 326 if (wakelock) { 327 atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); 328 assert_rpm_wakelock_held(rpm); 329 } else { 330 atomic_inc(&rpm->wakeref_count); 331 assert_rpm_raw_wakeref_held(rpm); 332 } 333 } 334 335 static void 336 intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock) 337 { 338 if (wakelock) { 339 assert_rpm_wakelock_held(rpm); 340 atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); 341 } else { 342 assert_rpm_raw_wakeref_held(rpm); 343 } 344 345 __intel_wakeref_dec_and_check_tracking(rpm); 346 } 347 348 static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm, 349 bool wakelock) 350 { 351 struct drm_i915_private *i915 = container_of(rpm, 352 struct drm_i915_private, 353 runtime_pm); 354 int ret; 355 356 ret = pm_runtime_get_sync(rpm->kdev); 357 drm_WARN_ONCE(&i915->drm, ret < 0, 358 "pm_runtime_get_sync() failed: %d\n", ret); 359 360 intel_runtime_pm_acquire(rpm, wakelock); 361 362 return track_intel_runtime_pm_wakeref(rpm); 363 } 364 365 /** 366 * intel_runtime_pm_get_raw - grab a raw runtime pm reference 367 * @rpm: the intel_runtime_pm structure 368 * 369 * This is the unlocked version of intel_display_power_is_enabled() and should 370 * only be used from error capture and recovery code where deadlocks are 371 * possible. 372 * This function grabs a device-level runtime pm reference (mostly used for 373 * asynchronous PM management from display code) and ensures that it is powered 374 * up. Raw references are not considered during wakelock assert checks. 375 * 376 * Any runtime pm reference obtained by this function must have a symmetric 377 * call to intel_runtime_pm_put_raw() to release the reference again. 378 * 379 * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates 380 * as True if the wakeref was acquired, or False otherwise. 381 */ 382 intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm) 383 { 384 return __intel_runtime_pm_get(rpm, false); 385 } 386 387 /** 388 * intel_runtime_pm_get - grab a runtime pm reference 389 * @rpm: the intel_runtime_pm structure 390 * 391 * This function grabs a device-level runtime pm reference (mostly used for GEM 392 * code to ensure the GTT or GT is on) and ensures that it is powered up. 393 * 394 * Any runtime pm reference obtained by this function must have a symmetric 395 * call to intel_runtime_pm_put() to release the reference again. 396 * 397 * Returns: the wakeref cookie to pass to intel_runtime_pm_put() 398 */ 399 intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm) 400 { 401 return __intel_runtime_pm_get(rpm, true); 402 } 403 404 /** 405 * __intel_runtime_pm_get_if_active - grab a runtime pm reference if device is active 406 * @rpm: the intel_runtime_pm structure 407 * @ignore_usecount: get a ref even if dev->power.usage_count is 0 408 * 409 * This function grabs a device-level runtime pm reference if the device is 410 * already active and ensures that it is powered up. It is illegal to try 411 * and access the HW should intel_runtime_pm_get_if_active() report failure. 412 * 413 * If @ignore_usecount is true, a reference will be acquired even if there is no 414 * user requiring the device to be powered up (dev->power.usage_count == 0). 415 * If the function returns false in this case then it's guaranteed that the 416 * device's runtime suspend hook has been called already or that it will be 417 * called (and hence it's also guaranteed that the device's runtime resume 418 * hook will be called eventually). 419 * 420 * Any runtime pm reference obtained by this function must have a symmetric 421 * call to intel_runtime_pm_put() to release the reference again. 422 * 423 * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates 424 * as True if the wakeref was acquired, or False otherwise. 425 */ 426 static intel_wakeref_t __intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm, 427 bool ignore_usecount) 428 { 429 if (IS_ENABLED(CONFIG_PM)) { 430 /* 431 * In cases runtime PM is disabled by the RPM core and we get 432 * an -EINVAL return value we are not supposed to call this 433 * function, since the power state is undefined. This applies 434 * atm to the late/early system suspend/resume handlers. 435 */ 436 if (pm_runtime_get_if_active(rpm->kdev, ignore_usecount) <= 0) 437 return 0; 438 } 439 440 intel_runtime_pm_acquire(rpm, true); 441 442 return track_intel_runtime_pm_wakeref(rpm); 443 } 444 445 intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm) 446 { 447 return __intel_runtime_pm_get_if_active(rpm, false); 448 } 449 450 intel_wakeref_t intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm) 451 { 452 return __intel_runtime_pm_get_if_active(rpm, true); 453 } 454 455 /** 456 * intel_runtime_pm_get_noresume - grab a runtime pm reference 457 * @rpm: the intel_runtime_pm structure 458 * 459 * This function grabs a device-level runtime pm reference (mostly used for GEM 460 * code to ensure the GTT or GT is on). 461 * 462 * It will _not_ power up the device but instead only check that it's powered 463 * on. Therefore it is only valid to call this functions from contexts where 464 * the device is known to be powered up and where trying to power it up would 465 * result in hilarity and deadlocks. That pretty much means only the system 466 * suspend/resume code where this is used to grab runtime pm references for 467 * delayed setup down in work items. 468 * 469 * Any runtime pm reference obtained by this function must have a symmetric 470 * call to intel_runtime_pm_put() to release the reference again. 