1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29 
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 	PLATFORM_NAME(I830),
33 	PLATFORM_NAME(I845G),
34 	PLATFORM_NAME(I85X),
35 	PLATFORM_NAME(I865G),
36 	PLATFORM_NAME(I915G),
37 	PLATFORM_NAME(I915GM),
38 	PLATFORM_NAME(I945G),
39 	PLATFORM_NAME(I945GM),
40 	PLATFORM_NAME(G33),
41 	PLATFORM_NAME(PINEVIEW),
42 	PLATFORM_NAME(I965G),
43 	PLATFORM_NAME(I965GM),
44 	PLATFORM_NAME(G45),
45 	PLATFORM_NAME(GM45),
46 	PLATFORM_NAME(IRONLAKE),
47 	PLATFORM_NAME(SANDYBRIDGE),
48 	PLATFORM_NAME(IVYBRIDGE),
49 	PLATFORM_NAME(VALLEYVIEW),
50 	PLATFORM_NAME(HASWELL),
51 	PLATFORM_NAME(BROADWELL),
52 	PLATFORM_NAME(CHERRYVIEW),
53 	PLATFORM_NAME(SKYLAKE),
54 	PLATFORM_NAME(BROXTON),
55 	PLATFORM_NAME(KABYLAKE),
56 	PLATFORM_NAME(GEMINILAKE),
57 	PLATFORM_NAME(COFFEELAKE),
58 	PLATFORM_NAME(CANNONLAKE),
59 	PLATFORM_NAME(ICELAKE),
60 	PLATFORM_NAME(ELKHARTLAKE),
61 	PLATFORM_NAME(TIGERLAKE),
62 };
63 #undef PLATFORM_NAME
64 
65 const char *intel_platform_name(enum intel_platform platform)
66 {
67 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
68 
69 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
70 			 platform_names[platform] == NULL))
71 		return "<unknown>";
72 
73 	return platform_names[platform];
74 }
75 
76 void intel_device_info_dump_flags(const struct intel_device_info *info,
77 				  struct drm_printer *p)
78 {
79 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
80 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
81 #undef PRINT_FLAG
82 
83 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
84 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
85 #undef PRINT_FLAG
86 }
87 
88 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
89 {
90 	int s;
91 
92 	drm_printf(p, "slice total: %u, mask=%04x\n",
93 		   hweight8(sseu->slice_mask), sseu->slice_mask);
94 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
95 	for (s = 0; s < sseu->max_slices; s++) {
96 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
97 			   s, intel_sseu_subslices_per_slice(sseu, s),
98 			   intel_sseu_get_subslices(sseu, s));
99 	}
100 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
101 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
102 	drm_printf(p, "has slice power gating: %s\n",
103 		   yesno(sseu->has_slice_pg));
104 	drm_printf(p, "has subslice power gating: %s\n",
105 		   yesno(sseu->has_subslice_pg));
106 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
107 }
108 
109 void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
110 				    struct drm_printer *p)
111 {
112 	sseu_dump(&info->sseu, p);
113 
114 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
115 		   info->cs_timestamp_frequency_khz);
116 }
117 
118 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
119 		       int subslice)
120 {
121 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
122 
123 	return slice * slice_stride + subslice * sseu->eu_stride;
124 }
125 
126 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
127 			int subslice)
128 {
129 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
130 	u16 eu_mask = 0;
131 
132 	for (i = 0; i < sseu->eu_stride; i++) {
133 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
134 			(i * BITS_PER_BYTE);
135 	}
136 
137 	return eu_mask;
138 }
139 
140 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
141 			 u16 eu_mask)
142 {
143 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
144 
145 	for (i = 0; i < sseu->eu_stride; i++) {
146 		sseu->eu_mask[offset + i] =
147 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
148 	}
149 }
150 
151 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
152 				     struct drm_printer *p)
153 {
154 	int s, ss;
155 
156 	if (sseu->max_slices == 0) {
157 		drm_printf(p, "Unavailable\n");
158 		return;
159 	}
160 
161 	for (s = 0; s < sseu->max_slices; s++) {
162 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
163 			   s, intel_sseu_subslices_per_slice(sseu, s),
164 			   intel_sseu_get_subslices(sseu, s));
165 
166 		for (ss = 0; ss < sseu->max_subslices; ss++) {
167 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
168 
169 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
170 				   ss, hweight16(enabled_eus), enabled_eus);
171 		}
172 	}
173 }
174 
175 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
176 {
177 	u16 i, total = 0;
178 
179 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
