1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27 
28 #include "display/intel_cdclk.h"
29 #include "intel_device_info.h"
30 #include "i915_drv.h"
31 
32 #define PLATFORM_NAME(x) [INTEL_##x] = #x
33 static const char * const platform_names[] = {
34 	PLATFORM_NAME(I830),
35 	PLATFORM_NAME(I845G),
36 	PLATFORM_NAME(I85X),
37 	PLATFORM_NAME(I865G),
38 	PLATFORM_NAME(I915G),
39 	PLATFORM_NAME(I915GM),
40 	PLATFORM_NAME(I945G),
41 	PLATFORM_NAME(I945GM),
42 	PLATFORM_NAME(G33),
43 	PLATFORM_NAME(PINEVIEW),
44 	PLATFORM_NAME(I965G),
45 	PLATFORM_NAME(I965GM),
46 	PLATFORM_NAME(G45),
47 	PLATFORM_NAME(GM45),
48 	PLATFORM_NAME(IRONLAKE),
49 	PLATFORM_NAME(SANDYBRIDGE),
50 	PLATFORM_NAME(IVYBRIDGE),
51 	PLATFORM_NAME(VALLEYVIEW),
52 	PLATFORM_NAME(HASWELL),
53 	PLATFORM_NAME(BROADWELL),
54 	PLATFORM_NAME(CHERRYVIEW),
55 	PLATFORM_NAME(SKYLAKE),
56 	PLATFORM_NAME(BROXTON),
57 	PLATFORM_NAME(KABYLAKE),
58 	PLATFORM_NAME(GEMINILAKE),
59 	PLATFORM_NAME(COFFEELAKE),
60 	PLATFORM_NAME(CANNONLAKE),
61 	PLATFORM_NAME(ICELAKE),
62 	PLATFORM_NAME(ELKHARTLAKE),
63 	PLATFORM_NAME(TIGERLAKE),
64 };
65 #undef PLATFORM_NAME
66 
67 const char *intel_platform_name(enum intel_platform platform)
68 {
69 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
70 
71 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
72 			 platform_names[platform] == NULL))
73 		return "<unknown>";
74 
75 	return platform_names[platform];
76 }
77 
78 static const char *iommu_name(void)
79 {
80 	const char *msg = "n/a";
81 
82 #ifdef CONFIG_INTEL_IOMMU
83 	msg = enableddisabled(intel_iommu_gfx_mapped);
84 #endif
85 
86 	return msg;
87 }
88 
89 void intel_device_info_print_static(const struct intel_device_info *info,
90 				    struct drm_printer *p)
91 {
92 	drm_printf(p, "engines: %x\n", info->engine_mask);
93 	drm_printf(p, "gen: %d\n", info->gen);
94 	drm_printf(p, "gt: %d\n", info->gt);
95 	drm_printf(p, "iommu: %s\n", iommu_name());
96 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
97 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
98 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
99 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
100 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
101 
102 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
103 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
104 #undef PRINT_FLAG
105 
106 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
107 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
108 #undef PRINT_FLAG
109 }
110 
111 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
112 {
113 	int s;
114 
115 	drm_printf(p, "slice total: %u, mask=%04x\n",
116 		   hweight8(sseu->slice_mask), sseu->slice_mask);
117 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
118 	for (s = 0; s < sseu->max_slices; s++) {
119 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
120 			   s, intel_sseu_subslices_per_slice(sseu, s),
121 			   intel_sseu_get_subslices(sseu, s));
122 	}
123 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
124 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
125 	drm_printf(p, "has slice power gating: %s\n",
126 		   yesno(sseu->has_slice_pg));
127 	drm_printf(p, "has subslice power gating: %s\n",
128 		   yesno(sseu->has_subslice_pg));
129 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
130 }
131 
132 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
133 				     struct drm_printer *p)
134 {
135 	sseu_dump(&info->sseu, p);
136 
137 	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
138 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
139 		   info->cs_timestamp_frequency_khz);
140 }
141 
142 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
143 		       int subslice)
144 {
145 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
146 
147 	return slice * slice_stride + subslice * sseu->eu_stride;
148 }
149 
150 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
151 			int subslice)
152 {
153 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
154 	u16 eu_mask = 0;
155 
156 	for (i = 0; i < sseu->eu_stride; i++) {
157 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
158 			(i * BITS_PER_BYTE);
159 	}
160 
161 	return eu_mask;
162 }
163 
164 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
165 			 u16 eu_mask)
166 {
167 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
168 
169 	for (i = 0; i < sseu->eu_stride; i++) {
170 		sseu->eu_mask[offset + i] =
171 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
172 	}
173 }
174 
175 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
176 				      struct drm_printer *p)
177 {
178 	int s, ss;
179 
180 	if (sseu->max_slices == 0) {
181 		drm_printf(p, "Unavailable\n");
182 		return;
183 	}
184 
185 	for (s = 0; s < sseu->max_slices; s++) {
186 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
187 			   s, intel_sseu_subslices_per_slice(sseu, s),
