1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29 
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 	PLATFORM_NAME(I830),
33 	PLATFORM_NAME(I845G),
34 	PLATFORM_NAME(I85X),
35 	PLATFORM_NAME(I865G),
36 	PLATFORM_NAME(I915G),
37 	PLATFORM_NAME(I915GM),
38 	PLATFORM_NAME(I945G),
39 	PLATFORM_NAME(I945GM),
40 	PLATFORM_NAME(G33),
41 	PLATFORM_NAME(PINEVIEW),
42 	PLATFORM_NAME(I965G),
43 	PLATFORM_NAME(I965GM),
44 	PLATFORM_NAME(G45),
45 	PLATFORM_NAME(GM45),
46 	PLATFORM_NAME(IRONLAKE),
47 	PLATFORM_NAME(SANDYBRIDGE),
48 	PLATFORM_NAME(IVYBRIDGE),
49 	PLATFORM_NAME(VALLEYVIEW),
50 	PLATFORM_NAME(HASWELL),
51 	PLATFORM_NAME(BROADWELL),
52 	PLATFORM_NAME(CHERRYVIEW),
53 	PLATFORM_NAME(SKYLAKE),
54 	PLATFORM_NAME(BROXTON),
55 	PLATFORM_NAME(KABYLAKE),
56 	PLATFORM_NAME(GEMINILAKE),
57 	PLATFORM_NAME(COFFEELAKE),
58 	PLATFORM_NAME(CANNONLAKE),
59 	PLATFORM_NAME(ICELAKE),
60 };
61 #undef PLATFORM_NAME
62 
63 const char *intel_platform_name(enum intel_platform platform)
64 {
65 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
66 
67 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
68 			 platform_names[platform] == NULL))
69 		return "<unknown>";
70 
71 	return platform_names[platform];
72 }
73 
74 void intel_device_info_dump_flags(const struct intel_device_info *info,
75 				  struct drm_printer *p)
76 {
77 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
78 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
79 #undef PRINT_FLAG
80 
81 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
82 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84 }
85 
86 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
87 {
88 	int s;
89 
90 	drm_printf(p, "slice total: %u, mask=%04x\n",
91 		   hweight8(sseu->slice_mask), sseu->slice_mask);
92 	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
93 	for (s = 0; s < sseu->max_slices; s++) {
94 		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
95 			   s, hweight8(sseu->subslice_mask[s]),
96 			   sseu->subslice_mask[s]);
97 	}
98 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
99 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
100 	drm_printf(p, "has slice power gating: %s\n",
101 		   yesno(sseu->has_slice_pg));
102 	drm_printf(p, "has subslice power gating: %s\n",
103 		   yesno(sseu->has_subslice_pg));
104 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
105 }
106 
107 void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
108 				    struct drm_printer *p)
109 {
110 	sseu_dump(&info->sseu, p);
111 
112 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
113 		   info->cs_timestamp_frequency_khz);
114 }
115 
116 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
117 				     struct drm_printer *p)
118 {
119 	int s, ss;
120 
121 	if (sseu->max_slices == 0) {
122 		drm_printf(p, "Unavailable\n");
123 		return;
124 	}
125 
126 	for (s = 0; s < sseu->max_slices; s++) {
127 		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
128 			   s, hweight8(sseu->subslice_mask[s]),
129 			   sseu->subslice_mask[s]);
130 
131 		for (ss = 0; ss < sseu->max_subslices; ss++) {
132 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
133 
134 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
135 				   ss, hweight16(enabled_eus), enabled_eus);
136 		}
137 	}
138 }
139 
140 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
141 {
142 	u16 i, total = 0;
143 
144 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
145 		total += hweight8(sseu->eu_mask[i]);
146 
147 	return total;
148 }
149 
150 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
151 {
152 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
153 	u8 s_en;
154 	u32 ss_en, ss_en_mask;
155 	u8 eu_en;
156 	int s;
157 
158 	sseu->max_slices = 1;
159 	sseu->max_subslices = 8;
160 	sseu->max_eus_per_subslice = 8;
161 
162 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
163 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
164 	ss_en_mask = BIT(sseu->max_subslices) - 1;
165 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
166 
167 	for (s = 0; s < sseu->max_slices; s++) {
168 		if (s_en & BIT(s)) {
169 			int ss_idx = sseu->max_subslices * s;
170 			int ss;
171 
172 			sseu->slice_mask |= BIT(s);
173 			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
174 			for (ss = 0; ss < sseu->max_subslices; ss++) {
175 				if (sseu->subslice_mask[s] & BIT(ss))