180 		total += hweight8(sseu->eu_mask[i]);
181 
182 	return total;
183 }
184 
185 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
186 				    u8 s_en, u32 ss_en, u16 eu_en)
187 {
188 	int s, ss;
189 
190 	/* ss_en represents entire subslice mask across all slices */
191 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
192 		   sizeof(ss_en) * BITS_PER_BYTE);
193 
194 	for (s = 0; s < sseu->max_slices; s++) {
195 		if ((s_en & BIT(s)) == 0)
196 			continue;
197 
198 		sseu->slice_mask |= BIT(s);
199 
200 		intel_sseu_set_subslices(sseu, s, ss_en);
201 
202 		for (ss = 0; ss < sseu->max_subslices; ss++)
203 			if (intel_sseu_has_subslice(sseu, s, ss))
204 				sseu_set_eus(sseu, s, ss, eu_en);
205 	}
206 	sseu->eu_per_subslice = hweight16(eu_en);
207 	sseu->eu_total = compute_eu_total(sseu);
208 }
209 
210 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
211 {
212 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
213 	u8 s_en;
214 	u32 dss_en;
215 	u16 eu_en = 0;
216 	u8 eu_en_fuse;
217 	int eu;
218 
219 	/*
220 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
221 	 * Instead of splitting these, provide userspace with an array
222 	 * of DSS to more closely represent the hardware resource.
223 	 */
224 	intel_sseu_set_info(sseu, 1, 6, 16);
225 
226 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
227 
228 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
229 
230 	/* one bit per pair of EUs */
231 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
232 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
233 		if (eu_en_fuse & BIT(eu))
234 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
235 
236 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
237 
238 	/* TGL only supports slice-level power gating */
239 	sseu->has_slice_pg = 1;
240 }
241 
242 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
243 {
244 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
245 	u8 s_en;
246 	u32 ss_en;
247 	u8 eu_en;
248 
249 	if (IS_ELKHARTLAKE(dev_priv))
250 		intel_sseu_set_info(sseu, 1, 4, 8);
251 	else
252 		intel_sseu_set_info(sseu, 1, 8, 8);
253 
254 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
255 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
256 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
257 
258 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
259 
260 	/* ICL has no power gating restrictions. */
261 	sseu->has_slice_pg = 1;
262 	sseu->has_subslice_pg = 1;
263 	sseu->has_eu_pg = 1;
264 }
265 
266 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
267 {
268 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
269 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
270 	int s, ss;
271 	const int eu_mask = 0xff;
272 	u32 subslice_mask, eu_en;
273 
274 	intel_sseu_set_info(sseu, 6, 4, 8);
275 
276 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
277 			    GEN10_F2_S_ENA_SHIFT;
278 
279 	/* Slice0 */
280 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
281 	for (ss = 0; ss < sseu->max_subslices; ss++)
282 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
283 	/* Slice1 */
284 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
285 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
286 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
287 	/* Slice2 */
288 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
289 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
290 	/* Slice3 */
291 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
292 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
293 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
294 	/* Slice4 */
295 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
296 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
297 	/* Slice5 */
298 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
299 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
300 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
301 
302 	subslice_mask = (1 << 4) - 1;
303 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
304 			   GEN10_F2_SS_DIS_SHIFT);
305 
306 	for (s = 0; s < sseu->max_slices; s++) {
307 		u32 subslice_mask_with_eus = subslice_mask;
308 
309 		for (ss = 0; ss < sseu->max_subslices; ss++) {
310 			if (sseu_get_eus(sseu, s, ss) == 0)
311 				subslice_mask_with_eus &= ~BIT(ss);
312 		}
313 
314 		/*
315 		 * Slice0 can have up to 3 subslices, but there are only 2 in
316 		 * slice1/2.
317 		 */
318 		intel_sseu_set_subslices(sseu, s, s == 0 ?