188 			   intel_sseu_get_subslices(sseu, s));
189 
190 		for (ss = 0; ss < sseu->max_subslices; ss++) {
191 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
192 
193 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
194 				   ss, hweight16(enabled_eus), enabled_eus);
195 		}
196 	}
197 }
198 
199 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
200 {
201 	u16 i, total = 0;
202 
203 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
204 		total += hweight8(sseu->eu_mask[i]);
205 
206 	return total;
207 }
208 
209 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
210 				    u8 s_en, u32 ss_en, u16 eu_en)
211 {
212 	int s, ss;
213 
214 	/* ss_en represents entire subslice mask across all slices */
215 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
216 		   sizeof(ss_en) * BITS_PER_BYTE);
217 
218 	for (s = 0; s < sseu->max_slices; s++) {
219 		if ((s_en & BIT(s)) == 0)
220 			continue;
221 
222 		sseu->slice_mask |= BIT(s);
223 
224 		intel_sseu_set_subslices(sseu, s, ss_en);
225 
226 		for (ss = 0; ss < sseu->max_subslices; ss++)
227 			if (intel_sseu_has_subslice(sseu, s, ss))
228 				sseu_set_eus(sseu, s, ss, eu_en);
229 	}
230 	sseu->eu_per_subslice = hweight16(eu_en);
231 	sseu->eu_total = compute_eu_total(sseu);
232 }
233 
234 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
235 {
236 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
237 	u8 s_en;
238 	u32 dss_en;
239 	u16 eu_en = 0;
240 	u8 eu_en_fuse;
241 	int eu;
242 
243 	/*
244 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
245 	 * Instead of splitting these, provide userspace with an array
246 	 * of DSS to more closely represent the hardware resource.
247 	 */
248 	intel_sseu_set_info(sseu, 1, 6, 16);
249 
250 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
251 
252 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
253 
254 	/* one bit per pair of EUs */
255 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
256 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
257 		if (eu_en_fuse & BIT(eu))
258 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
259 
260 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
261 
262 	/* TGL only supports slice-level power gating */
263 	sseu->has_slice_pg = 1;
264 }
265 
266 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
267 {
268 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
269 	u8 s_en;
270 	u32 ss_en;
271 	u8 eu_en;
272 
273 	if (IS_ELKHARTLAKE(dev_priv))
274 		intel_sseu_set_info(sseu, 1, 4, 8);
275 	else
276 		intel_sseu_set_info(sseu, 1, 8, 8);
277 
278 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
279 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
280 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
281 
282 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
283 
284 	/* ICL has no power gating restrictions. */
285 	sseu->has_slice_pg = 1;
286 	sseu->has_subslice_pg = 1;
287 	sseu->has_eu_pg = 1;
288 }
289 
290 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
291 {
292 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
293 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
294 	int s, ss;
295 	const int eu_mask = 0xff;
296 	u32 subslice_mask, eu_en;
297 
298 	intel_sseu_set_info(sseu, 6, 4, 8);
299 
300 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
301 			    GEN10_F2_S_ENA_SHIFT;
302 
303 	/* Slice0 */
304 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
305 	for (ss = 0; ss < sseu->max_subslices; ss++)
306 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
307 	/* Slice1 */
308 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
309 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
310 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
311 	/* Slice2 */
312 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
313 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
314 	/* Slice3 */
315 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
316 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
317 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
318 	/* Slice4 */
319 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
320 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
321 	/* Slice5 */
322 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
323 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
324 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
325 
326 	subslice_mask = (1 << 4) - 1;
327 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
328 			   GEN10_F2_SS_DIS_SHIFT);
329 
330 	for (s = 0; s < sseu->max_slices; s++) {
331 		u32 subslice_mask_with_eus = subslice_mask;
332 
333 		for (ss = 0; ss < sseu->max_subslices; ss++) {
334 			if (sseu_get_eus(sseu, s, ss) == 0)
335 				subslice_mask_with_eus &= ~BIT(ss);
336 		}
337 
338 		/*
339 		 * Slice0 can have up to 3 subslices, but there are only 2 in
340 		 * slice1/2.