176 					sseu_set_eus(sseu, s, ss, eu_en);
177 			}
178 		}
179 	}
180 	sseu->eu_per_subslice = hweight8(eu_en);
181 	sseu->eu_total = compute_eu_total(sseu);
182 
183 	/* ICL has no power gating restrictions. */
184 	sseu->has_slice_pg = 1;
185 	sseu->has_subslice_pg = 1;
186 	sseu->has_eu_pg = 1;
187 }
188 
189 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
190 {
191 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
192 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
193 	int s, ss;
194 	const int eu_mask = 0xff;
195 	u32 subslice_mask, eu_en;
196 
197 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
198 			    GEN10_F2_S_ENA_SHIFT;
199 	sseu->max_slices = 6;
200 	sseu->max_subslices = 4;
201 	sseu->max_eus_per_subslice = 8;
202 
203 	subslice_mask = (1 << 4) - 1;
204 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
205 			   GEN10_F2_SS_DIS_SHIFT);
206 
207 	/*
208 	 * Slice0 can have up to 3 subslices, but there are only 2 in
209 	 * slice1/2.
210 	 */
211 	sseu->subslice_mask[0] = subslice_mask;
212 	for (s = 1; s < sseu->max_slices; s++)
213 		sseu->subslice_mask[s] = subslice_mask & 0x3;
214 
215 	/* Slice0 */
216 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
217 	for (ss = 0; ss < sseu->max_subslices; ss++)
218 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
219 	/* Slice1 */
220 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
221 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
222 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
223 	/* Slice2 */
224 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
225 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
226 	/* Slice3 */
227 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
228 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
229 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
230 	/* Slice4 */
231 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
232 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
233 	/* Slice5 */
234 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
235 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
236 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
237 
238 	/* Do a second pass where we mark the subslices disabled if all their
239 	 * eus are off.
240 	 */
241 	for (s = 0; s < sseu->max_slices; s++) {
242 		for (ss = 0; ss < sseu->max_subslices; ss++) {
243 			if (sseu_get_eus(sseu, s, ss) == 0)
244 				sseu->subslice_mask[s] &= ~BIT(ss);
245 		}
246 	}
247 
248 	sseu->eu_total = compute_eu_total(sseu);
249 
250 	/*
251 	 * CNL is expected to always have a uniform distribution
252 	 * of EU across subslices with the exception that any one
253 	 * EU in any one subslice may be fused off for die
254 	 * recovery.
255 	 */
256 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
257 				DIV_ROUND_UP(sseu->eu_total,
258 					     sseu_subslice_total(sseu)) : 0;
259 
260 	/* No restrictions on Power Gating */
261 	sseu->has_slice_pg = 1;
262 	sseu->has_subslice_pg = 1;
263 	sseu->has_eu_pg = 1;
264 }
265 
266 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
267 {
268 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
269 	u32 fuse;
270 
271 	fuse = I915_READ(CHV_FUSE_GT);
272 
273 	sseu->slice_mask = BIT(0);
274 	sseu->max_slices = 1;
275 	sseu->max_subslices = 2;
276 	sseu->max_eus_per_subslice = 8;
277 
278 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
279 		u8 disabled_mask =
280 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
281 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
282 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
283 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
284 
285 		sseu->subslice_mask[0] |= BIT(0);
286 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
287 	}
288 
289 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
290 		u8 disabled_mask =
291 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
292 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
293 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
294 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
295 
296 		sseu->subslice_mask[0] |= BIT(1);
297 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
298 	}
299 
300 	sseu->eu_total = compute_eu_total(sseu);
301 
302 	/*
303 	 * CHV expected to always have a uniform distribution of EU
304 	 * across subslices.