471 * 472 * Returns: the wakeref cookie to pass to intel_runtime_pm_put() 473 */ 474 intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm) 475 { 476 assert_rpm_wakelock_held(rpm); 477 pm_runtime_get_noresume(rpm->kdev); 478 479 intel_runtime_pm_acquire(rpm, true); 480 481 return track_intel_runtime_pm_wakeref(rpm); 482 } 483 484 static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm, 485 intel_wakeref_t wref, 486 bool wakelock) 487 { 488 struct device *kdev = rpm->kdev; 489 490 untrack_intel_runtime_pm_wakeref(rpm, wref); 491 492 intel_runtime_pm_release(rpm, wakelock); 493 494 pm_runtime_mark_last_busy(kdev); 495 pm_runtime_put_autosuspend(kdev); 496 } 497 498 /** 499 * intel_runtime_pm_put_raw - release a raw runtime pm reference 500 * @rpm: the intel_runtime_pm structure 501 * @wref: wakeref acquired for the reference that is being released 502 * 503 * This function drops the device-level runtime pm reference obtained by 504 * intel_runtime_pm_get_raw() and might power down the corresponding 505 * hardware block right away if this is the last reference. 506 */ 507 void 508 intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref) 509 { 510 __intel_runtime_pm_put(rpm, wref, false); 511 } 512 513 /** 514 * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference 515 * @rpm: the intel_runtime_pm structure 516 * 517 * This function drops the device-level runtime pm reference obtained by 518 * intel_runtime_pm_get() and might power down the corresponding 519 * hardware block right away if this is the last reference. 520 * 521 * This function exists only for historical reasons and should be avoided in 522 * new code, as the correctness of its use cannot be checked. Always use 523 * intel_runtime_pm_put() instead. 524 */ 525 void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm) 526 { 527 __intel_runtime_pm_put(rpm, -1, true); 528 } 529 530 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) 531 /** 532 * intel_runtime_pm_put - release a runtime pm reference 533 * @rpm: the intel_runtime_pm structure 534 * @wref: wakeref acquired for the reference that is being released 535 * 536 * This function drops the device-level runtime pm reference obtained by 537 * intel_runtime_pm_get() and might power down the corresponding 538 * hardware block right away if this is the last reference. 539 */ 540 void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref) 541 { 542 __intel_runtime_pm_put(rpm, wref, true); 543 } 544 #endif 545 546 /** 547 * intel_runtime_pm_enable - enable runtime pm 548 * @rpm: the intel_runtime_pm structure 549 * 550 * This function enables runtime pm at the end of the driver load sequence. 551 * 552 * Note that this function does currently not enable runtime pm for the 553 * subordinate display power domains. That is done by 554 * intel_power_domains_enable(). 555 */ 556 void intel_runtime_pm_enable(struct intel_runtime_pm *rpm) 557 { 558 struct drm_i915_private *i915 = container_of(rpm, 559 struct drm_i915_private, 560 runtime_pm); 561 struct device *kdev = rpm->kdev; 562 563 /* 564 * Disable the system suspend direct complete optimization, which can 565 * leave the device suspended skipping the driver's suspend handlers 566 * if the device was already runtime suspended. This is needed due to 567 * the difference in our runtime and system suspend sequence and 568 * becaue the HDA driver may require us to enable the audio power 569 * domain during system suspend. 570 */ 571 dev_pm_set_driver_flags(kdev, DPM_FLAG_NO_DIRECT_COMPLETE); 572 573 pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */ 574 pm_runtime_mark_last_busy(kdev); 575 576 /* 577 * Take a permanent reference to disable the RPM functionality and drop 578 * it only when unloading the driver. Use the low level get/put helpers, 579 * so the driver's own RPM reference tracking asserts also work on 580 * platforms without RPM support. 581 */ 582 if (!rpm->available) { 583 int ret; 584 585 pm_runtime_dont_use_autosuspend(kdev); 586 ret = pm_runtime_get_sync(kdev); 587 drm_WARN(&i915->drm, ret < 0, 588 "pm_runtime_get_sync() failed: %d\n", ret); 589 } else { 590 pm_runtime_use_autosuspend(kdev); 591 } 592 593 /* Enable by default */ 594 pm_runtime_allow(kdev); 595 596 /* 597 * The core calls the driver load handler with an RPM reference held. 598 * We drop that here and will reacquire it during unloading in 599 * intel_power_domains_fini(). 600 */ 601 pm_runtime_put_autosuspend(kdev); 602 } 603 604 void intel_runtime_pm_disable(struct intel_runtime_pm *rpm) 605 { 606 struct drm_i915_private *i915 = container_of(rpm, 607 struct drm_i915_private, 608 runtime_pm); 609 struct device *kdev = rpm->kdev; 610 611 /* Transfer rpm ownership back to core */ 612 drm_WARN(&i915->drm, pm_runtime_get_sync(kdev) < 0, 613 "Failed to pass rpm ownership back to core\n"); 614 615 pm_runtime_dont_use_autosuspend(kdev); 616 617 if (!rpm->available) 618 pm_runtime_put(kdev); 619 } 620 621 void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm) 622 { 623 struct drm_i915_private *i915 = container_of(rpm, 624 struct drm_i915_private, 625 runtime_pm); 626 int count = atomic_read(&rpm->wakeref_count); 627 628 drm_WARN(&i915->drm, count, 629 "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n", 630 intel_rpm_raw_wakeref_count(count), 631 intel_rpm_wakelock_count(count)); 632 633 untrack_all_intel_runtime_pm_wakerefs(rpm); 634 } 635 636 void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm) 637 { 638 struct drm_i915_private *i915 = 639 container_of(rpm, struct drm_i915_private, runtime_pm); 640 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 641 struct device *kdev = &pdev->dev; 642 643 rpm->kdev = kdev; 644 rpm->available = HAS_RUNTIME_PM(i915); 645 646 init_intel_runtime_pm_wakeref(rpm); 647 } 648