341 		 */
342 		intel_sseu_set_subslices(sseu, s, s == 0 ?
343 						  subslice_mask_with_eus :
344 						  subslice_mask_with_eus & 0x3);
345 	}
346 
347 	sseu->eu_total = compute_eu_total(sseu);
348 
349 	/*
350 	 * CNL is expected to always have a uniform distribution
351 	 * of EU across subslices with the exception that any one
352 	 * EU in any one subslice may be fused off for die
353 	 * recovery.
354 	 */
355 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
356 				DIV_ROUND_UP(sseu->eu_total,
357 					     intel_sseu_subslice_total(sseu)) :
358 				0;
359 
360 	/* No restrictions on Power Gating */
361 	sseu->has_slice_pg = 1;
362 	sseu->has_subslice_pg = 1;
363 	sseu->has_eu_pg = 1;
364 }
365 
366 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
367 {
368 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
369 	u32 fuse;
370 	u8 subslice_mask = 0;
371 
372 	fuse = I915_READ(CHV_FUSE_GT);
373 
374 	sseu->slice_mask = BIT(0);
375 	intel_sseu_set_info(sseu, 1, 2, 8);
376 
377 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
378 		u8 disabled_mask =
379 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
380 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
381 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
382 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
383 
384 		subslice_mask |= BIT(0);
385 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
386 	}
387 
388 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
389 		u8 disabled_mask =
390 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
391 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
392 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
393 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
394 
395 		subslice_mask |= BIT(1);
396 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
397 	}
398 
399 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
400 
401 	sseu->eu_total = compute_eu_total(sseu);
402 
403 	/*
404 	 * CHV expected to always have a uniform distribution of EU
405 	 * across subslices.
406 	*/
407 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
408 				sseu->eu_total /
409 					intel_sseu_subslice_total(sseu) :
410 				0;
411 	/*
412 	 * CHV supports subslice power gating on devices with more than
413 	 * one subslice, and supports EU power gating on devices with
414 	 * more than one EU pair per subslice.
415 	*/
416 	sseu->has_slice_pg = 0;
417 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
418 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
419 }
420 
421 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
422 {
423 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
424 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
425 	int s, ss;
426 	u32 fuse2, eu_disable, subslice_mask;
427 	const u8 eu_mask = 0xff;
428 
429 	fuse2 = I915_READ(GEN8_FUSE2);
430 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
431 
432 	/* BXT has a single slice and at most 3 subslices. */
433 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
434 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
435 
436 	/*
437 	 * The subslice disable field is global, i.e. it applies
438 	 * to each of the enabled slices.
439 	*/
440 	subslice_mask = (1 << sseu->max_subslices) - 1;
441 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
442 			   GEN9_F2_SS_DIS_SHIFT);
443 
444 	/*
445 	 * Iterate through enabled slices and subslices to
446 	 * count the total enabled EU.
447 	*/
448 	for (s = 0; s < sseu->max_slices; s++) {
449 		if (!(sseu->slice_mask & BIT(s)))
450 			/* skip disabled slice */
451 			continue;
452 
453 		intel_sseu_set_subslices(sseu, s, subslice_mask);
454 
455 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
456 		for (ss = 0; ss < sseu->max_subslices; ss++) {
457 			int eu_per_ss;
458 			u8 eu_disabled_mask;
459 
460 			if (!intel_sseu_has_subslice(sseu, s, ss))
461 				/* skip disabled subslice */
462 				continue;
463 
464 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
465 
466 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
467 
468 			eu_per_ss = sseu->max_eus_per_subslice -
469 				hweight8(eu_disabled_mask);
470 
471 			/*
472 			 * Record which subslice(s) has(have) 7 EUs. we
473 			 * can tune the hash used to spread work among
474 			 * subslices if they are unbalanced.
475 			 */
476 			if (eu_per_ss == 7)
477 				sseu->subslice_7eu[s] |= BIT(ss);
478 		}
479 	}
480 
481 	sseu->eu_total = compute_eu_total(sseu);
482 
483 	/*
484 	 * SKL is expected to always have a uniform distribution
485 	 * of EU across subslices with the exception that any one
486 	 * EU in any one subslice may be fused off for die
487 	 * recovery. BXT is expected to be perfectly uniform in EU
488 	 * distribution.