305 	*/
306 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
307 				sseu->eu_total / sseu_subslice_total(sseu) :
308 				0;
309 	/*
310 	 * CHV supports subslice power gating on devices with more than
311 	 * one subslice, and supports EU power gating on devices with
312 	 * more than one EU pair per subslice.
313 	*/
314 	sseu->has_slice_pg = 0;
315 	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
316 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
317 }
318 
319 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
320 {
321 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
322 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
323 	int s, ss;
324 	u32 fuse2, eu_disable, subslice_mask;
325 	const u8 eu_mask = 0xff;
326 
327 	fuse2 = I915_READ(GEN8_FUSE2);
328 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
329 
330 	/* BXT has a single slice and at most 3 subslices. */
331 	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
332 	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
333 	sseu->max_eus_per_subslice = 8;
334 
335 	/*
336 	 * The subslice disable field is global, i.e. it applies
337 	 * to each of the enabled slices.
338 	*/
339 	subslice_mask = (1 << sseu->max_subslices) - 1;
340 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
341 			   GEN9_F2_SS_DIS_SHIFT);
342 
343 	/*
344 	 * Iterate through enabled slices and subslices to
345 	 * count the total enabled EU.
346 	*/
347 	for (s = 0; s < sseu->max_slices; s++) {
348 		if (!(sseu->slice_mask & BIT(s)))
349 			/* skip disabled slice */
350 			continue;
351 
352 		sseu->subslice_mask[s] = subslice_mask;
353 
354 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
355 		for (ss = 0; ss < sseu->max_subslices; ss++) {
356 			int eu_per_ss;
357 			u8 eu_disabled_mask;
358 
359 			if (!(sseu->subslice_mask[s] & BIT(ss)))
360 				/* skip disabled subslice */
361 				continue;
362 
363 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
364 
365 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
366 
367 			eu_per_ss = sseu->max_eus_per_subslice -
368 				hweight8(eu_disabled_mask);
369 
370 			/*
371 			 * Record which subslice(s) has(have) 7 EUs. we
372 			 * can tune the hash used to spread work among
373 			 * subslices if they are unbalanced.
374 			 */
375 			if (eu_per_ss == 7)
376 				sseu->subslice_7eu[s] |= BIT(ss);
377 		}
378 	}
379 
380 	sseu->eu_total = compute_eu_total(sseu);
381 
382 	/*
383 	 * SKL is expected to always have a uniform distribution
384 	 * of EU across subslices with the exception that any one
385 	 * EU in any one subslice may be fused off for die
386 	 * recovery. BXT is expected to be perfectly uniform in EU
387 	 * distribution.
388 	*/
389 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
390 				DIV_ROUND_UP(sseu->eu_total,
391 					     sseu_subslice_total(sseu)) : 0;
392 	/*
393 	 * SKL+ supports slice power gating on devices with more than
394 	 * one slice, and supports EU power gating on devices with
395 	 * more than one EU pair per subslice. BXT+ supports subslice
396 	 * power gating on devices with more than one subslice, and
397 	 * supports EU power gating on devices with more than one EU
398 	 * pair per subslice.
399 	*/
400 	sseu->has_slice_pg =
401 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
402 	sseu->has_subslice_pg =
403 		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
404 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
405 
406 	if (IS_GEN9_LP(dev_priv)) {
407 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
408 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
409 
410 		sseu->min_eu_in_pool = 0;
411 		if (info->has_pooled_eu) {
412 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
413 				sseu->min_eu_in_pool = 3;
414 			else if (IS_SS_DISABLED(1))
415 				sseu->min_eu_in_pool = 6;
416 			else
417 				sseu->min_eu_in_pool = 9;
418 		}
419 #undef IS_SS_DISABLED
420 	}
421 }
422 
423 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
424 {
425 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
426 	int s, ss;
427 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
428 
429 	fuse2 = I915_READ(GEN8_FUSE2);
430 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
431 	sseu->max_slices = 3;
432 	sseu->max_subslices = 3;
433 	sseu->max_eus_per_subslice = 8;
434 
435 	/*
436 	 * The subslice disable field is global, i.e. it applies
437 	 * to each of the enabled slices.