319 						  subslice_mask_with_eus :
320 						  subslice_mask_with_eus & 0x3);
321 	}
322 
323 	sseu->eu_total = compute_eu_total(sseu);
324 
325 	/*
326 	 * CNL is expected to always have a uniform distribution
327 	 * of EU across subslices with the exception that any one
328 	 * EU in any one subslice may be fused off for die
329 	 * recovery.
330 	 */
331 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
332 				DIV_ROUND_UP(sseu->eu_total,
333 					     intel_sseu_subslice_total(sseu)) :
334 				0;
335 
336 	/* No restrictions on Power Gating */
337 	sseu->has_slice_pg = 1;
338 	sseu->has_subslice_pg = 1;
339 	sseu->has_eu_pg = 1;
340 }
341 
342 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
343 {
344 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
345 	u32 fuse;
346 	u8 subslice_mask = 0;
347 
348 	fuse = I915_READ(CHV_FUSE_GT);
349 
350 	sseu->slice_mask = BIT(0);
351 	intel_sseu_set_info(sseu, 1, 2, 8);
352 
353 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
354 		u8 disabled_mask =
355 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
356 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
357 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
358 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
359 
360 		subslice_mask |= BIT(0);
361 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
362 	}
363 
364 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
365 		u8 disabled_mask =
366 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
367 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
368 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
369 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
370 
371 		subslice_mask |= BIT(1);
372 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
373 	}
374 
375 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
376 
377 	sseu->eu_total = compute_eu_total(sseu);
378 
379 	/*
380 	 * CHV expected to always have a uniform distribution of EU
381 	 * across subslices.
382 	*/
383 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
384 				sseu->eu_total /
385 					intel_sseu_subslice_total(sseu) :
386 				0;
387 	/*
388 	 * CHV supports subslice power gating on devices with more than
389 	 * one subslice, and supports EU power gating on devices with
390 	 * more than one EU pair per subslice.
391 	*/
392 	sseu->has_slice_pg = 0;
393 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
394 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
395 }
396 
397 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
398 {
399 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
400 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
401 	int s, ss;
402 	u32 fuse2, eu_disable, subslice_mask;
403 	const u8 eu_mask = 0xff;
404 
405 	fuse2 = I915_READ(GEN8_FUSE2);
406 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
407 
408 	/* BXT has a single slice and at most 3 subslices. */
409 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
410 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
411 
412 	/*
413 	 * The subslice disable field is global, i.e. it applies
414 	 * to each of the enabled slices.
415 	*/
416 	subslice_mask = (1 << sseu->max_subslices) - 1;
417 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
418 			   GEN9_F2_SS_DIS_SHIFT);
419 
420 	/*
421 	 * Iterate through enabled slices and subslices to
422 	 * count the total enabled EU.
423 	*/
424 	for (s = 0; s < sseu->max_slices; s++) {
425 		if (!(sseu->slice_mask & BIT(s)))
426 			/* skip disabled slice */
427 			continue;
428 
429 		intel_sseu_set_subslices(sseu, s, subslice_mask);
430 
431 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
432 		for (ss = 0; ss < sseu->max_subslices; ss++) {
433 			int eu_per_ss;
434 			u8 eu_disabled_mask;
435 
436 			if (!intel_sseu_has_subslice(sseu, s, ss))
437 				/* skip disabled subslice */
438 				continue;
439 
440 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
441 
442 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
443 
444 			eu_per_ss = sseu->max_eus_per_subslice -
445 				hweight8(eu_disabled_mask);
446 
447 			/*
448 			 * Record which subslice(s) has(have) 7 EUs. we
449 			 * can tune the hash used to spread work among
450 			 * subslices if they are unbalanced.
451 			 */
452 			if (eu_per_ss == 7)
453 				sseu->subslice_7eu[s] |= BIT(ss);
454 		}
455 	}
456 
457 	sseu->eu_total = compute_eu_total(sseu);
458 
459 	/*
460 	 * SKL is expected to always have a uniform distribution
461 	 * of EU across subslices with the exception that any one
462 	 * EU in any one subslice may be fused off for die
463 	 * recovery. BXT is expected to be perfectly uniform in EU
464 	 * distribution.