489 	*/
490 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
491 				DIV_ROUND_UP(sseu->eu_total,
492 					     intel_sseu_subslice_total(sseu)) :
493 				0;
494 	/*
495 	 * SKL+ supports slice power gating on devices with more than
496 	 * one slice, and supports EU power gating on devices with
497 	 * more than one EU pair per subslice. BXT+ supports subslice
498 	 * power gating on devices with more than one subslice, and
499 	 * supports EU power gating on devices with more than one EU
500 	 * pair per subslice.
501 	*/
502 	sseu->has_slice_pg =
503 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
504 	sseu->has_subslice_pg =
505 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
506 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
507 
508 	if (IS_GEN9_LP(dev_priv)) {
509 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
510 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
511 
512 		sseu->min_eu_in_pool = 0;
513 		if (info->has_pooled_eu) {
514 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
515 				sseu->min_eu_in_pool = 3;
516 			else if (IS_SS_DISABLED(1))
517 				sseu->min_eu_in_pool = 6;
518 			else
519 				sseu->min_eu_in_pool = 9;
520 		}
521 #undef IS_SS_DISABLED
522 	}
523 }
524 
525 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
526 {
527 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
528 	int s, ss;
529 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
530 
531 	fuse2 = I915_READ(GEN8_FUSE2);
532 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
533 	intel_sseu_set_info(sseu, 3, 3, 8);
534 
535 	/*
536 	 * The subslice disable field is global, i.e. it applies
537 	 * to each of the enabled slices.
538 	 */
539 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
540 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
541 			   GEN8_F2_SS_DIS_SHIFT);
542 
543 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
544 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
545 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
546 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
547 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
548 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
549 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
550 
551 	/*
552 	 * Iterate through enabled slices and subslices to
553 	 * count the total enabled EU.
554 	 */
555 	for (s = 0; s < sseu->max_slices; s++) {
556 		if (!(sseu->slice_mask & BIT(s)))
557 			/* skip disabled slice */
558 			continue;
559 
560 		intel_sseu_set_subslices(sseu, s, subslice_mask);
561 
562 		for (ss = 0; ss < sseu->max_subslices; ss++) {
563 			u8 eu_disabled_mask;
564 			u32 n_disabled;
565 
566 			if (!intel_sseu_has_subslice(sseu, s, ss))
567 				/* skip disabled subslice */
568 				continue;
569 
570 			eu_disabled_mask =
571 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
572 
573 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
574 
575 			n_disabled = hweight8(eu_disabled_mask);
576 
577 			/*
578 			 * Record which subslices have 7 EUs.
579 			 */
580 			if (sseu->max_eus_per_subslice - n_disabled == 7)
581 				sseu->subslice_7eu[s] |= 1 << ss;
582 		}
583 	}
584 
585 	sseu->eu_total = compute_eu_total(sseu);
586 
587 	/*
588 	 * BDW is expected to always have a uniform distribution of EU across
589 	 * subslices with the exception that any one EU in any one subslice may
590 	 * be fused off for die recovery.
591 	 */
592 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
593 				DIV_ROUND_UP(sseu->eu_total,
594 					     intel_sseu_subslice_total(sseu)) :
595 				0;
596 
597 	/*
598 	 * BDW supports slice power gating on devices with more than
599 	 * one slice.
600 	 */
601 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
602 	sseu->has_subslice_pg = 0;
603 	sseu->has_eu_pg = 0;
604 }
605 
606 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
607 {
608 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
609 	u32 fuse1;
610 	u8 subslice_mask = 0;
611 	int s, ss;
612 
613 	/*
614 	 * There isn't a register to tell us how many slices/subslices. We
615 	 * work off the PCI-ids here.