438 	 */
439 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
440 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
441 			   GEN8_F2_SS_DIS_SHIFT);
442 
443 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
444 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
445 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
446 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
447 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
448 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
449 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
450 
451 	/*
452 	 * Iterate through enabled slices and subslices to
453 	 * count the total enabled EU.
454 	 */
455 	for (s = 0; s < sseu->max_slices; s++) {
456 		if (!(sseu->slice_mask & BIT(s)))
457 			/* skip disabled slice */
458 			continue;
459 
460 		sseu->subslice_mask[s] = subslice_mask;
461 
462 		for (ss = 0; ss < sseu->max_subslices; ss++) {
463 			u8 eu_disabled_mask;
464 			u32 n_disabled;
465 
466 			if (!(sseu->subslice_mask[s] & BIT(ss)))
467 				/* skip disabled subslice */
468 				continue;
469 
470 			eu_disabled_mask =
471 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
472 
473 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
474 
475 			n_disabled = hweight8(eu_disabled_mask);
476 
477 			/*
478 			 * Record which subslices have 7 EUs.
479 			 */
480 			if (sseu->max_eus_per_subslice - n_disabled == 7)
481 				sseu->subslice_7eu[s] |= 1 << ss;
482 		}
483 	}
484 
485 	sseu->eu_total = compute_eu_total(sseu);
486 
487 	/*
488 	 * BDW is expected to always have a uniform distribution of EU across
489 	 * subslices with the exception that any one EU in any one subslice may
490 	 * be fused off for die recovery.
491 	 */
492 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
493 				DIV_ROUND_UP(sseu->eu_total,
494 					     sseu_subslice_total(sseu)) : 0;
495 
496 	/*
497 	 * BDW supports slice power gating on devices with more than
498 	 * one slice.
499 	 */
500 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
501 	sseu->has_subslice_pg = 0;
502 	sseu->has_eu_pg = 0;
503 }
504 
505 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
506 {
507 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
508 	u32 fuse1;
509 	int s, ss;
510 
511 	/*
512 	 * There isn't a register to tell us how many slices/subslices. We
513 	 * work off the PCI-ids here.
514 	 */
515 	switch (INTEL_INFO(dev_priv)->gt) {
516 	default:
517 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
518 		/* fall through */
519 	case 1:
520 		sseu->slice_mask = BIT(0);
521 		sseu->subslice_mask[0] = BIT(0);
522 		break;
523 	case 2:
524 		sseu->slice_mask = BIT(0);
525 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
526 		break;
527 	case 3:
528 		sseu->slice_mask = BIT(0) | BIT(1);
529 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
530 		sseu->subslice_mask[1] = BIT(0) | BIT(1);
531 		break;
532 	}
533 
534 	sseu->max_slices = hweight8(sseu->slice_mask);
535 	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
536 
537 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
538 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
539 	default:
540 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
541 			     HSW_F1_EU_DIS_SHIFT);
542 		/* fall through */
543 	case HSW_F1_EU_DIS_10EUS:
544 		sseu->eu_per_subslice = 10;
545 		break;
546 	case HSW_F1_EU_DIS_8EUS:
547 		sseu->eu_per_subslice = 8;
548 		break;
549 	case HSW_F1_EU_DIS_6EUS:
550 		sseu->eu_per_subslice = 6;
551 		break;
552 	}
553 	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
554 
555 	for (s = 0; s < sseu->max_slices; s++) {
556 		for (ss = 0; ss < sseu->max_subslices; ss++) {
557 			sseu_set_eus(sseu, s, ss,
558 				     (1UL << sseu->eu_per_subslice) - 1);
559 		}
560 	}
561 
562 	sseu->eu_total = compute_eu_total(sseu);
563 
564 	/* No powergating for you. */
565 	sseu->has_slice_pg = 0;
566 	sseu->has_subslice_pg = 0;
567 	sseu->has_eu_pg = 0;
568 }
569 
570 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
571 {