465 	*/
466 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
467 				DIV_ROUND_UP(sseu->eu_total,
468 					     intel_sseu_subslice_total(sseu)) :
469 				0;
470 	/*
471 	 * SKL+ supports slice power gating on devices with more than
472 	 * one slice, and supports EU power gating on devices with
473 	 * more than one EU pair per subslice. BXT+ supports subslice
474 	 * power gating on devices with more than one subslice, and
475 	 * supports EU power gating on devices with more than one EU
476 	 * pair per subslice.
477 	*/
478 	sseu->has_slice_pg =
479 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
480 	sseu->has_subslice_pg =
481 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
482 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
483 
484 	if (IS_GEN9_LP(dev_priv)) {
485 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
486 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
487 
488 		sseu->min_eu_in_pool = 0;
489 		if (info->has_pooled_eu) {
490 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
491 				sseu->min_eu_in_pool = 3;
492 			else if (IS_SS_DISABLED(1))
493 				sseu->min_eu_in_pool = 6;
494 			else
495 				sseu->min_eu_in_pool = 9;
496 		}
497 #undef IS_SS_DISABLED
498 	}
499 }
500 
501 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
502 {
503 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
504 	int s, ss;
505 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
506 
507 	fuse2 = I915_READ(GEN8_FUSE2);
508 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
509 	intel_sseu_set_info(sseu, 3, 3, 8);
510 
511 	/*
512 	 * The subslice disable field is global, i.e. it applies
513 	 * to each of the enabled slices.
514 	 */
515 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
516 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
517 			   GEN8_F2_SS_DIS_SHIFT);
518 
519 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
520 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
521 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
522 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
523 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
524 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
525 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
526 
527 	/*
528 	 * Iterate through enabled slices and subslices to
529 	 * count the total enabled EU.
530 	 */
531 	for (s = 0; s < sseu->max_slices; s++) {
532 		if (!(sseu->slice_mask & BIT(s)))
533 			/* skip disabled slice */
534 			continue;
535 
536 		intel_sseu_set_subslices(sseu, s, subslice_mask);
537 
538 		for (ss = 0; ss < sseu->max_subslices; ss++) {
539 			u8 eu_disabled_mask;
540 			u32 n_disabled;
541 
542 			if (!intel_sseu_has_subslice(sseu, s, ss))
543 				/* skip disabled subslice */
544 				continue;
545 
546 			eu_disabled_mask =
547 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
548 
549 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
550 
551 			n_disabled = hweight8(eu_disabled_mask);
552 
553 			/*
554 			 * Record which subslices have 7 EUs.
555 			 */
556 			if (sseu->max_eus_per_subslice - n_disabled == 7)
557 				sseu->subslice_7eu[s] |= 1 << ss;
558 		}
559 	}
560 
561 	sseu->eu_total = compute_eu_total(sseu);
562 
563 	/*
564 	 * BDW is expected to always have a uniform distribution of EU across
565 	 * subslices with the exception that any one EU in any one subslice may
566 	 * be fused off for die recovery.
567 	 */
568 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
569 				DIV_ROUND_UP(sseu->eu_total,
570 					     intel_sseu_subslice_total(sseu)) :
571 				0;
572 
573 	/*
574 	 * BDW supports slice power gating on devices with more than
575 	 * one slice.
576 	 */
577 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
578 	sseu->has_subslice_pg = 0;
579 	sseu->has_eu_pg = 0;
580 }
581 
582 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
583 {
584 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
585 	u32 fuse1;
586 	u8 subslice_mask = 0;
587 	int s, ss;
588 
589 	/*
590 	 * There isn't a register to tell us how many slices/subslices. We
591 	 * work off the PCI-ids here.