616 	 */
617 	switch (INTEL_INFO(dev_priv)->gt) {
618 	default:
619 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
620 		/* fall through */
621 	case 1:
622 		sseu->slice_mask = BIT(0);
623 		subslice_mask = BIT(0);
624 		break;
625 	case 2:
626 		sseu->slice_mask = BIT(0);
627 		subslice_mask = BIT(0) | BIT(1);
628 		break;
629 	case 3:
630 		sseu->slice_mask = BIT(0) | BIT(1);
631 		subslice_mask = BIT(0) | BIT(1);
632 		break;
633 	}
634 
635 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
636 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
637 	default:
638 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
639 			     HSW_F1_EU_DIS_SHIFT);
640 		/* fall through */
641 	case HSW_F1_EU_DIS_10EUS:
642 		sseu->eu_per_subslice = 10;
643 		break;
644 	case HSW_F1_EU_DIS_8EUS:
645 		sseu->eu_per_subslice = 8;
646 		break;
647 	case HSW_F1_EU_DIS_6EUS:
648 		sseu->eu_per_subslice = 6;
649 		break;
650 	}
651 
652 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
653 			    hweight8(subslice_mask),
654 			    sseu->eu_per_subslice);
655 
656 	for (s = 0; s < sseu->max_slices; s++) {
657 		intel_sseu_set_subslices(sseu, s, subslice_mask);
658 
659 		for (ss = 0; ss < sseu->max_subslices; ss++) {
660 			sseu_set_eus(sseu, s, ss,
661 				     (1UL << sseu->eu_per_subslice) - 1);
662 		}
663 	}
664 
665 	sseu->eu_total = compute_eu_total(sseu);
666 
667 	/* No powergating for you. */
668 	sseu->has_slice_pg = 0;
669 	sseu->has_subslice_pg = 0;
670 	sseu->has_eu_pg = 0;
671 }
672 
673 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
674 {
675 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
676 	u32 base_freq, frac_freq;
677 
678 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
679 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
680 	base_freq *= 1000;
681 
682 	frac_freq = ((ts_override &
683 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
684 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
685 	frac_freq = 1000 / (frac_freq + 1);
686 
687 	return base_freq + frac_freq;
688 }
689 
690 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
691 					u32 rpm_config_reg)
692 {
693 	u32 f19_2_mhz = 19200;
694 	u32 f24_mhz = 24000;
695 	u32 crystal_clock = (rpm_config_reg &
696 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
697 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
698 
699 	switch (crystal_clock) {
700 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
701 		return f19_2_mhz;
702 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
703 		return f24_mhz;
704 	default:
705 		MISSING_CASE(crystal_clock);
706 		return 0;
707 	}
708 }
709 
710 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
711 					u32 rpm_config_reg)
712 {
713 	u32 f19_2_mhz = 19200;
714 	u32 f24_mhz = 24000;
715 	u32 f25_mhz = 25000;
716 	u32 f38_4_mhz = 38400;
717 	u32 crystal_clock = (rpm_config_reg &
718 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
719 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
720 
721 	switch (crystal_clock) {
722 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
723 		return f24_mhz;
724 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
725 		return f19_2_mhz;
726 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
727 		return f38_4_mhz;
728 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
729 		return f25_mhz;
730 	default:
731 		MISSING_CASE(crystal_clock);
732 		return 0;
733 	}
734 }
735 
736 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
737 {
738 	u32 f12_5_mhz = 12500;
739 	u32 f19_2_mhz = 19200;
740 	u32 f24_mhz = 24000;
741 
742 	if (INTEL_GEN(dev_priv) <= 4) {
743 		/* PRMs say:
744 		 *
745 		 *     "The value in this register increments once every 16
746 		 *      hclks." (through the “Clocking Configuration”
747 		 *      (“CLKCFG”) MCHBAR register)
748 		 */
749 		return RUNTIME_INFO(dev_priv)->rawclk_freq / 16;
750 	} else if (INTEL_GEN(dev_priv) <= 8) {
751 		/* PRMs say:
752 		 *
753 		 *     "The PCU TSC counts 10ns increments; this timestamp
754 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
755 		 *      rolling over every 1.5 hours).
756 		 */
757 		return f12_5_mhz;
758 	} else if (INTEL_GEN(dev_priv) <= 9) {
759 		u32 ctc_reg = I915_READ(CTC_MODE);
760 		u32 freq = 0;
761 
762 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
763 			freq = read_reference_ts_freq(dev_priv);
764 		} else {
765 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
766 
767 			/* Now figure out how the command stream's timestamp
768 			 * register increments from this frequency (it might
769 			 * increment only every few clock cycle).
770 			 */
771 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
772 				      CTC_SHIFT_PARAMETER_SHIFT);
773 		}
774 
775 		return freq;
776 	} else if (INTEL_GEN(dev_priv) <= 12) {
777 		u32 ctc_reg = I915_READ(CTC_MODE);
778 		u32 freq = 0;
779 
780 		/* First figure out the reference frequency. There are 2 ways
781 		 * we can compute the frequency, either through the
782 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
783 		 * tells us which one we should use.