572 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
573 	u32 base_freq, frac_freq;
574 
575 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
576 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
577 	base_freq *= 1000;
578 
579 	frac_freq = ((ts_override &
580 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
581 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
582 	frac_freq = 1000 / (frac_freq + 1);
583 
584 	return base_freq + frac_freq;
585 }
586 
587 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
588 					u32 rpm_config_reg)
589 {
590 	u32 f19_2_mhz = 19200;
591 	u32 f24_mhz = 24000;
592 	u32 crystal_clock = (rpm_config_reg &
593 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
594 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
595 
596 	switch (crystal_clock) {
597 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
598 		return f19_2_mhz;
599 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
600 		return f24_mhz;
601 	default:
602 		MISSING_CASE(crystal_clock);
603 		return 0;
604 	}
605 }
606 
607 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
608 					u32 rpm_config_reg)
609 {
610 	u32 f19_2_mhz = 19200;
611 	u32 f24_mhz = 24000;
612 	u32 f25_mhz = 25000;
613 	u32 f38_4_mhz = 38400;
614 	u32 crystal_clock = (rpm_config_reg &
615 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
616 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
617 
618 	switch (crystal_clock) {
619 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
620 		return f24_mhz;
621 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
622 		return f19_2_mhz;
623 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
624 		return f38_4_mhz;
625 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
626 		return f25_mhz;
627 	default:
628 		MISSING_CASE(crystal_clock);
629 		return 0;
630 	}
631 }
632 
633 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
634 {
635 	u32 f12_5_mhz = 12500;
636 	u32 f19_2_mhz = 19200;
637 	u32 f24_mhz = 24000;
638 
639 	if (INTEL_GEN(dev_priv) <= 4) {
640 		/* PRMs say:
641 		 *
642 		 *     "The value in this register increments once every 16
643 		 *      hclks." (through the “Clocking Configuration”
644 		 *      (“CLKCFG”) MCHBAR register)
645 		 */
646 		return dev_priv->rawclk_freq / 16;
647 	} else if (INTEL_GEN(dev_priv) <= 8) {
648 		/* PRMs say:
649 		 *
650 		 *     "The PCU TSC counts 10ns increments; this timestamp
651 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
652 		 *      rolling over every 1.5 hours).
653 		 */
654 		return f12_5_mhz;
655 	} else if (INTEL_GEN(dev_priv) <= 9) {
656 		u32 ctc_reg = I915_READ(CTC_MODE);
657 		u32 freq = 0;
658 
659 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
660 			freq = read_reference_ts_freq(dev_priv);
661 		} else {
662 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
663 
664 			/* Now figure out how the command stream's timestamp
665 			 * register increments from this frequency (it might
666 			 * increment only every few clock cycle).
667 			 */
668 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
669 				      CTC_SHIFT_PARAMETER_SHIFT);
670 		}
671 
672 		return freq;
673 	} else if (INTEL_GEN(dev_priv) <= 11) {
674 		u32 ctc_reg = I915_READ(CTC_MODE);
675 		u32 freq = 0;
676 
677 		/* First figure out the reference frequency. There are 2 ways
678 		 * we can compute the frequency, either through the
679 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
680 		 * tells us which one we should use.
681 		 */
682 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
683 			freq = read_reference_ts_freq(dev_priv);
684 		} else {
685 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
686 
687 			if (INTEL_GEN(dev_priv) <= 10)
688 				freq = gen10_get_crystal_clock_freq(dev_priv,
689 								rpm_config_reg);
690 			else
691 				freq = gen11_get_crystal_clock_freq(dev_priv,
692 								rpm_config_reg);
693 
694 			/* Now figure out how the command stream's timestamp
695 			 * register increments from this frequency (it might
696 			 * increment only every few clock cycle).