592 	 */
593 	switch (INTEL_INFO(dev_priv)->gt) {
594 	default:
595 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
596 		/* fall through */
597 	case 1:
598 		sseu->slice_mask = BIT(0);
599 		subslice_mask = BIT(0);
600 		break;
601 	case 2:
602 		sseu->slice_mask = BIT(0);
603 		subslice_mask = BIT(0) | BIT(1);
604 		break;
605 	case 3:
606 		sseu->slice_mask = BIT(0) | BIT(1);
607 		subslice_mask = BIT(0) | BIT(1);
608 		break;
609 	}
610 
611 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
612 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
613 	default:
614 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
615 			     HSW_F1_EU_DIS_SHIFT);
616 		/* fall through */
617 	case HSW_F1_EU_DIS_10EUS:
618 		sseu->eu_per_subslice = 10;
619 		break;
620 	case HSW_F1_EU_DIS_8EUS:
621 		sseu->eu_per_subslice = 8;
622 		break;
623 	case HSW_F1_EU_DIS_6EUS:
624 		sseu->eu_per_subslice = 6;
625 		break;
626 	}
627 
628 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
629 			    hweight8(subslice_mask),
630 			    sseu->eu_per_subslice);
631 
632 	for (s = 0; s < sseu->max_slices; s++) {
633 		intel_sseu_set_subslices(sseu, s, subslice_mask);
634 
635 		for (ss = 0; ss < sseu->max_subslices; ss++) {
636 			sseu_set_eus(sseu, s, ss,
637 				     (1UL << sseu->eu_per_subslice) - 1);
638 		}
639 	}
640 
641 	sseu->eu_total = compute_eu_total(sseu);
642 
643 	/* No powergating for you. */
644 	sseu->has_slice_pg = 0;
645 	sseu->has_subslice_pg = 0;
646 	sseu->has_eu_pg = 0;
647 }
648 
649 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
650 {
651 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
652 	u32 base_freq, frac_freq;
653 
654 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
655 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
656 	base_freq *= 1000;
657 
658 	frac_freq = ((ts_override &
659 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
660 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
661 	frac_freq = 1000 / (frac_freq + 1);
662 
663 	return base_freq + frac_freq;
664 }
665 
666 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
667 					u32 rpm_config_reg)
668 {
669 	u32 f19_2_mhz = 19200;
670 	u32 f24_mhz = 24000;
671 	u32 crystal_clock = (rpm_config_reg &
672 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
673 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
674 
675 	switch (crystal_clock) {
676 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
677 		return f19_2_mhz;
678 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
679 		return f24_mhz;
680 	default:
681 		MISSING_CASE(crystal_clock);
682 		return 0;
683 	}
684 }
685 
686 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
687 					u32 rpm_config_reg)
688 {
689 	u32 f19_2_mhz = 19200;
690 	u32 f24_mhz = 24000;
691 	u32 f25_mhz = 25000;
692 	u32 f38_4_mhz = 38400;
693 	u32 crystal_clock = (rpm_config_reg &
694 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
695 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
696 
697 	switch (crystal_clock) {
698 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
699 		return f24_mhz;
700 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
701 		return f19_2_mhz;
702 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
703 		return f38_4_mhz;
704 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
705 		return f25_mhz;
706 	default:
707 		MISSING_CASE(crystal_clock);
708 		return 0;
709 	}
710 }
711 
712 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
713 {
714 	u32 f12_5_mhz = 12500;
715 	u32 f19_2_mhz = 19200;
716 	u32 f24_mhz = 24000;
717 
718 	if (INTEL_GEN(dev_priv) <= 4) {
719 		/* PRMs say:
720 		 *
721 		 *     "The value in this register increments once every 16
722 		 *      hclks." (through the “Clocking Configuration”
723 		 *      (“CLKCFG”) MCHBAR register)
724 		 */
725 		return dev_priv->rawclk_freq / 16;
726 	} else if (INTEL_GEN(dev_priv) <= 8) {
727 		/* PRMs say:
728 		 *
729 		 *     "The PCU TSC counts 10ns increments; this timestamp
730 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
731 		 *      rolling over every 1.5 hours).
732 		 */
733 		return f12_5_mhz;
734 	} else if (INTEL_GEN(dev_priv) <= 9) {
735 		u32 ctc_reg = I915_READ(CTC_MODE);
736 		u32 freq = 0;
737 
738 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
739 			freq = read_reference_ts_freq(dev_priv);
740 		} else {
741 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
742 
743 			/* Now figure out how the command stream's timestamp
744 			 * register increments from this frequency (it might
745 			 * increment only every few clock cycle).