784 		 */
785 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
786 			freq = read_reference_ts_freq(dev_priv);
787 		} else {
788 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
789 
790 			if (INTEL_GEN(dev_priv) <= 10)
791 				freq = gen10_get_crystal_clock_freq(dev_priv,
792 								rpm_config_reg);
793 			else
794 				freq = gen11_get_crystal_clock_freq(dev_priv,
795 								rpm_config_reg);
796 
797 			/* Now figure out how the command stream's timestamp
798 			 * register increments from this frequency (it might
799 			 * increment only every few clock cycle).
800 			 */
801 			freq >>= 3 - ((rpm_config_reg &
802 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
803 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
804 		}
805 
806 		return freq;
807 	}
808 
809 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
810 	return 0;
811 }
812 
813 #undef INTEL_VGA_DEVICE
814 #define INTEL_VGA_DEVICE(id, info) (id)
815 
816 static const u16 subplatform_ult_ids[] = {
817 	INTEL_HSW_ULT_GT1_IDS(0),
818 	INTEL_HSW_ULT_GT2_IDS(0),
819 	INTEL_HSW_ULT_GT3_IDS(0),
820 	INTEL_BDW_ULT_GT1_IDS(0),
821 	INTEL_BDW_ULT_GT2_IDS(0),
822 	INTEL_BDW_ULT_GT3_IDS(0),
823 	INTEL_BDW_ULT_RSVD_IDS(0),
824 	INTEL_SKL_ULT_GT1_IDS(0),
825 	INTEL_SKL_ULT_GT2_IDS(0),
826 	INTEL_SKL_ULT_GT3_IDS(0),
827 	INTEL_KBL_ULT_GT1_IDS(0),
828 	INTEL_KBL_ULT_GT2_IDS(0),
829 	INTEL_KBL_ULT_GT3_IDS(0),
830 	INTEL_CFL_U_GT2_IDS(0),
831 	INTEL_CFL_U_GT3_IDS(0),
832 	INTEL_WHL_U_GT1_IDS(0),
833 	INTEL_WHL_U_GT2_IDS(0),
834 	INTEL_WHL_U_GT3_IDS(0),
835 	INTEL_CML_U_GT1_IDS(0),
836 	INTEL_CML_U_GT2_IDS(0),
837 };
838 
839 static const u16 subplatform_ulx_ids[] = {
840 	INTEL_HSW_ULX_GT1_IDS(0),
841 	INTEL_HSW_ULX_GT2_IDS(0),
842 	INTEL_BDW_ULX_GT1_IDS(0),
843 	INTEL_BDW_ULX_GT2_IDS(0),
844 	INTEL_BDW_ULX_GT3_IDS(0),
845 	INTEL_BDW_ULX_RSVD_IDS(0),
846 	INTEL_SKL_ULX_GT1_IDS(0),
847 	INTEL_SKL_ULX_GT2_IDS(0),
848 	INTEL_KBL_ULX_GT1_IDS(0),
849 	INTEL_KBL_ULX_GT2_IDS(0),
850 	INTEL_AML_KBL_GT2_IDS(0),
851 	INTEL_AML_CFL_GT2_IDS(0),
852 };
853 
854 static const u16 subplatform_portf_ids[] = {
855 	INTEL_CNL_PORT_F_IDS(0),
856 	INTEL_ICL_PORT_F_IDS(0),
857 };
858 
859 static bool find_devid(u16 id, const u16 *p, unsigned int num)
860 {
861 	for (; num; num--, p++) {
862 		if (*p == id)
863 			return true;
864 	}
865 
866 	return false;
867 }
868 
869 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
870 {
871 	const struct intel_device_info *info = INTEL_INFO(i915);
872 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
873 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
874 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
875 	u16 devid = INTEL_DEVID(i915);
876 	u32 mask = 0;
877 
878 	/* Make sure IS_<platform> checks are working. */
879 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
880 
881 	/* Find and mark subplatform bits based on the PCI device id. */
882 	if (find_devid(devid, subplatform_ult_ids,
883 		       ARRAY_SIZE(subplatform_ult_ids))) {
884 		mask = BIT(INTEL_SUBPLATFORM_ULT);
885 	} else if (find_devid(devid, subplatform_ulx_ids,
886 			      ARRAY_SIZE(subplatform_ulx_ids))) {
887 		mask = BIT(INTEL_SUBPLATFORM_ULX);
888 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
889 			/* ULX machines are also considered ULT. */
890 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
891 		}
892 	} else if (find_devid(devid, subplatform_portf_ids,
893 			      ARRAY_SIZE(subplatform_portf_ids))) {
894 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
895 	}
896 
897 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
898 
899 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
900 }
901 
902 /**
903  * intel_device_info_runtime_init - initialize runtime info
904  * @dev_priv: the i915 device
905  *
906  * Determine various intel_device_info fields at runtime.