697 			 */
698 			freq >>= 3 - ((rpm_config_reg &
699 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
700 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
701 		}
702 
703 		return freq;
704 	}
705 
706 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
707 	return 0;
708 }
709 
710 /**
711  * intel_device_info_runtime_init - initialize runtime info
712  * @dev_priv: the i915 device
713  *
714  * Determine various intel_device_info fields at runtime.
715  *
716  * Use it when either:
717  *   - it's judged too laborious to fill n static structures with the limit
718  *     when a simple if statement does the job,
719  *   - run-time checks (eg read fuse/strap registers) are needed.
720  *
721  * This function needs to be called:
722  *   - after the MMIO has been setup as we are reading registers,
723  *   - after the PCH has been detected,
724  *   - before the first usage of the fields it can tweak.
725  */
726 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
727 {
728 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
729 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
730 	enum pipe pipe;
731 
732 	if (INTEL_GEN(dev_priv) >= 10) {
733 		for_each_pipe(dev_priv, pipe)
734 			runtime->num_scalers[pipe] = 2;
735 	} else if (IS_GEN(dev_priv, 9)) {
736 		runtime->num_scalers[PIPE_A] = 2;
737 		runtime->num_scalers[PIPE_B] = 2;
738 		runtime->num_scalers[PIPE_C] = 1;
739 	}
740 
741 	BUILD_BUG_ON(I915_NUM_ENGINES > BITS_PER_TYPE(intel_ring_mask_t));
742 
743 	if (IS_GEN(dev_priv, 11))
744 		for_each_pipe(dev_priv, pipe)
745 			runtime->num_sprites[pipe] = 6;
746 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
747 		for_each_pipe(dev_priv, pipe)
748 			runtime->num_sprites[pipe] = 3;
749 	else if (IS_BROXTON(dev_priv)) {
750 		/*
751 		 * Skylake and Broxton currently don't expose the topmost plane as its
752 		 * use is exclusive with the legacy cursor and we only want to expose
753 		 * one of those, not both. Until we can safely expose the topmost plane
754 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
755 		 * we don't expose the topmost plane at all to prevent ABI breakage
756 		 * down the line.
757 		 */
758 
759 		runtime->num_sprites[PIPE_A] = 2;
760 		runtime->num_sprites[PIPE_B] = 2;
761 		runtime->num_sprites[PIPE_C] = 1;
762 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
763 		for_each_pipe(dev_priv, pipe)
764 			runtime->num_sprites[pipe] = 2;
765 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
766 		for_each_pipe(dev_priv, pipe)
767 			runtime->num_sprites[pipe] = 1;
768 	}
769 
770 	if (i915_modparams.disable_display) {
771 		DRM_INFO("Display disabled (module parameter)\n");
772 		info->num_pipes = 0;
773 	} else if (HAS_DISPLAY(dev_priv) &&
774 		   (IS_GEN_RANGE(dev_priv, 7, 8)) &&
775 		   HAS_PCH_SPLIT(dev_priv)) {
776 		u32 fuse_strap = I915_READ(FUSE_STRAP);
777 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
778 
779 		/*
780 		 * SFUSE_STRAP is supposed to have a bit signalling the display
781 		 * is fused off. Unfortunately it seems that, at least in
782 		 * certain cases, fused off display means that PCH display
783 		 * reads don't land anywhere. In that case, we read 0s.
784 		 *
785 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
786 		 * should be set when taking over after the firmware.