746 			 */
747 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
748 				      CTC_SHIFT_PARAMETER_SHIFT);
749 		}
750 
751 		return freq;
752 	} else if (INTEL_GEN(dev_priv) <= 12) {
753 		u32 ctc_reg = I915_READ(CTC_MODE);
754 		u32 freq = 0;
755 
756 		/* First figure out the reference frequency. There are 2 ways
757 		 * we can compute the frequency, either through the
758 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
759 		 * tells us which one we should use.
760 		 */
761 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
762 			freq = read_reference_ts_freq(dev_priv);
763 		} else {
764 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
765 
766 			if (INTEL_GEN(dev_priv) <= 10)
767 				freq = gen10_get_crystal_clock_freq(dev_priv,
768 								rpm_config_reg);
769 			else
770 				freq = gen11_get_crystal_clock_freq(dev_priv,
771 								rpm_config_reg);
772 
773 			/* Now figure out how the command stream's timestamp
774 			 * register increments from this frequency (it might
775 			 * increment only every few clock cycle).
776 			 */
777 			freq >>= 3 - ((rpm_config_reg &
778 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
779 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
780 		}
781 
782 		return freq;
783 	}
784 
785 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
786 	return 0;
787 }
788 
789 #undef INTEL_VGA_DEVICE
790 #define INTEL_VGA_DEVICE(id, info) (id)
791 
792 static const u16 subplatform_ult_ids[] = {
793 	INTEL_HSW_ULT_GT1_IDS(0),
794 	INTEL_HSW_ULT_GT2_IDS(0),
795 	INTEL_HSW_ULT_GT3_IDS(0),
796 	INTEL_BDW_ULT_GT1_IDS(0),
797 	INTEL_BDW_ULT_GT2_IDS(0),
798 	INTEL_BDW_ULT_GT3_IDS(0),
799 	INTEL_BDW_ULT_RSVD_IDS(0),
800 	INTEL_SKL_ULT_GT1_IDS(0),
801 	INTEL_SKL_ULT_GT2_IDS(0),
802 	INTEL_SKL_ULT_GT3_IDS(0),
803 	INTEL_KBL_ULT_GT1_IDS(0),
804 	INTEL_KBL_ULT_GT2_IDS(0),
805 	INTEL_KBL_ULT_GT3_IDS(0),
806 	INTEL_CFL_U_GT2_IDS(0),
807 	INTEL_CFL_U_GT3_IDS(0),
808 	INTEL_WHL_U_GT1_IDS(0),
809 	INTEL_WHL_U_GT2_IDS(0),
810 	INTEL_WHL_U_GT3_IDS(0),
811 };
812 
813 static const u16 subplatform_ulx_ids[] = {
814 	INTEL_HSW_ULX_GT1_IDS(0),
815 	INTEL_HSW_ULX_GT2_IDS(0),
816 	INTEL_BDW_ULX_GT1_IDS(0),
817 	INTEL_BDW_ULX_GT2_IDS(0),
818 	INTEL_BDW_ULX_GT3_IDS(0),
819 	INTEL_BDW_ULX_RSVD_IDS(0),
820 	INTEL_SKL_ULX_GT1_IDS(0),
821 	INTEL_SKL_ULX_GT2_IDS(0),
822 	INTEL_KBL_ULX_GT1_IDS(0),
823 	INTEL_KBL_ULX_GT2_IDS(0),
824 	INTEL_AML_KBL_GT2_IDS(0),
825 	INTEL_AML_CFL_GT2_IDS(0),
826 };
827 
828 static const u16 subplatform_portf_ids[] = {
829 	INTEL_CNL_PORT_F_IDS(0),
830 	INTEL_ICL_PORT_F_IDS(0),
831 };
832 
833 static bool find_devid(u16 id, const u16 *p, unsigned int num)
834 {
835 	for (; num; num--, p++) {
836 		if (*p == id)
837 			return true;
838 	}
839 
840 	return false;
841 }
842 
843 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
844 {
845 	const struct intel_device_info *info = INTEL_INFO(i915);
846 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
847 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
848 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
849 	u16 devid = INTEL_DEVID(i915);
850 	u32 mask = 0;
851 
852 	/* Make sure IS_<platform> checks are working. */
853 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
854 
855 	/* Find and mark subplatform bits based on the PCI device id. */
856 	if (find_devid(devid, subplatform_ult_ids,
857 		       ARRAY_SIZE(subplatform_ult_ids))) {
858 		mask = BIT(INTEL_SUBPLATFORM_ULT);
859 	} else if (find_devid(devid, subplatform_ulx_ids,
860 			      ARRAY_SIZE(subplatform_ulx_ids))) {
861 		mask = BIT(INTEL_SUBPLATFORM_ULX);
862 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
863 			/* ULX machines are also considered ULT. */
864 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
865 		}
866 	} else if (find_devid(devid, subplatform_portf_ids,
867 			      ARRAY_SIZE(subplatform_portf_ids))) {
868 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
869 	}
870 
871 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
872 
873 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
874 }
875 
876 /**
877  * intel_device_info_runtime_init - initialize runtime info
878  * @dev_priv: the i915 device
879  *
880  * Determine various intel_device_info fields at runtime.