907  *
908  * Use it when either:
909  *   - it's judged too laborious to fill n static structures with the limit
910  *     when a simple if statement does the job,
911  *   - run-time checks (eg read fuse/strap registers) are needed.
912  *
913  * This function needs to be called:
914  *   - after the MMIO has been setup as we are reading registers,
915  *   - after the PCH has been detected,
916  *   - before the first usage of the fields it can tweak.
917  */
918 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
919 {
920 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
921 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
922 	enum pipe pipe;
923 
924 	if (INTEL_GEN(dev_priv) >= 10) {
925 		for_each_pipe(dev_priv, pipe)
926 			runtime->num_scalers[pipe] = 2;
927 	} else if (IS_GEN(dev_priv, 9)) {
928 		runtime->num_scalers[PIPE_A] = 2;
929 		runtime->num_scalers[PIPE_B] = 2;
930 		runtime->num_scalers[PIPE_C] = 1;
931 	}
932 
933 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
934 
935 	if (INTEL_GEN(dev_priv) >= 11)
936 		for_each_pipe(dev_priv, pipe)
937 			runtime->num_sprites[pipe] = 6;
938 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
939 		for_each_pipe(dev_priv, pipe)
940 			runtime->num_sprites[pipe] = 3;
941 	else if (IS_BROXTON(dev_priv)) {
942 		/*
943 		 * Skylake and Broxton currently don't expose the topmost plane as its
944 		 * use is exclusive with the legacy cursor and we only want to expose
945 		 * one of those, not both. Until we can safely expose the topmost plane
946 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
947 		 * we don't expose the topmost plane at all to prevent ABI breakage
948 		 * down the line.
949 		 */
950 
951 		runtime->num_sprites[PIPE_A] = 2;
952 		runtime->num_sprites[PIPE_B] = 2;
953 		runtime->num_sprites[PIPE_C] = 1;
954 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
955 		for_each_pipe(dev_priv, pipe)
956 			runtime->num_sprites[pipe] = 2;
957 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
958 		for_each_pipe(dev_priv, pipe)
959 			runtime->num_sprites[pipe] = 1;
960 	}
961 
962 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
963 	    HAS_PCH_SPLIT(dev_priv)) {
964 		u32 fuse_strap = I915_READ(FUSE_STRAP);
965 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
966 
967 		/*
968 		 * SFUSE_STRAP is supposed to have a bit signalling the display
969 		 * is fused off. Unfortunately it seems that, at least in
970 		 * certain cases, fused off display means that PCH display
971 		 * reads don't land anywhere. In that case, we read 0s.
972 		 *
973 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
974 		 * should be set when taking over after the firmware.
975 		 */
976 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
977 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
978 		    (HAS_PCH_CPT(dev_priv) &&
979 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
980 			drm_info(&dev_priv->drm,
981 				 "Display fused off, disabling\n");
982 			info->pipe_mask = 0;
983 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
984 			drm_info(&dev_priv->drm, "PipeC fused off\n");
985 			info->pipe_mask &= ~BIT(PIPE_C);
986 		}
987 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
988 		u32 dfsm = I915_READ(SKL_DFSM);
989 		u8 enabled_mask = info->pipe_mask;
990 
991 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
992 			enabled_mask &= ~BIT(PIPE_A);
993 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
994 			enabled_mask &= ~BIT(PIPE_B);
995 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
996 			enabled_mask &= ~BIT(PIPE_C);
997 		if (INTEL_GEN(dev_priv) >= 12 &&
998 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
999 			enabled_mask &= ~BIT(PIPE_D);
1000 
1001 		/*
1002 		 * At least one pipe should be enabled and if there are
1003 		 * disabled pipes, they should be the last ones, with no holes
1004 		 * in the mask.