787 		 */
788 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
789 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
790 		    (HAS_PCH_CPT(dev_priv) &&
791 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
792 			DRM_INFO("Display fused off, disabling\n");
793 			info->num_pipes = 0;
794 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
795 			DRM_INFO("PipeC fused off\n");
796 			info->num_pipes -= 1;
797 		}
798 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
799 		u32 dfsm = I915_READ(SKL_DFSM);
800 		u8 disabled_mask = 0;
801 		bool invalid;
802 		int num_bits;
803 
804 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
805 			disabled_mask |= BIT(PIPE_A);
806 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
807 			disabled_mask |= BIT(PIPE_B);
808 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
809 			disabled_mask |= BIT(PIPE_C);
810 
811 		num_bits = hweight8(disabled_mask);
812 
813 		switch (disabled_mask) {
814 		case BIT(PIPE_A):
815 		case BIT(PIPE_B):
816 		case BIT(PIPE_A) | BIT(PIPE_B):
817 		case BIT(PIPE_A) | BIT(PIPE_C):
818 			invalid = true;
819 			break;
820 		default:
821 			invalid = false;
822 		}
823 
824 		if (num_bits > info->num_pipes || invalid)
825 			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
826 				  disabled_mask);
827 		else
828 			info->num_pipes -= num_bits;
829 	}
830 
831 	/* Initialize slice/subslice/EU info */
832 	if (IS_HASWELL(dev_priv))
833 		haswell_sseu_info_init(dev_priv);
834 	else if (IS_CHERRYVIEW(dev_priv))
835 		cherryview_sseu_info_init(dev_priv);
836 	else if (IS_BROADWELL(dev_priv))
837 		broadwell_sseu_info_init(dev_priv);
838 	else if (IS_GEN(dev_priv, 9))
839 		gen9_sseu_info_init(dev_priv);
840 	else if (IS_GEN(dev_priv, 10))
841 		gen10_sseu_info_init(dev_priv);
842 	else if (INTEL_GEN(dev_priv) >= 11)
843 		gen11_sseu_info_init(dev_priv);
844 
845 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
846 		DRM_INFO("Disabling ppGTT for VT-d support\n");
847 		info->ppgtt = INTEL_PPGTT_NONE;
848 	}
849 
850 	/* Initialize command stream timestamp frequency */
851 	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
852 }
853 
854 void intel_driver_caps_print(const struct intel_driver_caps *caps,
855 			     struct drm_printer *p)
856 {
857 	drm_printf(p, "Has logical contexts? %s\n",
858 		   yesno(caps->has_logical_contexts));
859 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
860 }
861 
862 /*
863  * Determine which engines are fused off in our particular hardware. Since the
864  * fuse register is in the blitter powerwell, we need forcewake to be ready at
865  * this point (but later we need to prune the forcewake domains for engines that
866  * are indeed fused off).
867  */
868 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
869 {
870 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
871 	unsigned int logical_vdbox = 0;
872 	unsigned int i;
873 	u32 media_fuse;
874 
875 	if (INTEL_GEN(dev_priv) < 11)
876 		return;
877 
878 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
879 
880 	RUNTIME_INFO(dev_priv)->vdbox_enable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
881 	RUNTIME_INFO(dev_priv)->vebox_enable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
882 		GEN11_GT_VEBOX_DISABLE_SHIFT;
883 
884 	DRM_DEBUG_DRIVER("vdbox enable: %04x\n", RUNTIME_INFO(dev_priv)->vdbox_enable);
885 	for (i = 0; i < I915_MAX_VCS; i++) {
886 		if (!HAS_ENGINE(dev_priv, _VCS(i)))
887 			continue;
888 
889 		if (!(BIT(i) & RUNTIME_INFO(dev_priv)->vdbox_enable)) {
890 			info->ring_mask &= ~ENGINE_MASK(_VCS(i));
891 			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
892 			continue;
893 		}
894 
895 		/*
896 		 * In Gen11, only even numbered logical VDBOXes are
897 		 * hooked up to an SFC (Scaler & Format Converter) unit.
898 		 */
899 		if (logical_vdbox++ % 2 == 0)
900 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
901 	}
902 
903 	DRM_DEBUG_DRIVER("vebox enable: %04x\n", RUNTIME_INFO(dev_priv)->vebox_enable);
904 	for (i = 0; i < I915_MAX_VECS; i++) {
905 		if (!HAS_ENGINE(dev_priv, _VECS(i)))
906 			continue;
907 
908 		if (!(BIT(i) & RUNTIME_INFO(dev_priv)->vebox_enable)) {
909 			info->ring_mask &= ~ENGINE_MASK(_VECS(i));
910 			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
911 		}
912 	}
913 }
914