881  *
882  * Use it when either:
883  *   - it's judged too laborious to fill n static structures with the limit
884  *     when a simple if statement does the job,
885  *   - run-time checks (eg read fuse/strap registers) are needed.
886  *
887  * This function needs to be called:
888  *   - after the MMIO has been setup as we are reading registers,
889  *   - after the PCH has been detected,
890  *   - before the first usage of the fields it can tweak.
891  */
892 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
893 {
894 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
895 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
896 	enum pipe pipe;
897 
898 	if (INTEL_GEN(dev_priv) >= 10) {
899 		for_each_pipe(dev_priv, pipe)
900 			runtime->num_scalers[pipe] = 2;
901 	} else if (IS_GEN(dev_priv, 9)) {
902 		runtime->num_scalers[PIPE_A] = 2;
903 		runtime->num_scalers[PIPE_B] = 2;
904 		runtime->num_scalers[PIPE_C] = 1;
905 	}
906 
907 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
908 
909 	if (INTEL_GEN(dev_priv) >= 11)
910 		for_each_pipe(dev_priv, pipe)
911 			runtime->num_sprites[pipe] = 6;
912 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
913 		for_each_pipe(dev_priv, pipe)
914 			runtime->num_sprites[pipe] = 3;
915 	else if (IS_BROXTON(dev_priv)) {
916 		/*
917 		 * Skylake and Broxton currently don't expose the topmost plane as its
918 		 * use is exclusive with the legacy cursor and we only want to expose
919 		 * one of those, not both. Until we can safely expose the topmost plane
920 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
921 		 * we don't expose the topmost plane at all to prevent ABI breakage
922 		 * down the line.
923 		 */
924 
925 		runtime->num_sprites[PIPE_A] = 2;
926 		runtime->num_sprites[PIPE_B] = 2;
927 		runtime->num_sprites[PIPE_C] = 1;
928 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
929 		for_each_pipe(dev_priv, pipe)
930 			runtime->num_sprites[pipe] = 2;
931 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
932 		for_each_pipe(dev_priv, pipe)
933 			runtime->num_sprites[pipe] = 1;
934 	}
935 
936 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
937 	    HAS_PCH_SPLIT(dev_priv)) {
938 		u32 fuse_strap = I915_READ(FUSE_STRAP);
939 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
940 
941 		/*
942 		 * SFUSE_STRAP is supposed to have a bit signalling the display
943 		 * is fused off. Unfortunately it seems that, at least in
944 		 * certain cases, fused off display means that PCH display
945 		 * reads don't land anywhere. In that case, we read 0s.
946 		 *
947 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
948 		 * should be set when taking over after the firmware.