1005 		 */
1006 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
1007 			drm_err(&dev_priv->drm,
1008 				"invalid pipe fuse configuration: enabled_mask=0x%x\n",
1009 				enabled_mask);
1010 		else
1011 			info->pipe_mask = enabled_mask;
1012 
1013 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1014 			info->display.has_hdcp = 0;
1015 
1016 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1017 			info->display.has_fbc = 0;
1018 
1019 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1020 			info->display.has_csr = 0;
1021 
1022 		if (INTEL_GEN(dev_priv) >= 10 &&
1023 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1024 			info->display.has_dsc = 0;
1025 	}
1026 
1027 	/* Initialize slice/subslice/EU info */
1028 	if (IS_HASWELL(dev_priv))
1029 		hsw_sseu_info_init(dev_priv);
1030 	else if (IS_CHERRYVIEW(dev_priv))
1031 		cherryview_sseu_info_init(dev_priv);
1032 	else if (IS_BROADWELL(dev_priv))
1033 		bdw_sseu_info_init(dev_priv);
1034 	else if (IS_GEN(dev_priv, 9))
1035 		gen9_sseu_info_init(dev_priv);
1036 	else if (IS_GEN(dev_priv, 10))
1037 		gen10_sseu_info_init(dev_priv);
1038 	else if (IS_GEN(dev_priv, 11))
1039 		gen11_sseu_info_init(dev_priv);
1040 	else if (INTEL_GEN(dev_priv) >= 12)
1041 		gen12_sseu_info_init(dev_priv);
1042 
1043 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1044 		drm_info(&dev_priv->drm,
1045 			 "Disabling ppGTT for VT-d support\n");
1046 		info->ppgtt_type = INTEL_PPGTT_NONE;
1047 	}
1048 
1049 	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
1050 	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
1051 
1052 	/* Initialize command stream timestamp frequency */
1053 	runtime->cs_timestamp_frequency_khz =
1054 		read_timestamp_frequency(dev_priv);
1055 	if (runtime->cs_timestamp_frequency_khz) {
1056 		runtime->cs_timestamp_period_ns =
1057 			div_u64(1e6, runtime->cs_timestamp_frequency_khz);
1058 		drm_dbg(&dev_priv->drm,
1059 			"CS timestamp wraparound in %lldms\n",
1060 			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
1061 					    S32_MAX),
1062 				USEC_PER_SEC));
1063 	}
1064 }
1065 
1066 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1067 			     struct drm_printer *p)
1068 {
1069 	drm_printf(p, "Has logical contexts? %s\n",
1070 		   yesno(caps->has_logical_contexts));
1071 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1072 }
1073 
1074 /*
1075  * Determine which engines are fused off in our particular hardware. Since the
1076  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1077  * this point (but later we need to prune the forcewake domains for engines that
1078  * are indeed fused off).
1079  */
1080 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1081 {
1082 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1083 	unsigned int logical_vdbox = 0;
1084 	unsigned int i;
1085 	u32 media_fuse;
1086 	u16 vdbox_mask;
1087 	u16 vebox_mask;
1088 
1089 	if (INTEL_GEN(dev_priv) < 11)
1090 		return;
1091 
1092 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1093 
1094 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1095 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1096 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1097 
1098 	for (i = 0; i < I915_MAX_VCS; i++) {
1099 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1100 			vdbox_mask &= ~BIT(i);
1101 			continue;
1102 		}
1103 
1104 		if (!(BIT(i) & vdbox_mask)) {
1105 			info->engine_mask &= ~BIT(_VCS(i));
1106 			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1107 			continue;
1108 		}
1109 
1110 		/*
1111 		 * In Gen11, only even numbered logical VDBOXes are
1112 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1113 		 * In TGL each VDBOX has access to an SFC.
1114 		 */
1115 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1116 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1117 	}
1118 	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
1119 		vdbox_mask, VDBOX_MASK(dev_priv));
1120 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1121 
1122 	for (i = 0; i < I915_MAX_VECS; i++) {
1123 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1124 			vebox_mask &= ~BIT(i);
1125 			continue;
1126 		}
1127 
1128 		if (!(BIT(i) & vebox_mask)) {
1129 			info->engine_mask &= ~BIT(_VECS(i));
1130 			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1131 		}
1132 	}
1133 	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
1134 		vebox_mask, VEBOX_MASK(dev_priv));
1135 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1136 }
1137