949 		 */
950 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
951 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
952 		    (HAS_PCH_CPT(dev_priv) &&
953 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
954 			DRM_INFO("Display fused off, disabling\n");
955 			info->pipe_mask = 0;
956 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
957 			DRM_INFO("PipeC fused off\n");
958 			info->pipe_mask &= ~BIT(PIPE_C);
959 		}
960 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
961 		u32 dfsm = I915_READ(SKL_DFSM);
962 		u8 enabled_mask = info->pipe_mask;
963 
964 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
965 			enabled_mask &= ~BIT(PIPE_A);
966 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
967 			enabled_mask &= ~BIT(PIPE_B);
968 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
969 			enabled_mask &= ~BIT(PIPE_C);
970 		if (INTEL_GEN(dev_priv) >= 12 &&
971 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
972 			enabled_mask &= ~BIT(PIPE_D);
973 
974 		/*
975 		 * At least one pipe should be enabled and if there are
976 		 * disabled pipes, they should be the last ones, with no holes
977 		 * in the mask.
978 		 */
979 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
980 			DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
981 				  enabled_mask);
982 		else
983 			info->pipe_mask = enabled_mask;
984 
985 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
986 			info->display.has_hdcp = 0;
987 
988 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
989 			info->display.has_fbc = 0;
990 
991 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
992 			info->display.has_csr = 0;
993 
994 		if (INTEL_GEN(dev_priv) >= 10 &&
995 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
996 			info->display.has_dsc = 0;
997 	}
998 
999 	/* Initialize slice/subslice/EU info */
1000 	if (IS_HASWELL(dev_priv))
1001 		haswell_sseu_info_init(dev_priv);
1002 	else if (IS_CHERRYVIEW(dev_priv))
1003 		cherryview_sseu_info_init(dev_priv);
1004 	else if (IS_BROADWELL(dev_priv))
1005 		broadwell_sseu_info_init(dev_priv);
1006 	else if (IS_GEN(dev_priv, 9))
1007 		gen9_sseu_info_init(dev_priv);
1008 	else if (IS_GEN(dev_priv, 10))
1009 		gen10_sseu_info_init(dev_priv);
1010 	else if (IS_GEN(dev_priv, 11))
1011 		gen11_sseu_info_init(dev_priv);
1012 	else if (INTEL_GEN(dev_priv) >= 12)
1013 		gen12_sseu_info_init(dev_priv);
1014 
1015 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1016 		DRM_INFO("Disabling ppGTT for VT-d support\n");
1017 		info->ppgtt_type = INTEL_PPGTT_NONE;
1018 	}
1019 
1020 	/* Initialize command stream timestamp frequency */
1021 	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
1022 }
1023 
1024 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1025 			     struct drm_printer *p)
1026 {
1027 	drm_printf(p, "Has logical contexts? %s\n",
1028 		   yesno(caps->has_logical_contexts));
1029 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1030 }
1031 
1032 /*
1033  * Determine which engines are fused off in our particular hardware. Since the
1034  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1035  * this point (but later we need to prune the forcewake domains for engines that
1036  * are indeed fused off).
1037  */
1038 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1039 {
1040 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1041 	unsigned int logical_vdbox = 0;
1042 	unsigned int i;
1043 	u32 media_fuse;
1044 	u16 vdbox_mask;
1045 	u16 vebox_mask;
1046 
1047 	if (INTEL_GEN(dev_priv) < 11)
1048 		return;
1049 
1050 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1051 
1052 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1053 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1054 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1055 
1056 	for (i = 0; i < I915_MAX_VCS; i++) {
1057 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1058 			vdbox_mask &= ~BIT(i);
1059 			continue;
1060 		}
1061 
1062 		if (!(BIT(i) & vdbox_mask)) {
1063 			info->engine_mask &= ~BIT(_VCS(i));
1064 			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1065 			continue;
1066 		}
1067 
1068 		/*
1069 		 * In Gen11, only even numbered logical VDBOXes are
1070 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1071 		 * In TGL each VDBOX has access to an SFC.
1072 		 */
1073 		if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
1074 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1075 	}
1076 	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1077 			 vdbox_mask, VDBOX_MASK(dev_priv));
1078 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1079 
1080 	for (i = 0; i < I915_MAX_VECS; i++) {
1081 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1082 			vebox_mask &= ~BIT(i);
1083 			continue;
1084 		}
1085 
1086 		if (!(BIT(i) & vebox_mask)) {
1087 			info->engine_mask &= ~BIT(_VECS(i));
1088 			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1089 		}
1090 	}
1091 	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1092 			 vebox_mask, VEBOX_MASK(dev_priv));
1093 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1094 }
1095